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ABSTRACT
Approximate nearest neighbor search (ANNs) plays an important
role in many applications ranging from information retrieval, rec-
ommender systems to machine translation. Several ANN indexes,
such as hashing and quantization, have been designed to update for
the evolving database, but there exists a remarkable performance
gap between them and retrained indexes on the entire database.
To close the gap, we propose an online additive quantization algo-
rithm (online AQ) to dynamically update quantization codebooks
with the incoming streaming data.Thenwe derive the regret bound
to theoretically guarantee the performance of the online AQ algo-
rithm. Moreover, to improve the learning efficiency, we develop a
randomized block beam search algorithm for assigning each data
to the codewords of the codebook. Finally, we extensively evalu-
ate the proposed online AQ algorithm on four real-world datasets,
showing that it remarkably outperforms the state-of-the-art base-
lines.

CCS CONCEPTS
• Information systems → Nearest-neighbor search; • Com-
puting methodologies→ Machine learning.
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1 INTRODUCTION
The advent of Internet has led to massive information overload in
recent decades. For example, Google indexes more than 1 trillion
webpages, Twitter hosts hundreds of millions of tweets and Flickr
has billions of images. One method to address the information
overload is to search for relevant information in data oceans with
queries, but it turns out to be a challenging task. It is boiled down
to the nearest neighbor search problem in a given database [18,
32], which can be efficiently yet approximately solved by the Ap-
proximate Nearest Neighbor search (ANNs) techniques, including
hashing [33], quantization [23], tree [30] or graph index-based ap-
proaches [20, 21]. In addition to efficient information filtering, ANNs
also plays an important role in many other tasks, such as recom-
mender systems [24, 26, 28, 31], machine translation [7, 36], and
multi-class classification [11, 25].

Due to data generation at an unprecedented rate per day, databases
are dynamically growing while the data distribution may evolve
over time. For instance, Twitter receives over 100 million tweets
per day, Flickr receives over 3,000 images per minute, and Youtube
has more than 100 hours of videos uploaded per minute. Without
incorporating newly generated data, ANNsmay not provide highly
accurate responses to achieve satisfactory performance. However,
it is almost computationally impractical to train the ANNs method
from scratch each time the new data comes in due to the large
size of the database. Therefore, it is important to develop ANNs al-
gorithms to handling incremental data with a low computational
cost.

Several studies have been conducted to support online learning
of ANNs algorithms. There are mainly two lines of directions for
this task. One line of research direction is online hash [3–5, 8, 12,
13, 17], to adapt hashing-based ANNs to accommodating the incre-
mental data. The main idea is to update the hash function with the
new data and then update the hash codes of existing stored data
via the new hash functions.The advantage of the hash-based ANNs
methods lies in the low computational cost of search and low stor-
age cost of binary codes. However, the problems of these methods
include low accuracy of approximation due to low capacity of rep-
resentation, and the high computation cost of code maintenance
due to the high frequent update of the hash functions. Moreover,
these methods require keeping the old data so that the new hash
code of the old data can be updated. Another line of research direc-
tion is online quantization [6, 35], to update codebooks to incor-
porate incremental data. The most related work is online product
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quantization [35], which leverages online K-means to update the
codebookswithout recomputing the codes (i.e., indexes) of old data
with respect to the updated codebooks, thus reducing the computa-
tional cost of learning and maintenance. However, the problem of
these methods lies in𝑂 (𝑇 ) regret bounds of online learning∗, such
that the accuracy of the approximate search would always decay
over time. Its variant over a sliding window has been proposed to
reduce the regret bound by decreasing 𝑇 , but the issue remains in
the same setting.

To this end, we propose an online learning algorithm for ad-
ditive quantization, which is called online Additive Quantization
(online AQ). AQ performs empirically better than (optimized) prod-
uct quantization and comparably to composite quantization.There-
fore, it is worth investigating how to adapt AQ to accommodate
incremental data. When following the same assumption as online
PQ to not update the codes of old data (i.e., indexes with respect to
codebooks), the codebooks of AQ can be easily and efficiently up-
dated with a closed-form equation to incorporate new data based
on the matrix inversion lemma. In this way, we derive a better re-
gret bound than online PQ, which can theoretically guarantee the
performance of the proposed online AQ algorithm. Moreover, AQ
has developed the beam search algorithm to assign the codewords
of codebooks with the smallest quantization error to the data. Due
to its cubic complexity with the number of books, AQ suffers from
a high computational cost. For the sake of improving efficiency,
we proposed a block-wise beam search algorithm over randomly-
selected blocks to compute codes for each streaming data.

To summarize, we deliver the following new contributions:
• To the best of our knowledge, we propose the online learning
algorithm for additive quantization for the first time, where the
codebooks can be efficiently updated to accommodate the new
data, and the codes of the new data can be fast computed with
the novel randomized block beam search algorithm.
• We derive a better regret bound than online product quantiza-
tion to guarantee the performance of the proposed online AQ al-
gorithm. The empirical comparison between the decaying curv-
ing of quantization error can confirm the superiority of online
AQ.
• The online AQ algorithm is comprehensively evaluated on four
real-world datasets, where the results demonstrate that online
AQoutperforms the state-of-the-art online learning to indexmeth-
ods.

2 RELATEDWORKS
Online additive quantization ismainly related to hashing and quan-
tization, therefore we only focus on the advance of hashing and
quantization. Though tree and graph-based indexes are also used
for approximate nearest neighbor search, few of them have been
adapted to the dynamic databases, so these techniques are not dis-
cussed here due to the space limits. Interested readers could refer
to the survey [18].

2.1 Hashing and Quantization for ANNs
Hashing-based ANNs can be categorized into data-independent
hashing and data-dependent hashing. Locality sensitive hash (LSH)
∗𝑇 is the number of time steps for online learning

is one of the most representative work for data-independent hash-
ing. LSH generates randomized hash functions, which can theo-
retically guarantee that more similar data can be mapped into the
same bucket with a higher probability, where buckets are identified
by the hash code of the data. Data-dependent hashing learns hash
functions from the data, which are likely to achieve higher perfor-
mance than the former methods. Semantic hashing was proposed
to learn binary codes via Restricted Boltzmann Machine for fast
searching similar documents [29]. Spectral hashing applied spec-
tral analysis techniques to embed a constructed similarity graph
between data points into a binary Hamming space [34]. ITQ [16]
and IsoH [10] proposed to learn a rotation matrix for similar or
isotropic variances in projected dimensions to derive more effec-
tive and compact binary codes. Please refer to [33] for a more com-
prehensive survey.

Quantization-basedANNs usually derivemultiple codebooks by
minimizing the quantization error between data points and the
composition of codewords. From each codebook, one and only one
codeword is selected. It is possible to composite these codewords
by concatenation and addition, such that an exponentially large
codebook can be generated. Product quantization [14], as one of
the most representative work for quantization, decomposed the
vector representation space into the Cartesian product of subspaces
and then applied k-means for deriving codebook in each separate
subspace. Then, each data point is approximated by concatenat-
ing codewords selected from these codebooks. Optimized product
quantization [9] jointly learned space decomposition and subspace
quantization. Composite Quantization [37] and Additive Quanti-
zation [1] do not decompose space but directly learned multiple
codebooks in an iterative way. Sparse constraints can be imposed
on codebooks, enabling fast encoding and evaluation [2, 38].

2.2 Online Learning for ANNs
Since data-independent hashingmethods are not dependent on the
input data, they can be easily and straightforwardly adapted to ac-
commodate streaming data. Online data-dependent hashing meth-
ods receive much attention in recent years. They can be grouped
into supervised online hashing and unsupervised online hashing
according to the availability of label information. The representa-
tive work of the former taxonomy includes Online Kernel Hash-
ing [12, 13], Adaptive Hash [5], Online Supervised Hashing [3]
and Online Hashing with Mutual Information [4]. These methods
are distinguished from each other by how to leverage label infor-
mation under the online supervised learning framework. Due to
the lack of label information, the methods of the latter taxonomy
only model the inherent properties among data. The representa-
tivework includes stream spectral binary coding, Online Sketching
Hashing [17] and Faster Online Sketching Hashing [8]. The main
idea of thesemethods is to exploitmatrix sketching techniques [19]
for approximating the large data matrix with another smaller ma-
trix and then to learn hash functions based on the smaller ma-
trix. Since quantization-based methods only lead to lower quan-
tization errors than hashing, online product quantization was pro-
posed to adapt product quantization to accommodate the stream-
ing data [35]. Online PQ applies online K-means for updating the
codebooks at the assumption of not recomputing the index of old
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data. In spite of this rigid assumption, online PQ can be efficiently
learned and is remarkably superior to the hashing-based methods.
The proposed online AQ is unsupervised quantization, which does
not leverage any label information.

3 PRELIMINARY
Assume online AQ operates the streaming data, which are orga-
nized as a large matrix 𝒀 = [𝒚1,𝒚2, · · · ,𝒚𝑇 ]⊤ ∈ R𝑇×𝐷 . Each row
of the matrix 𝒀 is received one after the other in a streaming fash-
ion. We first introduce basic knowledge in the static setting, where
the whole matrix 𝑌 is given and then extend to the dynamic set-
ting. The most basic vector quantization is to quantize a vector 𝒚𝑡
to a codeword 𝒘𝑘 in a codebook𝑾 = [𝒘1, · · · ,𝒘𝐾 ], such that the
quantization distortion ∥𝒚𝑡 −𝒘𝑘 ∥ between them is minimized. The
additive quantization is to quantize the vector 𝒚𝒕 to the addition
of codewords, each of which is selected from a codebook. The ad-
ditive quantization assumes to use𝑀 codebooks,𝑾 (1) , · · · ,𝑾 (𝑀) ,
and approximate the data 𝒚𝑡 with �̂�𝑡 , which is defined as follows:

�̂�𝑡 =
𝑀∑
𝑚=1

𝒘 (𝑚)
𝑖𝑚 (𝒚𝑡 )

(1)

where 𝑖𝑚 (𝒚𝑡 ) ∈ {1, . . . , 𝐾} returns the index in the𝑚-th codebook
of the data𝒚𝑡 . We can represent each index as a one-hot vector, and
concatenate these one-hot vectors in a specified order to obtain the
index vector 𝒙𝑡 = [𝒙 (1)𝑡 , · · · , 𝒙 (𝑀)𝑡 ] ∈ {0, 1}𝑀𝐾×1, where the 𝑘-th
element 𝑥 (𝑚)

𝑡,𝑘
of the vector 𝒙 (𝑚)𝑡 equals to 1 if 𝑖𝑚 (𝒚𝑡 ) = 𝑘 and

0 otherwise. If we further concatenate the codebook matrix𝑾 (𝑚)
by column to obtain the matrix𝑾 = [𝑾 (1) , · · · ,𝑾 (𝑀) ] ∈ R𝑀𝐾×𝐷 ,
the approximated vector can be reformulated as

�̂�𝑡 =𝑾⊤𝒙𝑡 . (2)

Then, to quantize the data 𝒚𝑡 , the additive quantization finds the
best 𝒙𝑡 with respect to𝑾 by optimizing

𝒙∗𝑡 (𝑾 ) = argmin
𝒙𝑡
∥𝒚𝑡 −𝑾⊤𝒙𝑡 ∥22 . (3)

According to the definition of quantization error, it equals ∥𝒚𝑡 −
𝑾⊤𝒙∗𝑡 ∥2 for AQ. However, it is easy to observe that this involves a
combinatorial optimization problem, which suffers from high com-
putational cost. Therefore, AQ developed a beam search algorithm
for finding the approximate solution.

The codebook of AQ is usually learned with the goal of minimiz-
ing the quantization error of the whole dataset

𝑾∗ (𝑿 ) = argmin
𝑾

𝑇∑
𝑡=1

∥𝒚𝑡 −𝑾⊤𝒙𝑡 ∥22 = ∥𝒀 − 𝑿𝑾 ∥2𝐹 (4)

where the matrix 𝒀 , of size 𝑇 × 𝐷 , is obtained via stacking 𝒚𝑡 by
rows, and the matrix 𝑿 , of size 𝑇 × 𝑀𝐾 , is obtained via stacking
𝒙𝑡 by rows.This is a linear regression problem, which has a closed-
form solution. However, to make the matrix 𝑿⊤𝑿 invertable, we
introduce a regularizer term 𝜆∥𝑾 ∥2𝐹 , so that the closed-form solu-
tion is given as follows:

𝑾∗ (𝑿 ) = (𝑿⊤𝑿 + 𝜆𝑰 )−1𝑿⊤𝒀 (5)

Assume C(𝑚)
𝑘

= {𝑡 ∈ {1, · · · ,𝑇 }|𝑖𝑚 (𝒚𝑡 ) = 𝑘} be the set of data
indexes assigned to the 𝑘-th codeword in the𝑚-th codebook. Then

Table 1: Notations and Definitions

Notation Definition

𝑡 the step index. 𝑡 = 1, 2, . . . ,𝑇

𝑀 the number of codebooks

𝐾 the number of codewords in each codebook

𝑛0 the number of vectors in the initial database

𝒚𝑡 ∈ R𝐷 the new data at step 𝑡

𝑦𝑡,𝑘 ∈ R the 𝑘-th entry of 𝒚𝑡
𝒙𝑡 ∈ {0, 1}𝑀𝐾×1 the index vector of 𝒚𝑡 w.r.t codewords ∥𝒙𝑡 ∥1 = 𝑀

𝒙0,𝑖 ∈ {0, 1}𝑀𝐾×1 the 𝑖-th index vector in the initial database

𝑨0 ∈ 𝑅𝑀𝐾×𝑀𝐾 𝑨0 =
∑𝑛0
𝑖=1 𝒙0,𝑖𝒙⊤0,𝑖 + 𝜆𝑰

𝑨𝑡 ∈ 𝑅𝑀𝐾×𝑀𝐾 𝑨𝑡 = 𝑨0 +
∑𝑡
𝑖=1 𝒙𝑖𝒙

⊤
𝑖

𝑾𝑡 ∈ 𝑅𝑀𝐾×𝐷 codebook matrix of all codewords at step 𝑡

𝒘𝑡,𝑘 ∈ 𝑅𝑀𝐾×1 The 𝑘-th column of the matrix𝑾𝑡

∥ · ∥𝑡 ∥𝒖 ∥𝑡 =
√
𝒖⊤𝑨𝑡𝒖

the element [𝑿⊤𝑿 ]𝑚,𝑚′,𝑘,𝑘′ = |C
(𝑚)
𝑘
∩ C(𝑚

′)
𝑘′
|. As long as there is

an empty index set, the matrix 𝑿⊤𝑿 is not full rank and thus not
invertable. When 𝐾 is large, it is highly likely that there are some
empty index set. Therefore, it is necessary to impose the Frobenius
norm regularizer.

4 ONLINE ADDITIVE QUANTIZATION
In this section, we first introduce how to adapt additive quantiza-
tion to the dynamic database with streaming data, and then discuss
how to speed up the computation of beam search.

4.1 Accommodating Streaming Data
Assume we have 𝑛0 data points available in the beginning, where
the 𝑖-th data is represented by 𝒚0,𝑖 . These data points are stacked
by rows, forming an initial data matrix 𝒀 0. We first run AQ on the
initial data set, and obtain the initial codebooks𝑾0 and initial the
index vector 𝒙0,𝑖 for each data point 𝒚0,𝑖 . Stacking 𝒙0,𝑖 by row de-
rive index matrix 𝑿0. Then in the 𝑡-step, the incoming data is 𝒚𝑡 ,
we should first find the index vector 𝒙𝑡 using the beam search al-
gorithm and then update the codebooks to reflect the addition of
the data point 𝒚𝑡 . Similar to the online PQ, we also assume the in-
dex of the old data does not recompute when the codebooks are
updated with respect to the new data. Then the codebooks can
be updated with a closed-form equation based on the Sherman–
Morrison formula. More concretely, letting 𝑾𝑡 the codebook at
the step 𝑡 , 𝑨𝑡 = 𝑿⊤0 𝑿0 +

∑𝑡
𝑖=1 𝒙𝑖𝒙

⊤
𝑖 + 𝜆𝑰 , 𝑹𝑡 = 𝑿⊤0 𝒀 0 +

∑𝑡
𝑖=1 𝒙𝑖𝒚

⊤
𝑖 ,
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Algorithm 1: Online AdditiveQuantization
1 [𝑾0,𝑿0] ← AQ(𝒀 0, 𝑀, 𝐾 );
2 𝑨−10 ← (𝑿

⊤
0 𝑿0 + 𝜆𝑰 )−1;

3 for 𝑡 ← 1 to 𝑇 do
4 𝒀 𝑡 ←receive the 𝑡-batch data ;
5 for 𝑖 ← 1 to 𝑛𝑡 do
6 𝒙𝑡 ←beam_search(𝒚𝑡 ,𝑾𝑡−1) ;
7 𝑨−1𝑡 ← 𝑨−1𝑡−1 −𝑨

−1
𝑡−1𝑿𝑡 (𝑰 + 𝑿

⊤
𝑡 𝑨
−1
𝑡−1𝑿𝑡 )

−1𝑿𝑡𝑨−1𝑡−1 ;
8 𝑾𝑡 ← update codebooks according to Eq (7);

the codebook𝑾𝑡 can be updated as follows:

𝑾𝑡 = 𝑨−1𝑡 𝑹𝑡

= (𝑨𝑡−1 + 𝒙⊤𝑡 𝒙𝑡 )−1 (𝑹𝑡−1 + 𝒙𝑡𝒚⊤𝑡 )

= (𝑨−1𝑡−1 −
𝑨−1𝑡−1𝒙𝑡𝒙

⊤
𝑡 𝑨
−1
𝑡−1

1 + 𝒙⊤𝑡 𝑨−1𝑡−1𝒙𝑡
)(𝑹𝑡−1 + 𝒙𝑡𝒚⊤𝑡 )

=𝑾𝑡−1 +
𝑨−1𝑡−1𝒙𝑡 (𝒚𝒕 −𝑾

⊤
𝑡−1𝒙𝑡 )

⊤

1 + 𝒙⊤𝑡 𝑨−1𝑡−1𝒙𝑡
.

(6)

Therefore, the update of𝑾𝑡 only depends on𝑾𝑡−1 and𝑨−1𝑡−1, such
that the old data are not required to maintain. Besides, since 𝑛0 ≫
1,𝑾𝑡 does not change much after adding the new data so that we
do not recompute the index for the new data.

4.2 Mini-Batch Extension
In addition to accommodating one streaming data once a time, on-
line AQ is easily extended to incorporate a mini-batch of data. As-
suming each time we receive a new batch of data 𝒀 𝑡 ∈ R𝑛𝑡×𝐷 ,
the index vector of each data point in this batch can be obtained
via beam search. These index vectors are stacked by rows, form-
ing the matrix 𝑿𝑡 . Similar to the single data case, letting 𝑨𝑡 =∑𝑡
𝑠=0

∑𝑛𝑠
𝑖=1 𝒙𝑠,𝑖𝒙

⊤
𝑠,𝑖 +𝜆𝑰 , and 𝑹𝑡 =

∑𝑡
𝑠=1

∑𝑛𝑡
𝑖=1 𝒙𝑠,𝑖𝒚

⊤
𝑠,𝑖 , the codebooks

𝑾𝑡 can be updated based on the matrix inversion lemma:

𝑾𝑡 = 𝑨−1𝑡 𝑹𝑡

= (𝑨𝑡−1 + 𝑿⊤𝑡 𝑿𝑡 )−1 (𝑹𝑡−1 + 𝑿𝑡𝒀⊤𝑡 )
=𝑾𝑡−1 +𝑨−1𝑡−1𝑿𝑡 (𝑰 + 𝑿

⊤
𝑡 𝑨
−1
𝑡−1𝑿𝑡 )

−1 (𝒀𝒕 −𝑾⊤𝑡−1𝑿𝑡 )
⊤ .

(7)

For the sake of higher efficiency, we also make the assumption
that the number of incremental data is much smaller than the size
of the initial database, i.e., 𝑛0 ≫ 𝑛𝑡 ,∀𝑡 ∈ {1, · · · ,𝑇 }, thus we do
also not recompute index for the new batch of data anymore. The
overall procedure of online AQ is shown in Algorithm 1, which
also subsumes the single data case when the number of the t-step
batch data equals 1.

4.3 Randomized Block Beam Search
As aforementioned, AQ exploits beam search for approximate com-
binatorial optimization in selecting the codewords for the data points.
The basic idea of beam search is to consecutively explore code-
books by expanding the most promising codewords in a limited
set. To be more specific, considering to select codewords for the
vector 𝒚𝑡 at the step 𝑡 , in the beginning, we select the 𝐿 closest

Algorithm 2: Randomized Block Beam Search
Input: Data point 𝒚, codebook𝑾 , the number of groups 𝐹
Output: The index vector 𝒙

1 𝒙 ← initialize index vector for 𝒚;
2 for iter← 1 to #iter do
3 𝐺 ← sampling 𝐹 integers from {1 · · ·𝑀} without repl.;
4 𝐺 ← {1 · · ·𝑀} −𝐺 ;
5 𝑾𝐺 ← extract codebooks with 𝐺 ;
6 𝑾𝑮 ← extract codebooks with 𝐺 ;
7 𝒙𝑮 ← extract index vector with 𝐺 ;
8 �̃�← 𝒚 −𝑾𝑮

⊤ 𝒙𝑮 ; // computing residual vector

9 𝒙𝐺 ← beam_search(�̃�,𝑾𝐺 ) ;

codewords to the vector 𝒚𝑡 from 𝑀 × 𝐾 codewords. In the 𝑚-th
(𝑚 > 1) step of the following𝑀 − 1 steps, for each candidate tuple
with𝑚 − 1 codewords from𝑚 − 1 codebooks, we select the 𝐿 best
codewords in the remaining 𝑀 −𝑚 + 1 codebooks, which are the
closest to the residual of subtracting the𝑚−1 codewords.This will
result in 𝐿2 candidate tuples with𝑚 codewords, from which the 𝐿
best candidate tuples with minimal quantization distortion will be
kept for the next step.

However, the time complexity of the beam search grows cubi-
cally with the number of codebooks when the inner product be-
tween codebooks are precomputed, so it is not quite impractical
to directly apply them in the online learning setting, where code-
books are continuously updated. Another algorithm for solving
Eq (3) is hill climbing or iterated conditional modes [22, 37], which
iteratively maximizes the objective function with respect to each
codeword of a codebook given the assignment among the rest code-
books.This algorithm could bemuch faster but can not return high-
quality solutions.

To give full play to the advantages of both algorithms, we pro-
pose a randomized block beam search algorithm. In this algorithm,
we iteratively select a group of codebooks in a randomway and ex-
ploit beam search to assign the codewords out of these codebooks
to the data simultaneously when the assignments among the rest
codebooks are fixed. If the group size equals 1, this algorithm de-
generates to hill climbing. If the group size equals the total num-
ber of codebooks, this algorithm becomes the beam search method.
The overall procedure is illustrated in Algorithm 2, where we ini-
tialize the index vector of the input data with a simple variant of
beam search. More concretely, we start to select the 𝐿 closest code-
words to the vector𝒚 in the first codebook. In the𝑚-th (1 < 𝑚 ≤ 𝑀)
step, for each candidate tuple, we select the 𝐿 closest codewords in
the𝑚-th codebook to the residual of subtracting the𝑚−1 selected
codewords. Then the 𝐿 best candidate tuples of minimal quantiza-
tion distortion are selected among 𝐿2 candidate tuples. It is also
possible to leverage hill climbing for fast initialization, but it does
not provide initialize index vector as well as the variant.

4.4 Complexity Analysis
Beam search is replaced with the randomized block beam search
in the online additive quantization algorithm, whose time complex-
ity is O(#𝑖𝑡𝑒𝑟𝐹 2𝐿𝐾𝐷 +𝑀𝐿𝐾𝐷). The latter part is due to the use of
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the simple variant of beam search for initialization, which is 𝑀
times faster than beam search. Note that the complexity analysis
results are different from beam search in Additive Quantization,
since it is no more efficient to precompute the inner product be-
tween codebooks due to the continuous update of codebooks. The
update of codebook and the matrix inverse 𝑨−1𝑡 requires O(𝑛3𝑡 +
𝑛2𝑡𝑀𝐾 +𝑛𝑡𝑀2𝐾2 +𝑛𝑡𝑀𝐾𝐷) time complexity. It may be possible to
leverage incremental QR decomposition for reducing this cost, but
it will be left for future work.

5 THEORETICAL RESULTS
In this section, we study the regret bound for our Online Addi-
tiveQuantization and assume our framework processes streaming
data one at a time. The data point 𝒚𝑡 is approximated based on
the current codebook𝑾𝑡 with a linear combination of codewords,
where the corresponding coefficient vector is 𝒙𝑡 ∈ {0, 1}𝑀𝐾×1
with ∥𝒙 ∥2 = 𝑀 . The codebook is updated by regressing 𝒙𝑡 through
𝑦𝑡,𝑘 on each component of the vector 𝒚𝑡 . We assume that the opti-
mal coefficient vector of 𝒚𝑡 is 𝒙∗𝑡 , such that inf𝑼

∑
𝑡 (𝒚𝒕 − 𝑼⊤𝒙∗𝑡 )2

is minimized. The regret of online additive quantization is defined
as

𝑅𝑒𝑔𝑟𝑒𝑡 =
𝑇∑
𝑡=1

(
𝒚𝑡 −𝑾⊤𝑡 𝒙𝑡

)2 − inf
𝑼

𝑇∑
𝑡=1

(
𝒚𝑡 − 𝑼⊤𝒙∗𝑡

)2
.

It is difficult to directly analyze the upper bound of this regret
due to non-convexity of the objective function and discreteness
of index codes. However, online AQ algorithm has many similar-
ities with online regression, which has developed rich theoretical
results about the regret bound. We only need to analyze the gap
between our algorithm and the online regression so as to derive
our results. The existing results we borrow about the regret bound
is based on online regression with bounded loss, that is, the gap be-
tween the predicted value 𝑦𝑡,𝑘 and the true value 𝑦𝑡,𝑘 is bounded
by 𝐿,

|𝑦𝑡,𝑘 − 𝑦𝑡,𝑘 | ≤ 𝐿,∀1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑘 ≤ 𝐷.

Moreover, the bounded loss of the online regression is optimized
by the online mirror descent (OMD) algorithm [27]. In the next
part, we will review this background.

5.1 Background
Online Mirror Descent, as shown in Algorithm 3, is run with a
sequence of strongly convex functions, 𝑓0, 𝑓1, ..., 𝑓𝑇 defined on a
common convex domain 𝑆 ⊆ 𝑋 and updates model parameter with
the gradient of Fenchel Conjugate 𝑓 ∗0 , 𝑓

∗
1 , ..., 𝑓

∗
𝑇 of these functions.

See Appendix A for the detailed definitions of Fenchel conjugate
and its gradient. More related information can be referred to in the
paper [27].

To bridge the gap between online AQ and OMD in this setting,
we set 𝑓𝑡 (𝒖) = 1

2𝒖
⊤𝑨𝑡𝒖, where𝑨𝑡 = 𝑨𝑡−1+𝒙𝑡𝒙⊤𝑡 ,𝑨0 =

∑𝑛0
𝑖=1 𝒙0,𝑖𝒙

⊤
0,𝑖+

𝜆𝑰 . It is easy to verify that 𝑓𝑡 is 1-strongly convex with respect to
the norm ∥𝒖∥𝑡 =

√
𝒖⊤𝑨𝑡𝒖. Its Fenchel Conjugate can be easily de-

rived based on the definition i.e. 𝑓 ∗𝑡 (𝜽 ) = 1
2𝜽
⊤𝑨−1𝑡 𝜽 . For 𝑡 ≥ 1,

letting 𝒛𝑡,𝑘 = 𝒙𝑡𝑦𝑡,𝑘 , 𝜽 𝑡+1,𝑘 = 𝜽 𝑡,𝑘 + 𝒛𝑡,𝑘 and 𝜽 1,𝑘 =
∑𝑛0
𝑖=1 𝒙0,𝑖𝑦0,𝑖,𝑘 ,

replacing 𝜽 𝑡,𝑘 for 𝜽 𝑡 in OMD, and 𝒛𝑡,𝑘 for 𝒛𝑡 leads to the follow-
ing OMD update �̃�𝑡,𝑘 (OMD) = ∇𝑓 ∗𝑡

(
𝜽 𝑡,𝑘

)
= 𝑨−1𝑡 𝜽 𝑡,𝑘 . More con-

cretely,

�̃�𝑡,𝑘 (OMD) =
(
𝑨0 +

𝑡∑
𝑖=1

𝒙𝑖𝒙
⊤
𝑖

)−1 (
𝜽 1,𝑘 +

𝑡−1∑
𝑖=1

𝒙𝑖𝑦𝑖,𝑘

)
.

Compared to the update in our algorithm, i.e.

𝒘𝑡,𝑘 (online AQ) =
(
𝑨0 +

𝑡∑
𝑖=1

𝒙𝑖𝒙
⊤
𝑖

)−1 (
𝜽 1,𝑘 +

𝑡∑
𝑖=1

𝒙𝑖𝑦𝑖,𝑘

)
,

it is easy to observe that

�̃�𝑡,𝑘 = 𝒘𝑡,𝑘 −𝑨−1𝑡 𝒙𝑡𝑦𝑡,𝑘 ,

where𝒘𝑡,𝑘 := 𝒘𝑡,𝑘 (online AQ), �̃�𝑡,𝑘 := �̃�𝑡,𝑘 (𝑂𝑀𝐷).

After establishing the connection, we borrow the theoretical
results for deriving our results about regret bound. In particular,
based on Lemma 1 in the paper[27], we can derive the following
lemma:

Lemma 1. Assume OMD is run with functions 𝑓0, 𝑓1, . . . , 𝑓𝑇 de-
fined on a common convex domain 𝑆 ⊆ 𝑋 and such that each 𝑓𝑡 is
𝛽𝑡 -strongly convex with respect to the norm ∥ · ∥𝑡 , Let ∥ · ∥𝑡,∗ be the
dual norm of ∥ · ∥𝑡 , for 𝑡 = 1, 2, . . . ,𝑇 . Then, for any 𝒖 ∈ S

𝑇∑
𝑡=1

⟨𝒛𝑡 , 𝒖 −𝒘𝑡 ⟩ ≤
𝑇∑
𝑡=1

(
∥𝒛𝑡 ∥2𝑡,∗
2𝛽𝑡

+ 𝑓 ∗𝑡 (𝜽 𝑡 ) − 𝑓 ∗𝑡−1 (𝜽 𝑡 )
)

+ 𝑓𝑇 (𝒖) + 𝑓 ∗0 (𝜽 1) .

Moreover, for all 𝑡 ≥ 1, we have

𝑓 ∗𝑡 (𝜽 𝑡 ) − 𝑓 ∗𝑡−1 (𝜽 𝑡 ) ≤ 𝑓𝑡−1 (𝒘𝑡 ) − 𝑓𝑡 (𝒘𝑡 ) .

The proof is provided in the Appendix.

5.2 Regret Bound
Based on Lemma 1, we can derive the following theorem about
regret bounds of online additive quantization.

TheoRem 1. Assume ∀1 ≤ 𝑡 ≤ 𝑇 , 1 ≤ 𝑘 ≤ 𝐷 ,
��𝑦𝑡,𝑘 �� ≤ 𝑌 ,��𝑦𝑡,𝑘 −𝑤𝑡,𝑘𝑥𝑡 �� ≤ 𝐿, ���𝑦𝑡,𝑘 − �̃�⊤𝑡,𝑘𝒙𝑡 ��� ≤ 𝐿,max𝑘 𝑓

∗
0

(
𝜽 1,k

)
= 𝐹 , ∥𝒖∥2 ≤

𝑅. Besides,assume |
(
𝑦𝑡,𝑘 − 𝒖⊤𝒙𝑡

)2 − (
𝑦𝑡,𝑘 − 𝒖⊤𝒙∗𝑡

)2 | ≤ 𝛽 . Let 𝜏 be
the times in T that 𝒙𝑡 does not match 𝒙∗𝑡 i.e. ∥𝒙𝑡 −𝒙∗𝑡 ∥ ≠ 0. The regret
of online AQ is bounded from above by

Regret ≤ 𝐷𝑌 (𝑌+2𝐿)MK·ln
(
𝑛0 +𝑇
𝐾
+ 𝜆

)
−𝐷𝑌 (𝑌+2𝐿)·ln (det (𝑨0))

+ 𝜏𝐷𝛽 + 𝐷 ∥𝑨0∥𝐹 𝑅 + 2𝐷𝐹 .
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PRoof. Let’s consider the regret in the k dimension and divide
it into three parts for estimation

𝑅𝑇,𝑘 (𝒖) =
T∑
𝑡=1

(
𝑦𝑡,𝑘 −𝒘⊤𝑡,𝑘𝒙𝑡

)2
−

T∑
𝑡=1

(
𝑦𝑡,𝑘 − 𝒖⊤𝒙∗t

)2
=

T∑
𝑡=1

[(
𝑦𝑡,𝑘 −𝒘⊤𝑡,𝑘𝒙𝑡

)2
−

(
𝑦𝑡,𝑘 −𝒘⊤t,𝑘𝒙𝑡

)2]
+

T∑
𝑡=1

[(
𝑦𝑡,𝑘 −𝒘⊤𝑡,𝑘𝒙𝑡

)2
−

(
𝑦𝑡,𝑘 − 𝒖⊤𝒙𝑡

)2]
+

T∑
𝑡=1

[ (
𝑦𝑡,𝑘 − 𝒖⊤𝒙𝑡

)2 − (
𝑦𝑡,𝑘 − 𝒖⊤𝒙∗𝑡

)2]
= 𝑅1𝑇,𝑘 (𝒖) + 𝑅

2
𝑇,𝑘 (𝒖) + 𝑅

3
𝑇,𝑘 (𝒖).

We deal with these three parts separately,

𝑅1𝑇,𝑘 (𝒖) =
T∑
𝑡=1

(
𝑦𝑡,𝑘 −𝒘⊤𝑡,𝑘𝒙𝑡

)2
−

T∑
𝑡=1

(
𝑦𝑡,𝑘 −𝒘⊤𝑡,𝑘𝒙𝑡

)2
=

T∑
𝑡=1

(
𝒘⊤𝑡,𝑘𝒙𝑡 −𝒘

⊤
𝑡,𝑘𝒙𝑡

) (
𝑦𝑡,𝑘 −𝒘⊤𝑡,𝑘𝒙𝑡 + 𝑦𝑡,𝑘 −𝒘

⊤
𝑡,𝑘𝒙𝑡

)
≤ 2𝐿𝑌 ·

T∑
𝑡=1

𝒙⊤𝑡 𝑨
−1
𝑡 𝒙𝑡 ,

since �̃�𝑡,𝑘 = 𝒘𝑡,𝑘 − 𝑨−1𝑡 𝒙𝑡𝑦𝑡,𝑘 , and |𝑦𝑡,𝑘 − 𝒘⊤
𝑡,𝑘

𝒙𝑡 | ≤ 𝐿, |𝑦𝑡,𝑘 −
𝒘⊤𝑡,𝑘𝒙𝑡 | ≤ 𝐿, |𝑦𝑡,𝑘 | ≤ 𝑌 .

Next, we use Lemma 1 to calculate the second term:

𝑅2𝑇,𝑘 (𝒖) =
T∑
𝑡=1

(
𝑦𝑡,𝑘 −𝒘⊤𝑡,𝑘𝒙𝑡

)2
−

T∑
𝑡=1

(
𝑦𝑡,𝑘 − 𝒖⊤𝒙𝑡

)2
= 2

(
T∑
𝑡=1

〈
𝒙𝑡𝑦𝑡,𝑘 , 𝒖 −𝒘𝑡,𝑘

〉
− 𝑓𝑇 (𝒖)

)
+ 𝒖⊤𝑨0𝒖

+
T∑
𝑡=1

(
𝒘⊤𝑡,𝑘𝒙𝑡

)2
≤ 2𝑓𝑇 (𝒖) + 2

T∑
𝑡=1

(
𝑦2
𝑡,𝑘
| |𝒙𝑡 ∥2𝑡,∗
2

+ 𝑓 ∗𝑡
(
𝜽 𝑡,𝑘

)
− 𝑓 ∗𝑡−1

(
𝜽 𝑡,𝑘

))
+ 2𝑓 ∗0

(
𝜽 1,k

)
− 2𝑓𝑇 (𝒖) + | |𝑨0 | |𝐹 | |𝒖 | |2 +

T∑
𝑡=1

(
𝒘⊤𝑡,𝑘𝒙𝑡

)2
≤ 𝑌 2

T∑
𝑡=1

𝒙⊤𝑡 𝑨
−1
𝑡 𝒙𝑡 + ||𝑨0 | |𝐹𝑅 + 2𝐹,

since 𝑓𝑡 is 1-strongly convex with respect to the norm ∥𝒖∥𝑡 =√
𝒖⊤𝑨𝑡𝒖 . For the last inequality, we use ∥𝑥𝑡 ∥2𝑡,∗ = 𝒙⊤𝑡 𝑨

−1
𝑡 𝒙𝑡 and

the second part of Lemma 1 i.e. 𝑓 ∗𝑡
(
𝜽 𝑡,𝑘

)
−𝑓 ∗𝑡−1

(
𝜽 𝑡,𝑘

)
≤ 𝑓𝑡−1

(
𝒘𝑡,𝑘

)
−

𝑓𝑡
(
𝒘𝑡,𝑘

)
= − 1

2

(
𝒘⊤𝑡,𝑘𝒙𝑡

)2
.

Based on Lemma 2, which is provided and proved in the appen-
dix, we have
T∑
𝑡=1

𝑥⊤t 𝑨
−1
𝑡 𝒙𝑡 =

T∑
𝑡=1

(
1 − det (𝑨𝑡−1)

det (𝑨t)

)
≤ ln

det (𝑨𝑇 )
det (𝑨0)

( because 1 − 𝑥 ≤ − ln𝑥, 𝑥 > 0)

= ln

∏𝑀𝐾
𝑖=1 𝜆𝑖

det (𝑨0)
(𝜆𝑖 are the eigenvalues of the 𝑨T)

≤ ln

((
𝑛0 +𝑇
𝐾
+ 𝜆

)𝑀𝐾 )
− ln (det (𝑨0)) .

For the last inequality, we use AM–GM inequality
∏𝑀𝐾
𝑖=1 𝜆𝑖 ≤(∑

𝜆𝑖
𝑀𝐾

)𝑀𝐾
, 𝜆𝑖 > 0 and

∑
𝑖 𝜆𝑖 = trace (𝑨𝑇 ) = (𝑛0 +𝑇 )𝑀 + 𝜆𝑀𝐾.

Then, combining 𝑅3
𝑇,𝑘
≤ 𝛽𝜏 , 𝑅𝑒𝑔𝑟𝑒𝑡 =

∑𝐷
𝑘=1 sup𝒖 𝑅𝑇,𝑘 (𝒖) and

simplifying, we obtain the relative regret bound. □

6 EXPERIMENT
In this section, we conduct experiments on four real-world datasets
to verify the effectiveness of our online additive quantization algo-
rithm. Firstly, we will introduce the four datasets used in our ex-
periments and metrics for evaluation. After presenting the settings
of the experiments, we will compare online AQ with baselines and
study the effectiveness of codebook update. Following that, we in-
vestigate the efficiency and effectiveness of the randomized block
beam search. More experiments about sensitivity analysis, online
versus mini-batch, and convergence are shown in the appendix.

6.1 Datasets and Evaluation Metrics
The four image datasets will be used for evaluating the online ad-
ditive quantization algorithm, and these datasets are also used in
online PQ for evaluation.Thefirst dataset, Caltech101, contains 101
categories, a total of 9144 images.The second dataset, Halfdome, in-
cludes 107732 images which come from Photo Tourism. The third
dataset, Sun397, includes about 108K images which come from 397
different scenes. The last dataset, Cifar10, has 60K 32 x 32 images
and each belongs to one of 10 classes. Following online PQ, we
extract a 512-d GIST feature vector from each image.

Following online PQ, we also use Recall@K as the quantitative
metric for comparing different algorithms and set K to 20. This
metric measures the portion of the true nearest neighbors being
included in the top-K results.

6.2 Settings
Note that the datasets consist of different classes. In order to sim-
ulate the real scenario of streaming data, we stream images by
classes, collect images as mini-batches, such that each pair of two
consecutive mini-batches include half of the images from the same
class and the first mini-batch includes more data than the other
mini-batches. For all datasets, we use a dynamic query set in each
iteration. Specifically, we use the first mini-batch to obtain the ini-
tial codebooks using AQ. After that, when a new batch comes in,
we first use the new batch as a query set to do the approximate
nearest neighbors search in the existing data for the computing
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Figure 1: The comparison with the state-of-the-art baselines

Figure 2: The effect of codebook update

Figure 3: The effect of randomized block beam search on search accuracy

metric, and then update the codebooks. It is worth noting that, un-
like online hash algorithms that need to recompute the hash codes
after updating the parameters, our online algorithm only needs to
encode the current new batch, and the previous data does not need
to be recomputed. Streaming mode shares the same dataset pre-
process setting with the batch mode.

All the methods compared are implemented in Python and all
experiments are conducted in a Linux server with 3.00GHZ intel
GPU and 300G main memory.

6.3 Baselines
In this section, we introduce the baseline methods for comparison.
Note that our algorithm does not use supervised information, we
only compare online AQwith unsupervised online methods due to
unfair comparison with supervised methods. Moreover, online PQ
has been shown to greatly outperform online hashing [12, 13] and
AdaptHash [5], so the comparison with them on the same datasets
is not necessary anymore. According to our literature survey, un-
supervised online hashing is mainly based on matrix sketching.

Therefore, we compare our method with online PQ and sketching-
based hashing.

• Online Product Quantization [35] , is the online version of
product quantization and the state-of-the-art unsupervised learn-
ing to index methods. The number of codebooks is set to 8 and
the number of codewords in each codebook is set to 256.
• Online Sketching Hashing (OSH) [17], is the representative
work of unsupervised online hashing, which maximizes the vari-
ance of every hashing bit among the sketched data. The code
length is set to 64 bits, which occupies the same storage as quantization-
based methods
• Fast Online SketchingHashing (Fast OSH) [8], improves the
data sketching procedure in the OSH method with the fast sub-
sampled randomized Hadamard transform. The code length is
also set to 64 bits.

6.4 Comparison with Baselines
The comparison results with baselines are shown in Fig. 1. From
this figure, we can make the following observations.
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First, the proposed algorithm remarkably outperforms online prod-
uct quantization. The main reason lies in the superiority of addi-
tive quantization to product quantization. Note that compared to
product quantization, additive quantization does not decompose
data space into orthogonal subspaces, and the codewords are of
the same length as the input vectors and are generally not orthog-
onal to each other.

Second, both online AQ and online PQ outperforms sketch-based
online hashing.This is because quantization-basedmethods reserve
more information in original vectors than hashing-based methods.
Concretely, quantization-based methods represent each data with
a list of indexes with respect to codebooks, while hashing-based
methods represent each data with a binary vector. Thus the repre-
sentation capacity of quantization is much larger than hashing.

Finally, the search accuracy with online learned index usually de-
cays when incrementally accommodating more and more data, but
our method is much more robust than online PQ, OSH, and Fast OSH.
This is based on the observation that our method remains more
stable and even sometimes improves with more data incorporated
for updating. This also indicates the effectiveness of the proposed
approaches for updating codebooks.

6.5 The effectiveness of codebook update
To investigate the effectiveness of codebook update, we compare
online AQwith two variants, one is to retrain the whole codebooks
and the other one is not to update the codebooks at all. The re-
sults are shown in Fig. 2. This figure consistently shows that up-
dating codebooks can work better than no update but worse than
retrain as expected. However, the gap between update and retrain
is not large. These results verify the effectiveness of the proposed
approach for updating codebooks.

6.6 The effectiveness of randomized block
beam search

Next, we study the effectiveness and efficiency of the proposed
randomized block beam search. The results of efficiency on four
datasets can be referred in Fig 4, where we vary the block size
for randomize block beam search and see how the quantization er-
ror changes. From this figure, we see that randomized block beam
search improves the efficiency of computing codes for the data.
When the block size grows, randomized block beam search slows
down while the quantization error is reduced. When the block
size equals the number of codebooks, it is degenerated to beam
search.We also report the search accuracy of online AQ on the four
datasets Fig. 3, where beam search and randomized block beam
search (F=5 and #iter=1) is used for computing codes for the data.
This figure shows that randomized block beam search achieves a
similar searching performance. Therefore, the proposed random-
ized block beam search strikes a better balance between efficiency
and effectiveness for computing codes of the data.

7 CONCLUSION AND FUTURE WORK
In this paper, we propose online AdditiveQuantization for accom-
modating incremental data, to support approximate nearest neigh-
bor search in the dynamic database. To improve the efficiency of
computing codes for each data, we develop randomized block beam
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Figure 4: The effect of the varying block size in randomized
block beam search.

search, which iteratively does beam search over a group of ran-
domly selected codebooks. The empirical study demonstrates ran-
domized block beam search is indeed faster than beam search at a
small cost of quantization error and search accuracy.We derive the-
oretical results about regret bound, to guarantee the performance
of online AQ. Finally, we evaluate the proposed algorithm with
four real-world datasets, showing that online AQ remarkably out-
performs the state-of-the-art online learning to index methods. In
the future, we can investigate how to improve the efficiency of
codebook update, with the techniques of such matrix sketching.
Also, we are interested in studying how to perform online update
for other indexes, such as graph and tree-based indexes.
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Algorithm 3: Online Mirror Descent
Parameters :A sequence of strongly convex functions

𝑓0, 𝑓1, . . . , defined on a common convex
domain 𝑆 ⊆ 𝑋

1 Initialize: 𝜽 1 ∈ 𝑋 ;
2 for 𝑡 = 1, 2, . . . do
3 Choose𝑤𝑡 = ∇𝑓 ∗𝑡 (𝜃𝑡 );
4 Observe 𝑧𝑡 ∈ 𝑋 ;
5 Update 𝜃𝑡+1 = 𝜃𝑡 + 𝑧𝑡 ;

A FENCHEL CONJUGATE
Given a closed and convex function f with domain S ⊆ X, its
Fenchel conjugate 𝑓 ∗ : X→ R is defined by 𝑓 ∗ (𝒖) = sup𝒗∈S ⟨𝒗, 𝒖⟩−
𝑓 (𝒗). A generic norm of a vector 𝒖 ∈ X is denoted by ∥𝒖∥. Its dual
∥ · ∥∗ is the norm defined by ∥𝒗∥∗ = sup𝒖 {⟨𝒖, 𝒗⟩ : ∥𝒖∥ ≤ 1}. The
Fenchel-Young inequality states that

𝑓 (𝒖) + 𝑓 ∗ (𝒗) ≥ ⟨𝒖, 𝒗⟩ for all 𝒗, 𝒖 .

A function 𝑓 is 𝛽 -strongly convex with respect to a norm ∥ · ∥
if for any 𝑢, 𝑣 in its domain, and any 𝒙 ∈ 𝜕𝑓 (𝒖)

𝑓 (𝒗) ≥ 𝑓 (𝒖) + ⟨𝒙, 𝒗 − 𝒖⟩ + 𝛽
2
| |𝒖 − 𝒗 | |2 .

The Fenchel conjugate 𝑓 ∗ of a 𝛽 -strongly convex function 𝑓
is everywhere differentiable and 1

𝛽 -strongly smooth. This means
that, for all 𝒖, 𝒗 ∈ 𝑋,

𝑓 ∗ (𝒗) ≤ 𝑓 ∗ (𝒖) +
〈
∇𝑓 ∗ (𝒖), 𝒗 − 𝒖

〉
+ 1
2𝛽
| |𝒖 − 𝒗∥2∗ .

See also the paper [15] and references therein. A further property
of strongly convex functions 𝑓 : 𝑆 → 𝑅 is the following: for all
𝒖 ∈ 𝑋,

∇𝑓 ∗ (𝒖) = argmax𝒗∈𝑆 ⟨𝒗, 𝒖⟩ − 𝑓 (𝒗) .
This implies the useful identity.

𝑓
(
∇𝑓 ∗ (𝒖)

)
+ 𝑓 ∗ (𝒖) =

〈
∇𝑓 ∗ (𝒖), 𝒖

〉
.

Strong convexity and strong smoothness are key properties in the
design of online learning algorithms.

B PROOF OF MAIN THEORETICAL RESULTS
B.1 Proof of Lemma 1

PRoof. Let Δ𝑡 = 𝑓 ∗𝑡 (𝜽 𝑡+1) − 𝑓 ∗𝑡−1 (𝜽 𝑡 ). Since the functions 𝑓 ∗𝑡
are 1

𝛽𝑡
-strongly smooth with respect to ∥ · ∥𝑡,∗, and recalling that

𝜽 𝑡+1 = 𝜽 𝑡 + 𝒛𝑡 ,
Δ𝑡 = 𝑓

∗
𝑡 (𝜽 𝑡+1) − 𝑓 ∗𝑡 (𝜽 𝑡 ) + 𝑓 ∗𝑡 (𝜽 𝑡 ) − 𝑓 ∗𝑡−1 (𝜽 𝑡 )

≤ 𝑓 ∗𝑡 (𝜽 𝑡 ) − 𝑓 ∗𝑡−1 (𝜽 𝑡 ) +
〈
∇𝑓 ∗𝑡 (𝜽 𝑡 ) , 𝒛𝑡

〉
+ 1
2𝛽𝑡
∥𝒛𝑡 ∥2𝑡,∗

= 𝑓 ∗𝑡 (𝜽 𝑡 ) − 𝑓 ∗𝑡−1 (𝜽 𝑡 ) + ⟨𝒘𝑡 , 𝒛𝑡 ⟩ +
1
2𝛽𝑡
∥𝒛𝑡 ∥2𝑡,∗

.
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where we used the definition of 𝒘𝑡 in the last step. On the other
hand, we have

T∑
𝑡=1

Δ𝑡 = 𝑓
∗
𝑇 (𝜽𝑇+1) − 𝑓

∗
0 (𝜽 1) ,

the Fenchel-Young inequality implies

𝑓 ∗𝑇 (𝜽𝑇+1) ≥ ⟨𝒖, 𝜽𝑇+1⟩ − 𝑓𝑇 (𝒖) =
T∑
𝑡=1

⟨𝒖, 𝒛𝑡 ⟩ − 𝑓𝑇 (𝒖) .

Combining the upper and lower bound on Δ𝑡 and summing over 𝑡
we get

T∑
𝑡=1

⟨𝒖, 𝒛𝑡 ⟩ − 𝑓𝑇 (𝒖) − 𝑓 ∗0 (𝜽 1) ≤
T∑
𝑡=1

{𝑓 ∗𝑡 (𝜽 𝑡 ) − 𝑓 ∗𝑡−1 (𝜽 𝑡 )

+ < 𝒘𝑡 , 𝒛𝑡 > +
1
2𝛽𝑡
| |𝒛𝑡 ∥2𝑡,∗}

. We now prove the second statement. Recalling again the defini-
tion of𝒘𝑡 ,we have 𝑓 ∗𝑡 (𝜽 𝑡 ) = ⟨𝒘𝑡 , 𝜽 𝑡 ⟩− 𝑓𝑡 (𝒘𝑡 ) . On the other hand,
the Fenchel-Young inequality implies that

−𝑓 ∗𝑡−1 (𝜽 𝑡 ) ≤ 𝑓𝑡−1 (𝑤𝑡 ) − ⟨𝒘𝑡 , 𝜽 𝑡 ⟩ .
Combining them, we get 𝑓 ∗𝑡 (𝜽 𝑡 ) − 𝑓 ∗𝑡−1 (𝜽 𝑡 ) ≤ 𝑓𝑡−1 (𝒘𝑡 ) − 𝑓𝑡 (𝒘𝑡 ) ,
as desired. □

B.2 Lemma 2
Lemma 2. Let 𝑩 be an arbitrary full-rank matrix of size 𝑛 ×𝑛, let

𝒙 an arbitrary vector, and let 𝑨 = 𝑩 + 𝒙𝒙⊤. Then

𝒙⊤𝑨−1𝒙 = 1 − 𝑑𝑒𝑡 (𝑩)
𝑑𝑒𝑡 (𝑨) .

PRoof. If 𝒙 = (0, . . . , 0), then the theorem holds trivially. Oth-
erwise, we write

𝑩 = 𝑨 − 𝒙𝒙⊤ = 𝑨
(
𝑰 −𝑨−1𝒙𝒙⊤

)
.

Hence, computing the determinant of the leftmost and rigthmost
matrices,

det(𝑩) = det(𝑨) det
(
𝑰 −𝑨−1𝒙𝒙⊤

)
.

The right-hand side of this equation can be transformed as follows:

det
(
𝑰 −𝑨−1𝒙𝒙⊤

)
= det

(
𝑨

1
2

)
det

(
𝑰 −𝑨−1𝒙𝒙⊤

)
det

(
𝑨−

1
2

)
= det

(
𝑰 −𝑨−

1
2 𝒙𝒙⊤𝑨−

1
2

)
.

Hence, we are left to show that det
(
𝑰 −𝑨− 1

2 𝒙𝒙⊤𝑨−
1
2

)
= 1−𝒙⊤𝑨−1𝒙 .

Letting 𝒛 =𝑨−1/2𝒙 , this can be rewritten as det
(
𝑰 − 𝒛𝒛⊤

)
= 1−𝒛⊤𝒛.

It is easy to see that 𝒛 is an eigenvector of 𝑰 − 𝒛𝒛⊤ with eigenvalue
𝜆1 = 1−𝒛⊤𝒛. Moreover, the remaining𝑑−1 eigenvectors𝑢2, . . . , 𝑢𝑑
of 𝑰 − 𝒛𝒛⊤ form an orthogonal basis of the subspace of 𝑅𝑑 orthogo-
nal to 𝒛, and the corresponding eigenvalues 𝜆2 . . . , 𝜆𝑑 are all equal
to 1. Hence,

det
(
𝑰 − 𝒛𝒛⊤

)
=

𝑑∏
𝑖

𝜆𝑖 = 1 − 𝒛⊤𝒛,

which concludes the proof. □
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Figure 5: Comparison between the online version and the
mini-batch version
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Figure 6: The effect of number of codebooks

C MORE EXPERIMENTS
In this section of the Appendix, we present more experimental re-
sults.

C.1 Online versus Mini-Batch
Our model can process streaming data either one at a time or in
mini-batches. We compare these two versions of our model on the
Caltech-101 dataset and show the results in Fig.5. When the batch
size equals 1, only one data is processed each time. The number
in the bracket is the number of data in the mini-batch. From this
figure, we can see that the mini-batch version has similar search
quality. It is reasonable to adopt the mini-batch version of online
AQ for evaluation.

C.2 The effect of the number of codebooks
In this part, we investigate the effect of the number of codebooks
on the searching performance and show the results in Fig.6. The
figure shows that the larger number of codebooks leads to better
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Figure 7: Convergence of online AQ

searching performance, which is quite consistent with our expec-
tations.

C.3 Convergence Study
We also investigate the convergence of online AQ. The data in the
whole dataset are input sequentially into online AQ. We run it for
50 effective iterations, which is defined as one pass through the
whole dataset. In each iteration, AQ is also run within an iteration
on the whole dataset. The quantization error of AQ and online AQ
is plotted in Fig. 7 against the iterations. The figure shows that our
model converges within tens of iterations, though the quantization
error of online AQ is slightly larger than AQ. This indicates that
codebooks learned from online AQ are similar to AQ, implying the
effectiveness of the online AQ.
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