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As a major component of strategic talent management, learning and development (L&D) aims at improving

the individual and organization performances through planning tailored training for employees to increase

and improve their skills and knowledge. While many companies have developed the learning management

systems (LMSs) for facilitating the online training of employees, a long-standing important issue is how to

achieve personalized training recommendations with the consideration of their needs for future career de-

velopment. To this end, in this article, we present a focused study on the explainable personalized online

course recommender system for enhancing employee training and development. Specifically, we first pro-

pose a novel end-to-end hierarchical framework, namely Demand-aware Collaborative Bayesian Variational

Network (DCBVN), to jointly model both the employees’ current competencies and their career development

preferences in an explainable way. In DCBVN, we first extract the latent interpretable representations of the

employees’ competencies from their skill profiles with autoencoding variational inference based topic mod-

eling. Then, we develop an effective demand recognition mechanism for learning the personal demands of

career development for employees. In particular, all the above processes are integrated into a unified Bayesian

inference view for obtaining both accurate and explainable recommendations. Furthermore, for handling
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the employees with sparse or missing skill profiles, we develop an improved version of DCBVN, called the

Demand-aware Collaborative Competency Attentive Network (DCCAN) framework, by considering the connec-

tivity among employees. In DCCAN, we first build two employee competency graphs from learning and

working aspects. Then, we design a graph-attentive network and a multi-head integration mechanism to in-

fer one’s competency information from her neighborhood employees. Finally, we can generate explainable

recommendation results based on the competency representations. Extensive experimental results on real-

world data clearly demonstrate the effectiveness and the interpretability of both of our frameworks, as well

as their robustness on sparse and cold-start scenarios.
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1 INTRODUCTION

In strategic talent management, learning and development (L&D) aims at improving the individual
and organization performance through planning tailored training for employees to increase and
hone their skills and knowledge, which is of great importance for companies to maintain their
competitive edges in the fast-pace business environments [54]. According to the research reports
from the Association for Talent Development,1 U.S. organizations spent $1,296 per employee on
L&D in 2018, with an average of 34.1 learning hours. Therefore, in recent years, more and more
companies have built the learning management systems (LMSs) for facilitating the online training
of employees, which can provide not only large cost savings, but also an effective way to deliver
engaging development for talents due to the benefits of reach, scale, and timeliness [9]. However,
along this line, a long-standing challenge is how to offer the talents with personalized training
course recommendations.
Unlike traditional recommendation scenarios (e.g., movies or product recommendations), the

learning motivation of employees heavily depends not only on their current competencies but also
on their goals of future career development. In the literature, current course recommender systems
mostly focus on the scenario of student education [2, 65]. Recently, some efforts were made to en-
hance the learning practices of individuals and organizations in talent management [47]. However,
none of them has considered both their current competencies and career development demands.
Figure 1 shows a motivating example of building a personalized employee training recommender
system. Specifically, based on the skill profiles and historical course records, we can guess that Al-
ice studied the course Java Performance Optimization due to the demand of honing existing skills,
while Bob studied From Hadoop to Spark for increasing his current skill set. Meanwhile, although
Cindy has a similar skill profile to Alice, she made a very different choice of training course, i.e.,
Deep Learning in NLP, which is far away from her existing competencies. This might be because
she wanted to master skills in a new field for achieving her future career goal.
Therefore, it is critically important to simultaneously consider the current competencies and

the career development demands of employees for the recommendation. Unfortunately, there
are many technical and domain challenges along this line. First, the employees’ competencies
and development demands are closely connected, which requires a unified way to automatically

1https://www.td.org/.
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Fig. 1. A motivating example of personalized training recommendations for employees.

understand and represent the characteristics of employees. Also, in the educational domain, inter-
pretable models play an important role in learning and progress, designing of better instruction,
and possibly intervention to address individual and group needs [10, 19, 20, 30, 31]. Providing
explainable analysis on the employees’ competencies and recommendation results can stimulate
their learning interests and help them better understand their competency status. Consequently,
it is vital and challenging to make the latent representation in our frameworks have clear physical
meaning for both employees and courses. Moreover, we usually have to face extreme data noise
and sparseness problems on the LMS. On the one hand, the skill profiles may not completely reflect
employees’ skills and contain both fine-grained and coarse-level skill labels. On the other hand,
employees’ skill profiles may be quite sparse or even missing so we can have only a little informa-
tion about them. It is a great challenge to learn the true competencies and demands of employees
from such noisy and sparse data.
To directly achieve the primary goal of jointly modeling both the current competencies and

the career development demands of employees, in our preliminary work [58], we propose a per-
sonalized online course recommender system for enhancing employee training. Specifically, the
recommender system is based on a novelly designed end-to-end hierarchical framework, namely
Demand-aware Collaborative Bayesian Variational Network (DCBVN). Considering that
the original skill profiles may be sparse and ambiguous, they could not be readily utilized. Thus, in
DCBVN, we first extract the latent interpretable representations of employees’ competencies from
their skill profiles with autoencoding variational-inference-based topic modeling [46]. In this way,
the auxiliary skill information helps us deepen the understanding of employees and hence, al-
leviates the sparsity and cold-start problem. Then, by exploiting the observed course records and
collaborative learning behaviors, we develop an effective demand recognitionmechanism for learn-
ing the personal demands of career development. Each dimension of both the latent competence
and demand variable represents an interpretable skill topic in reality. Finally, the most appropriate
training courses are recommended through an adapted collaborative filtering algorithm. All the
above processes are integrated into a unified Bayesian collaborative filtering way to make sure
both the recommendation accuracy and explainability at the same time.
During the modeling process of DCBVN, we have to first extract latent competency represen-

tations from the skill profiles to identify the current competency of each employee. Thus, it could
not work well without the usage of skill information. However, in real data, the employees’ skill
profiles may be quite sparse or even missing. For example, as shown in Figure 1, Dale’s skill profile
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only contains two skills, which results in huge challenges for modeling his competency. Moreover,
the Eric’s skill profile is missing; thus, we can know nothing about his competency information. To
tackle this problem, in this article, we further present the improved Demand-aware Collaborative
Competency Attentive Network (DCCAN) framework for handling the absence of employees’ skill
profiles. Actually, DCBVN can be viewed as a part of DCCAN. DCCAN is capable of modeling the
competency and demand representations for employees with sparse and even zero skill labels by
utilizing the competency information of neighborhood employees. On the one hand, the employ-
ees who have learned the same courses may have similar skill profiles. On the other hand, the
employees doing similar work may share similar competencies. According to these two observa-
tions, we first construct two undirected and unweighted graphs, based on the above two employee
neighborhood definitions, respectively. Then, we design a graph-attentive network architecture to
explore the potential competency of an employee from her neighbors. Furthermore, we propose a
novel multi-head integration mechanism to combine the competency variables learned from two
graphs to obtain the final supplementary competency variables. Similar to DCBVN, we can then
transform the supplementary competency variables into demand variables by the demand recog-
nition mechanism and further generate explainable recommendation results. Finally, we conduct
extensive experimental results on a large-scale real-world dataset in both general and cold-start
scenarios. The experimental results clearly demonstrate the effectiveness and the superior inter-
pretation power of DCBVN and DCCAN frameworks.
Overview. The rest of this article is organized as follows: In Section 2, we introduce the real-

world dataset used in this article. In Section 3, we introduce in detail how to generate explainable
and accurate recommendations with our proposed DCBVN framework. Then, we extend DCBVN
with DCCAN framework for handling the absence of employees’ skill profiles in Section 4. The
recommendation performance of our frameworks is evaluated in Section 5, with some further
discussions on cold-start scenarios. Some case studies are also presented in Section 5 to show the
interpretability of our frameworks. In Section 6, we briefly introduce some related work. Finally,
we conclude this article in Section 7.

2 DATA DESCRIPTION

In this section, we introduce the real-world dataset shown in this article. Specifically, our dataset
DLearner consists of two main components, namely learning records and skill profiles of employ-
ees, which are provided by a major high-tech company in China. Note that, all of the sensitive
information in the dataset has been removed or made anonymous for privacy prevention purposes.

Learning Records. In the dataset, the learning records were collected from the LMS for employee
training. Table 1 shows the statistical information of the dataset. Most courses are in the form of
videos and slides. Different from student education, courses on the LMS usually focus on specific
job skills. Thus, there is usually no clear sequential relationship (i.e., without course dependency)
among the courses on the LMS. One can choose and study any course on the website of LMS
without special restrictions.

Specifically, the learning records were collected from May 2016 to August 2019, containing
40,411 users and 8,693 courses. First, we need to exclude the noisy records that users only click
on the online course but do not spend time learning. Consequently, only when a user had stud-
ied more than half of the video or slides, we considered it as a valid record. In this way, we can
represent the entire learning records in the form of 0/1 rating matrix, where 1 means the valid
record and 0 otherwise. There are totally 981,796 valid records in the DLearner dataset. Therefore,
we can find that learning records are quite sparse as only 0.28% of the rating matrix entries con-
tain valid records. Figures 2(a) and 2(b) show the distributions of the learning records from the
user and course perspectives, respectively. It can be observed that most courses were studied by a
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Table 1. The Statistical Information of the Dataset

The number of total learning records 981,796
The number of users 40,411
The number of users with skill profiles 30,662
The number of users without skill profiles 9,749
The number of courses 8,693
The number of skills 6,504

Fig. 2. The two figures (a) and (b) show the distributions of the number of learning records from user and

skill perspectives, respectively. The two figures (c) and (d) show the distributions of the number of different

job skills from user and skill perspective, respectively.

small number of users while the long tail effect is quite obvious in the distribution from the course
perspective.

Skill Profiles. In the dataset, we also have detailed skill profiles for a large proportion of employ-
ees, which indicates the professional job skills the employee has already mastered before online
training. Specifically, there are totally 6,504 unique job skills related to 30,662 users in theDLearner
dataset, while the rest 9,749 users who have no skill profile. Besides, the employees are classified
into different groups according to their departments and job positions in our dataset. There are
totally 557 departments and 5 job positions (i.e., Technology, Product, User Interface, Manager, and
Others). To show more statistical characteristics of the skill data, Figures 2(c) and 2(d) present the
distributions of the number of the employees’ skills from user and skill perspectives, respectively.
We can see that the numbers of users with respect to the different numbers of skills show the dou-
ble crest variation. The average number of skills per user mastered is 63.94. However, on the other
hand, the data are quite sparse from the skill perspective. It is mainly because that the profile data
contains both quite fine-grained and coarse-grained skill labels at the same time. As a result, some
of the skill labels may have similar meanings but different names. Other skill labels may belong
to contain relationships. Moreover, it is likely that the skills of each employee are not completely
recorded in the profile data. Consequently, about 75% skills can only be found in less than 10 users’
profiles in our dataset.
Based on the above, data sparsity and skill ambiguity raise great challenges to the design of

the recommendation algorithm. Directly using the primary skill labels is improper. It is necessary
to propose an appropriate approach to extract the effective competency representations from the
high-dimensional and intensive noise data.
Besides, as shown in Table 1, we have collected 40,411 users in our dataset. Among them, 30,662

users have skill profiles. Hence, the ratio of missing skill profiles in the current dataset is about
1/4. However, this ratio in the practical industrial environment will be much larger, since we have
filtered out the employees who rarely use the learning management system for better validating
the recommendation methods. The users filtered out are mostly composed of outsourcing employ-
ees and interns, who usually do not have skill profiles. Consequently, the ratio of missing skill
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Fig. 3. Figures (a) and (b) show the box plot of the average cosine similarity to other employees for each user

from learning and working perspectives, respectively.

profiles will be much larger than 1/4 in practice. For those employees who have no skill profile,
we are unable to learn their competency representations directly. To this end, in this article, we
propose to infer the employees’ competency variables from their “neighbors”. Intuitively, there
are two natural neighborhood relations for employees, i.e., learning and working neighborhoods.
First, from the learning perspective, if two employees have learned the same course, they may
have similar current competencies. Second, from the working perspective, if two employees are
doing similar work, they may also share similar competencies. In the rest of this section, we aim to
validate whether these two types of neighborhoods could help us complete the competencies. For
each user i , we first divide the rest of the users into two groups according to whether or not they
are neighbors of the user i . Then we use a 6,504-dim vector to denote the skill profile for every
user. Each dimension of the vector represents a specific skill, where the value is set as 1 only if this
skill is in the user’s skill profile; otherwise, the value is 0. For a user i , we calculate the cosine simi-
larity between each user and her neighbor’s skill profile vectors and then averaged the similarities.
We also randomly sample 100 users who are not in user i’s neighborhood group and calculate the
average cosine similarity. The results are shown in Figures 3(a) and 3(b). We can easily observe
from Figures 3(a) and 3(b) that the similarities between one employee and her neighbors are actu-
ally much larger than the similarities between her and other employees from both learning and
working perspectives. We also conducted the paired t-test to verify that the differences between
the similarities to two user groups are statistically significant for p < 0.005, from both learning
and working perspectives. By comparing the results in Figures 3(a) and 3(b), we can find that the
similarities to neighbors in working perspective seems to be larger than those in the learning per-
spective, which implies that employees with similar works may have more similar competencies.

3 DCBVN FRAMEWORK

In this section, we will present the details of our proposed Demand-aware Collaborative

Bayesian Variational Network (DCBVN) framework. First, we provide the probabilistic def-
initions of our DCBVN framework for Bayesian inference. Then, we introduce how to extract
effective and interpretable latent competency representations from the skill profiles of employees.
We further propose a demand recognition mechanism to transform the competency variables em-
beddings from latent skill space to latent demand space. Finally, collaborative filtering is performed
for generating the recommendation results.

3.1 Probabilistic Modeling Paradigm

Following the famous latent factor models (LFMs) [37, 56], we suppose that the process of
users selecting courses is influenced by two perspectives, i.e., user demand perspective and course
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Fig. 4. The graphical model of DCBVN.

property perspective. Hence, we represent the user i by a latent variable ui ∈ RK and course j by
a latent variable vj ∈ RK in a shared low-dimensional space with dimension K . Then, the rating
ri j of user i on course j is drawn from the Normal distribution centered at the inner product of the
two latent variables:

ri j ∼ N
(
uTi vj , c

−1
i j

)
, (1)

where ci j is the precision parameter. It is usually set higher when ri j = 1 than when ri j = 0 (ci j = a
if ri j = 1, ci j = c if ri j = 0, a >> c) [56, 59], indicting we have more confidence on the rating when
ri j = 1, since ri j = 0 means the user may either be uninterested or unaware of the course.

Then, we put the Normal distribution as the prior of each latent course variable vj :

vj ∼ N
(
0, λ−1v I

)
. (2)

In traditional LFMs, the user demand variable ui is also drawn from the Normal prior like vj .
However, according to common sense, the user skill backgrounds have dominated influences in
the course selection procedure. Comprehending users’ competency is of great benefit to model
their demands. Along this line, we utilize the latent competency variable si ∈ RK to represent the
competency of user i by building a probabilistic generative progress using VAE-LDA [46]. Thus,
the skill profile xi of user i is generated through a generative network parameterized byψ :

xi ∼ pψ (xi |si ). (3)

On the other hand, as discussed before, users who have analogous employee skills and hence
have similar latent competency variables may differ greatly in personal learning preferences de-
pending on their goals of career development. It is inappropriate to only consider the competency
for training course recommending.We can draw support from historical records to recognize users’
learning goals. Noticed that it is also improper to only consider the course records for recommen-
dation, since the suitable courses are also different for people who have distinct competencies.
Hence, in this article, we propose the demand recognition mechanismG (·) to transform the origi-
nal competency variable si into the latent user demand variable ui by considering both collabora-
tive learning information and personalized employee competency information:

ui = G (si ). (4)

In summary, Figure 4 illustrates the graphical model of DCBVN which comprehensively com-
bines the conventional LFM-based collaborative filtering method with autoencoding variational
inference for topic modeling.
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3.2 Variational Autoencoder Network

In this subsection, we discuss how to extract semantic representations from the employee skills
and build the collaborative network in Figure 5 for personalized training course recommendation.
In industrial practice, we usually adopt the offline strategy by retraining the model periodically.
For example, we can update the recommendation results by retraining the model every few weeks
with the latest collected data to satisfy the practical needs. Therefore, in this work, we focus on
modeling the personalized employees’ training and development preferences through an explain-
able variational autoencoder network based on the input of current learning records and user
profiles.

3.2.1 Topic Modeling of Skill Profiles. The physical meanings of user embeddings are quite im-
portant in the educational domain. Therefore, we have to carefully choose the appropriate em-
bedding approach for achieving high recommendation performance while maintaining good in-
terpretability at the same time. In the literature, the topic modeling algorithm is a quite popu-
lar probabilistic generative model for learning latent and interpretable representations [3, 45, 64].
However, traditional topic models may not perform well on the sparse data [67]. On the other
hand, the variational autoencoder (VAE) has demonstrated its great inference abilities in many
content embedding tasks, e.g., texts, labels, and images [24, 39]. Thus, we employ VAE-LDA in our
framework for constructing a hierarchical and explainable course recommender system, which
can combine the advantages of VAE and topic models.
Following the classic topic modeling algorithm [3], we assume every skill profile is generated

from a mixture of K topics β = (β1, . . . , βK ). Each topic βk ∈ RM represents a probability distribu-
tion over the entireM skills. For example, in the topic related to machine learning, skills like “SVM”
and “random forest” would have high probabilities while the probabilities of “product design” and
“market research” would be very small. The sum of the probabilities of all the skills should be equal
to 1 for each topic.
Then the topic proportions θi ∈ RK of user i over the skills are supposed to obey Dirichlet distri-

bution: θi ∼ Dirichlet (α ), where each dimension represents the proportion of the corresponding
topic. For example, θi = (0.1, 0.3, 0.6) means that the skill profile is related to the three topics with
the proportions (10%, 30%, 60%), respectively.
Consequently, the skill profile xi = (xi1, . . . ,xiNi

) with length Ni for user i can be drawn from
the Multinomial distribution: xin ∼ Multinomial (1, βθi ). Under this assumption, the marginal
likelihood of the skill profile xi can be given by:

p (xi |α , β ) =
∫
θi

��
Ni∏
n=1

p (xin |β,θi )��p (θi |α )dθi . (5)

The Dirichlet prior in LDA is significant for obtaining interpretable topics [55]. Nevertheless,
it is problematic to implement the reparameterization trick for the Dirichlet distribution so that
incapable to take gradients through the sampling process in VAE. To solve the problem, we utilize
a Laplace approximation to the softmax basis of Dirichlet prior, which supports unconstrained
optimization of the cost function [34].

Hence, we use si to denote the competency variable and we have θi = σ (si ), where σ (·) is the
softmax function. Each dimension of si is related to a specific topic in full accord with θi .

Then, following the Laplace approximation of the softmax basis in [15], the off-diagonal ele-
ments of the covariance matrix are suppressed with O (1/K ), leading to approximately diagonal
covariance matrix for large K . Accordingly, the Laplace approximation p (si ) over the competency
variable si can be given as a multivariate Normal with mean μ and covariance Σ where:
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Fig. 5. The network architecture of autoencoding variational inference based topic modeling.

μk = logαk − 1

K

K∑
l=1

logαl ,

Σkk =
1

αk

(
1 − 2

K

)
+

1

K2

K∑
l=1

1

αl
. (6)

Recalling that competency variable si is the softmax basis of Dirichlet prior, we can thereupon
approximate the simplex basis with the logistic normal distribution p (θi |α ) ≈ LN (θi |μ, Σ) [26].

3.2.2 Generative Process. Now we can present the generative process for user skill profiles:
(1) For the layer hдen of the generative network:

(a) Draw themth column of weight matrixWдen :

Wдen,∗m ∼ N
(
0, λ−1w IK

)
;

(b) The topic matrix β = σ (Wдen );
(c) Obtain the ith row of hidden state hдen by:

hдen,i∗ = (βθi )
T .

(2) For each user i , draw xi from:

xi ∼ Multinomial (Ni ,hдen,i∗).

Here, we also take advantage of the softmax basisWдen of topic matrix β for the ease of uncon-
strained optimization. We use σ (Wдen ) to denote the softmax transformation separately on every
column of weight matrixWдen .

It is noticed that there are two kinds of data collection modes for skill profile xi in real scenes,
depending on whether one skill label could appear once or multiple times in a list. For the sit-
uation that all the skills only hold at most once in the list per user, the skill generation follows
a multivariate hypergeometric distribution instead of a multinomial distribution. Fortunately, the
multivariate hypergeometric distribution converges to themultinomial distributionwith large skill
size [4]. Accordingly, we can still apply the above generative process for a large dataset in such a
situation.
Owing to the above process, we can obtain the explainable competency variable si . However,

the course property variable vj still remains unexplainable. Due to the various sources of online
courses, it may be quite manpower-consuming to collect the labels for each course. Moreover, it
would be much more beneficial for helping users make decisions if the courses could be labeled
with the same topics as user competency variables. Therefore, we can make use of the skill profiles
of users who have learned the course to represent the property of this course.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 70. Publication date: December 2021.



70:10 C. Wang et al.

Let xcj and scj denote the skill profile and latent skill variable of course j, respectively. To con-

struct xcj , we first count the numbers of occurrences of each skill among users who have learned

course j. Then, we only keep the top e (e is a constant) frequent skills so that the popular courses
would not have much noise skills. As for the latent skill variable scj , we can transform the original

unexplainable course property variable vj into a suitable latent space to obtain the explainable
vector. Here, we employ the 1-layer MLP for the transformation process:

scj = σ
(
W cvj + b

c
)
. (7)

Then the generative process of course skill profile xcj with length N c
j can be given by:

xcj ∼ Multinomial
(
N c
j , βs

c
j

)
. (8)

Here we share the same topic matrix β with the generative process of user skill profile to make
sure that the topics in both user and course perspectives have exactly the same meanings.

3.2.3 Demand Recognition. The learned competency variables are very useful for understand-
ing the employees’ skill backgrounds. Intuitively, they are also highly relevant to the career de-
velopment demands of employees. However, as discussed before, it is obviously inappropriate and
limited to only utilize si for generating the final demand ui . Supposing there are two technical
employees with similar skill profiles using LMS for online learning. One wants to become a senior
Java programmer, and the other one intends to transfer to an AI developer. Certainly, they should
accept totally different recommendations to fit their actual demands.
Therefore, we propose a demand recognition mechanism as shown in Figure 6 to bridge the

competency variable si and demand variable ui by exploiting the historical course records and
collaborative information. Since each dimension of si represents one of theK topics, we can model
the pattern of demand transformation on each topic by combining transfer variabledt ∈ RK with si .
Here, dt reflects the changes in the proportions of topics. Specifically, each transfer pattern can be
interpreted as one kind of learning trend. Then we have transformed matrix Zi = (zi1, . . . , ziT ) ∈
R
K×T , where zit = si + dt , supposing there are T patterns.
In order to comprehensively analyze users’ true demands, we need to measure the relations

between each transfer pattern and users’ real demand by calculating the importance score of every
transfer pattern. Larger importance score ωit would indicate more critical influence of pattern t
on user i . In this way, we are able to capture the most relevant transfer patterns and pay more
attention to them. In this article, we propose two ways to automatically compute the importance
score ωi = (ωi1, . . . ,ωiT ) ∈ RT , namely individual-based and group-based importance score.
For individual-based importance score ωi , we only employ the historical course records of user

i to scoop out his/her demands:

ωi = σ
(
ZT
i VR

T
i∗
)
, (9)

where Ri∗ is the ith row of the course record matrix R. Here, we take advantage of the softmax
function to make sure that the sum of the T patterns’ score is equal to 1.

However, the course records of a single user may be too few to find his/her real demand,
since the data are quite sparse. Therefore, we further take the influence of user groups into
consideration due to the common sense that employees doing similar work may share similar
demands of career development. To this end, we first divide the users into different groups based
on their departments and job positions. Let дi denote the group that employee i belongs to. Then
we compute the group-based record vector R̃i∗ as follows:

R̃i∗ =
∑

f Rf ∗I (дf = дi )

sum
(∑

f Rf ∗I (дf = дi )
) , (10)
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Fig. 6. The demand recognition mechanism.

where sum(·) denotes the sum of every column of the vector and I (·) is the indicator function.
Here we employ the element-wise summation function sum(·) to prevent the record vectors
of large groups being far greater than those of small groups. Hence, we could calculate the
grouped-based importance score ωi as follows:

ωi = ρ · σ
(
ZT
i VR

T
i∗
)
+ (1 − ρ) · σ

(
ZT
i V R̃

T
i∗
)
, (11)

where ρ is a balance parameter to adjust the influence from individual and user group perspectives.
Finally, by combing the influence of T patterns with the importance score ωi ∈ RT , we are able

to comprehensively analyze users’ true demands. Specifically, the final latent demand variable ui
can be obtained by the weighted summation:

ui = Ziωi =

T∑
t=1

ωitzit . (12)

3.2.4 Inference Process. After building the generative model, we could provide the joint proba-
bility of the full data:

p (R,X ,X c ,V , S ) =
∏
i, j

p (ri j |ui ,vj )pψ (xi |si )p (si )p (xcj |vj )p (vj ).

We need to obtain the posterior distribution of the latent variables to inference the model. Nev-
ertheless, it is difficult to get an analytical solution. To address this problem, we utilize a popular
approximation, i.e., Stochastic Gradient Variational Bayes (SGVB) estimator, to construct a
stochastic gradient ascent solution for our proposed framework. Specifically, we realize an infer-
ence network parameterized by ϕ for efficient posterior inference of competency variable si . The
multi-layer perception network (MLP) with L layers is chosen as the inference network struc-
ture. Thus, the variational distribution q is parameterized by ϕ and xi :

q(S ) =
∏
i

qϕ (si |xi ) =
∏
i

N (μϕ (xi ), Σϕ (xi )). (13)

Then the inference process can be defined as follows:
(1) For each layer l of the inference network:

(a) Draw the mth column of weight matrixWl :

Wl,∗m ∼ N
(
0, λ−1w IKl

)
.

(b) Draw the bias vector bl from bl ∼ N (0, λ−1w IKl )).
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(c) Draw the ith row of hidden state hl by:

hl,i∗ ∼ N
(
Siдmoid (hl−1,i∗)Wl + bl , λ

−1
s IK
)
.

(2) Draw mean and covariance of latent variable by:

μsi = μϕ (xi ) ∼ N
(
hLWμ + bμ , λ

−1
s IK
)
,

Σsi = Σϕ (xi ) ∼ diaд
(
N
(
hLWΣ + bΣ, λ

−1
s IK
))
.

Draw latent variable si from:

si ∼ N (μsi , Σsi ),

where λw , λs are the hyperparameters and Kl is the number of columns of the hidden state hl .
Besides, λs is often supposed to be infinite in VAE so that the Normal distribution would degrade
to Dirac delta function [48]. In such a case, VAE could work like other common neural networks
and improve computing efficiency.
With the help of reparameterization trick [43], we could easily gain a differentiable sampling

process of si . Specifically, we draw sample by ϵ ∼ N (0, I ) and let si = μsi + ϵΣsi .
Thus, the Evidence Lower Bound (ELBO) of our DCBVN framework is formulated as:

L (q) = logp (R |U ,V ) + Eq[logpψ (X |S )] + logp (X c |V )

+ logp (V ) − KL(qϕ (S |X ) | |p (S )). (14)

It can be seen that the ELBO is separated into three pieces: prediction loss, reconstruction loss,
and prior loss.
First, the prediction loss is frequently utilized in LFMs to maximize the log-likelihood of records:

logp (R |U ,V ) = −
∑
i, j

Ci j

2

(
ri j − uTi vj

)2
.

Second, the reconstruction loss measures the generative quality of skill profiles of users and
courses. For the user-generative process, in consideration of the intractability of computing
expected values, we employ Monte Carlo sampling from ϵ following Law of the Unconscious
Statistician:

logp (X c |V ) =
∑
j

p
(
xcj |vj

)
,

Eq[logp (X |S )] =
∑
i

1

D

∑
d

pψ
(
xi |s (d )i

)
.

Finally, the prior loss can be viewed as a regularization term:

logp (V ) = −λv
2

∑
j

‖vj ‖2,

KL(qϕ | |p) = 1

2

∑
i

[
(μ − μsi )T Σ−1 (μ − μsi ) + tr (Σ−1Σsi ) + log

|Σ|
|Σsi |

− K
]
.

Thus, stochastic optimization methods such as Adam [23] can be used to operate the ELBO.
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4 DCCAN FRAMEWORK

DCBVN can effectively deal with the problem of predicting employees’ learning demands. During
the modeling process, DCBVN has to first extract latent competency representation from the skill
profile to identify the current competency of each employee. However, in real-world scenarios,
we may be not able to collect all employees’ skill profiles. In such a case, the proposed DCBVN
framework cannot analyze employees’ current competencies and thus is unable to recommend
appropriate courses. Collaborative filtering models without the usage of skill information can still
be applied to these employees for recommendations. However, it would be quite hard to capture
the real user demand when ignoring their skill distribution. Moreover, such recommender systems
will lack interpretability. Besides, some existing skill profiles may be very sparse and lack enough
competency information. When recommending courses to these employees, the sparsity problem
would greatly disturb the modeling performance of DCBVN. Consequently, it is crucial and mean-
ingful to infer the competency and demand representations for those employees who have few
and zero skill labels.
Along this line, based on the proposed DCBVN framework, we further present the extended

DCCAN framework for handling the absence of employees’ skill profiles. In fact, DCBVN can be
viewed as a component of DCCAN. DCCAN is capable of modeling the competency and demand
representations for employees with sparse and even no skill labels for better recommendation re-
sults by incorporating the competency information of existing users. Intuitively, the competency
representation of the employee with no skill label can be inferred from their neighbors. Our DC-
CAN framework is able to handle many types of neighbors concurrently. In this article, we mainly
adopt two types of neighborhoods. On the one hand, the employees who have learned the same
courses may have similar skill profiles. On the other hand, the employees doing similar work may
share similar competencies. We have validated that users have more similarities in the skill pro-
files of their neighbors in Section 2. According to this observation, we first describe the whole
user communities as two undirected and unweighted graphs, based on the two user neighborhood
definitions, respectively. Then we design a graph-attentive network architecture to explore the
potential competencies of a user from her neighbors’ competency variables. Next, we propose a
novel multi-head integration mechanism to combine the competency variables learned from two
graphs to obtain the supplementary competency variables. The aggregation process of the graph
attentional layer and multi-head integration is illustrated by Figure 7. Thus, we can further trans-
form the supplementary competency variables into demand variables by the introduced demand
recognition mechanism. Similar to DCBVN, we can then employ the latent variables to generate
explainable recommendations.

4.1 Employee Competency Graph

We will start by defining the two types of employee competency graphs, G1 and G2, representing
the user relationship from learning and working aspects, respectively. For constructing either of
the two graphs, each user i in our dataset is viewed as a node and we denote Ni as the neighbor-
hoods of node i. In the learning relationship graph G1, one user is connected to the other one only
when they have learned at least one shared course. On the other hand, in the working relationship
graphG2, the connection between two users means they are doing similar work. Here, we continue
to use the partitioning method introduced in Section 3.2.3, i.e., dividing users into different groups
based on their departments and positions. By comparison, G2 is composed of many disconnected
subgraphs and more sparse than G1.
Users in the datasets can be divide into three sets, I1,I2,I3, depending on the sparsity of their

skill profiles. Specifically, users in I1 have sufficient skill profiles (i.e., the number of skill labels
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Fig. 7. The overview architecture of the DCCAN framework.

exceeds a predefined threshold) while users in I2 have sparse skill profiles (i.e., the number of skill
labels is below the threshold). As for users in I3, they have no skill label. Obviously for users in
I1, we can employ the proposed DCBVN framework to obtain the competency variables. However,
DCBVN has to face great challenges when handling users in I2 with sparse skill profiles. More-
over, DCBVN is incapable of handling users in I3. To solve the problem, DCCAN aims to exploit
the competency variables of the neighborhood users l ∈ Ni ∩ I1 for inferring the competency
information of user i ∈ I2 ∪ I3 by a graph attentive layer.
Methodology-wise, the attention variables for users is modeled as vectors by weighted summa-

tions of the competency variables from their neighborhood nodes. Formally, the input to the graph
attentive layer is the set of competency variables {si |i ∈ I1} and the set of rating vectors {Ri∗ |∀i}.
Then, the graph-attentive layer would produce a new set of competency variables {si |i ∈ I2 ∪ I3}.
Note that the initial value of si , i ∈ I1 could be obtained easily by a pre-trained DCBVN model,
and then these variables would be updated under the unified DCCAN framework. Different from
the common graph attentive network [51] which has only one type of feature, our graphs con-
tain two types of input feature, where rating vectors are used for calculating attention scores and
competency variables are used for weighted summation.
Specifically, we first perform a shared linear transformation parametrized by a weight matrix

Wa on the rating vector Ri∗. Such transformation is beneficial for reducing redundant information
and capturing key feature similarities. Then, the self-attention mechanism is applied to the nodes.
We calculate the attention score eil by

eil = fa (WaRi∗,WaRl∗), (15)
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where fa (·) is a non-linear feed-forward layer. Following [51], in our experiment, we let

fa (WaRi∗,WaRl∗) = LeakyReLU (δT (WaRi∗‖WaRl∗)), (16)

where δ ∈ R2K is a learnable weight vector, ‖ means the concatenation treatment, and
LeakyReLU (·) represents the LeakyReLU activation function.

The attention score eil implies the potential influence of user j’s competency to user i . Since
considering all the other users’ influence would bring much redundant and irrelevant information,
as well as increase the model complexity, we only need to consider the neighborhood users. Thus,
for a specific user i ∈ I2 ∪ I3, we normalize the attention scores across ∀l ∈ Ni ∩ I1 with the
softmax function:

êil =
exp eil∑

l ′ ∈Ni∩I1 exp eil ′
. (17)

Note that for user i ∈ I2, we also add the node i itself to the set of neighborhood nodes in
Equation (17). Thus, the attention mechanism would also take her own sparse skill profile into
consideration. As for user i ∈ I3, there is no available skill profile for herself. Finally, the attentive
competency variable is given by:

ŝi =
∑

l ∈Ni∩I1
êilsl , (18)

4.2 Multi-head Integration

For both graphs, we can obtain the attentive competency variables for target users by the graph-
attentive layer. The next challenge is how to balance the influence from learning and working
perspectives for each user. To this end, in this subsection, we propose a multi-head integration
mechanism to produce the final supplementary competency variable. It is noticed that our multi-
head Integration mechanism can actually handle multiple types of competency graphs. In this
article, we take the two graphs as an example.
First, we adopt the multi-head technique [50] to enhance the representational ability and model

robustness of attention results. In other words, we concurrently perform n independent attention
mechanisms to obtain 2n attentive competency variables from two graphs based on Equation (18).
In this way, each head could be viewed as one particular view to exploit similar skill topics from the
neighborhood nodes. Accordingly, all the attentive competency variables from one graph could be
depicted by a matrix SG ∈ RK×n . Considering that each dimension of the competency variable ŝi
represents a real skill topic, each row of SG could be viewed as a n dimensions feature vector for
the topic. When further combining the variables obtained from two graphs, they actually form a
2-channel feature tensor Sa = {SG1 , SG2 } ∈ RK×n×2 for each user. If there are more graphs, we can
easily extend the tensor to more channels.
Then, we choose to use a CNN [22] layer to exploit the interactions among multiple views of

each skill topic at large scales, since CNN is quite suitable for extracting dominated information
of feature matrix from local to global views [19]. It is worth noting that every dimension of the
competency variable is related to a specific skill topic. Therefore, we must ensure the interpretabil-
ity for each dimension across the whole convolution process. To achieve this goal, we need to be
meticulous in designing the convolution kernel to prevent the interaction among each topic. Here,
we let all the kernels’ sizes in the form of 1 × η, where η ≤ n. In this way, the convolution opera-
tion would only be applied to a single skill topic at one time. For each kernel, we then employ an
avg-pooling operation to make sure the output’s dimension is equal toK×1. Finally, we average all
the convolution kernels’ output vector to derive the supplementary competency variable s̃i ∈ RK .
Thus, we can automatically catch the important competency information from multiple views for
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the employees’ competency variables with the help of multi-head integration mechanism. More-
over, the interpretability of each dimension of the competency variable has still remained during
the proposed mechanism.
After that, we can adopt the demand recognition mechanism in DCBVN to transform the sup-

plementary competency variable s̃i into the user-demand variable ui for the rating prediction task
similar to DCBVN:

ũi = G (s̃i ),

ri j ∼ N
(
uTi vj , c

−1
i j

)
. (19)

4.3 Unified Modeling

So far, we have introduced how to infer the supplementary competency variables from users’
neighbors and then make rating predictions. However, users can be divided into three user sets
as discussed before and the training objective for each user set is also different from each other.
Therefore, it is necessary to arrange a reasonable optimization process. In this subsection, we aim
to build a unified Bayesian model training paradigm for all user sets based on the introduced tech-
niques.
First, for users inI1, we can still employ the ELBO loss function in Equation (14) for optimization

just like what we do in DCBVN framework. Unlike in DCCAN, we also use the employee compe-
tency graphs to produce the supplementary competency variables. Therefore, we add a term in the
loss to measure the Euclidean distances between the supplementary competency variables and the
variables learned from real skill profiles:

L1 = −
∑
i ∈I1, j

[
logp (ri j |ui ,vj ) + Eq[logpψ (xi |si )] + logp (vj )

+ logp (xcj |vj ) − KL(qϕ (si |xi ) | |p (si )) + ‖ũi − ui ‖2
]
. (20)

Second, for users in I2, we need to learn the competency variables from both real skill profiles
and employee competency graphs, but we do not have tomeasure their distances. The loss function
is given by combing the variational inference and potential skill-label inferring:

L2 = −
∑
i ∈I2, j

[
logp (ri j |ũi ,vj ) + Eq[logpψ (xi |si )] + logp (vj )

+ logp (xcj |vj ) − KL(qϕ (si |xi ) | |p (si ))
]
. (21)

Third, for users in I3, we only need to train the supplementary competency variables. The loss
function is as follows:

L3 = −
∑
i ∈I3, j

[
logp (ri j |ũi ,vj ) + logp (vj ) + logp (xcj |vj )

]
. (22)

Note that, in all of the three loss functions above, the course j will be involved in a loss only
when it has been learned by at least one user in the corresponding user set. Finally, we can combine
the three loss functions to build a unified loss for all users.

L = L1 + L2 + L3. (23)

In the training process of DCCAN, we first initialize the model parameters and competency
variables for users in I1 and I2 by a pre-trained DCBVN model. Then, we will alternately update
the gradients for the three user sets. Specifically, in each training epoch, we first update the users
in I1 and then fix their competency variables. Then, we update the users in I2 with the trained
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competency variables for I1. Lastly, we update the users in I3. Besides, course vectors will be
updated during the training epoch when the users have learned the courses.

4.4 Prediction

In this subsection, we introduce how to generate the predictions by our proposed DCBVN and
DCCAN frameworks.
First, in general scenarios, let Y denote the observed data. On the basis of the trained model

(either based on DCBVN or DCCAN), we can make the estimation by:

E[ri j |Y ] = E[ui |Y ]TE[vj |Y ] = E[G (si ) |Y ]TE[vj |Y ]. (24)

For the point estimation, we approximate the prediction as:

r ∗i j = G (E[si ])
Tvj , (25)

where E[si ] = μsi , i.e., the mean variable in inference network. For users who have sparse or
missing skill profiles, we replace the competency variable si with s̃i .

The cold-start issue is a common and tough problem in real-world data. Actually, there may be
two types of cold-start problems in our course recommender system. First, for the cold-start situ-
ation from the skill-label perspective, we have introduced how to use DCCAN framework to infer
the potential competencies of employees from their neighborhood nodes. Second, in the cold-start
situation from the learning record perspective, we will have no course records for the new users
and cannot meet their real demands. However, DCBVN and DCCAN can still make recommen-
dations based on the competency variable si . Moreover, we can also draw help from user group
information to solve the cold-start problem. Specifically, we adopt the group-based importance
score and set the balance parameter ρ as 0. In this way, we can still make recommendations like in
the normal position. We will further discuss the different strategies for cold-start problems in the
experimental part. To sum up, our DCBVN framework can greatly alleviate the cold-start problem.

5 EXPERIMENTS

In this section, we demonstrate the effectiveness of our proposed DCBVN and DCCAN frame-
works from the following aspects: (1) the overall recommendation performances compared with
several state-of-the-art baselines; (2) the recommendation performances of DCCAN on the cold-
start problem from the skill-label perspective; (3) the analysis on cold-start scenarios from learning
record perspective; (4) the analysis on the two types of employee competency graphs and multi-
head integration mechanism; (5) the parameter analysis; and (6) some case studies to visualize the
interpretability of our frameworks.

5.1 Baseline Approaches

To verify the effectiveness of DCBVN and DCCAN frameworks, we compare them with several
baselinemethods including two traditionalmodels (i.e.,WMF andCTR), five state-of-the-art neural
models (i.e., NeuMF, DeepMF, LightGCN, CDL, and CVAE) and a variant of DCBVN:

• WMF [18]: This is a classic collaborative model using linear low-rank factorization for rec-
ommendation.
• CTR [56]: This is a classic hybrid model, which leverages LDA for modeling content infor-
mation and combines it with traditional collaborative LFM.
• NeuMF [14]: This is a state-of-the-art collaborative model for implicit feedback, which lever-
ages a multi-layer perceptron to learn the user-item interaction function with cross entropy
loss.
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• DeepMF [62]: This is a state-of-the-art collaborative model, which implements matrix fac-
torization with multi-layer perception network.
• LightGCN [13]: This is a state-of-the-art graph based recommendation model, which learns
user and item embeddings by propagating them on the user-item interaction graph.
• CDL [59]: This is a state-of-the-art hybrid recommender utilizing stacked denoising autoen-
coder for extracting deep latent representations.
• CVAE [27]: This is a state-of-the-art hybrid method and can be viewed as the improved ver-
sion of CDL, which improves the content representations by applying variational autoen-
coder with Bayesian inference.
• DCBVN-O: This is a variant of our proposed DCBVN framework by ignoring the group in-
formation of users and only adopting the individual-based importance score in the modeling
process. By comparing DCBVN-O with DCBVN, which adopts the group-based importance
score, we can verify the usefulness of group information.

Among the baselines, WMF, NeuMF, DeepMF, and LightGCN only make use of course records
for matrix factorization while all the other methods employ both record information and skill
profile information for collaborative filtering.

5.2 Evaluation Metric

To measure the performances of recommendation results, we adopt the widely used evaluation
metrics in recommender systems, i.e., R@P , P@P , and MAP@P [27, 28, 59]. R (Recall)@P counts
the ratio of successfully predicted items among top-P items to all positive items for each user.
On the other hand, P (Precision)@P counts the ratio of successfully predicted items among top-P
items to P for each user. However, both recall and precision metrics ignore the ranking of rec-
ommendation results, while, in the practical scenarios, the ranking of courses is very important.
Consequently, we adopt MAP (Mean Average Precision)@ P to consider the ranking of correct
prediction items among top-P items. The final results on R@P , P@P , and MAP@P are all reported
by the average value over all users. Generally, the larger the values of the three metrics are, the
better the recommendation results we have.

5.3 Experimental Settings

In the experiments, we evaluated and compared the models under both the normal setting and
label-missing setting. In the normal setting, we only used the 30,662 users who have skill profiles in
our dataset for training and test. We selected 70% and 10% course records for each user to construct
the training and validation set respectively according to the chronological order, since it might be
inappropriate to use an employee’s future course selection for training and then recommending
past course selection during the testing process. The rest course records composed the test set. All
the baseline methods would be compared in the normal setting. For DCCAN, we set the threshold
as 10 skill labels to divide users into the sets I1 and I2 as introduced in Section 4.1. There is no
user in I3 in the normal setting.
In the label-missing setting, all the 40,411 users in our dataset were used in the training stage

for evaluating the recommendation results on those who have no skill profiles. Since CTR, CDL,
CVAE, and DCBVN must use competency information for recommendations, we only compare
the performances of WMF, NeuMF, DeepMF, and DCCAN in this setting. We still selected 70%
and 10% course records for each user to construct the training and validation set, respectively,
according to the chronological order. However, the construction of the test set in the label-missing
setting was a little different from the normal setting. The first test set T1 contained the rest
20% course records of all the 9,749 users who have no skill profile. Thus, we are able to use
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T1 for evaluating the performances of different approaches. However, we cannot know the
recommendation performance disparity of DCCAN between employing and not employing skill
profiles when only testing on T1. As a result, for the 30,662 users who have skill profiles, we
randomly selected the rest of the course records of 10% users to compose the set T2. In both
the training and test stages, all the baselines and DCCAN ignored the skill profiles of users in
T2. Further, we trained another DCCAN model, named DCCAN-S, which employed the skill
profiles of users in T2 for training and test stages. By comparing the results between DCCAN and
DCCAN-S, we could easily validate the effectiveness of skill label inferring in DCCAN. Similar to
the normal setting, we set the threshold as 10 skill labels to divide users for DCCAN model, and
users who have no skill labels composed I3 in the label-missing setting.

For all the baseline methods, we set the dimension of latent space K as 50 for a fair comparison.
Following the settings in their papers, we set the precision parameters ci j as a = 1 and c = 0.01
and pretrained CTR, CDL, and CVAE with an LDA, a two-layer SDAE network, and a two-layer
VAE network, respectively, to get the parameter initialization. The noise level in CDL was set to
be 0.3. Then we explored the corresponding parameters of all the baselines, such as regularization
parameters, learning rates, and other parameters.
In our DCBVN and DCCAN models, we also set K = 50 and chose the 2-layer MLP network as

the inference network architecture for a fair comparison with baselines. The dimensions of the two
layer were set as 200 and 100, respectively, which is the same setting in CDL and CVAE. Similar
to Li and She [27], we added a balance parameter λr to adjust the penalty of reconstruction loss
with respect to prediction terms. Then the precision parameter c̃i j could be set as a = λr ,b =
0.1λr , c = 0.01λr . Thus, tuning the parameter λr is equivalent to tuning the precision parameter.
Besides, the value of αk in Equation (6) was set as 1/K for each k and the maximum number e of
skills for each course as 200. Finally, we tuned the value of λv from the candidate set {0.01, 0.1, 1,
10, 100}.

Though using the same user inference network architecture with CDL and CVAE, we found that
DCBVN could still work well without the pre-trained network parameters for content embedding.
This might be because we performed the stochastic optimization methods for all the parameters
synchronously, while CDL and CVAE optimized the content variables and collaborative variables
alternately. Thus, DCBVN does not necessarily need the pre-training process.

5.4 Experimental Results

5.4.1 Recommendation Performance in the Normal Setting. In this part, we investigate the per-
formance of DCBVN, DCCAN, and baseline methods in the DLearner dataset. As discussed in
Section 5.3, we first evaluate the methods in the normal setting.
Table 2 shows the recommendation performance results of all models in the normal setting. It

can be observed that our proposed DCCAN method achieves the best performances on all the
metrics. Specifically, DCCAN could outperform the best baseline method, i.e., CVAE, by a relative
boost of 15.19%, 11.27%, and 14.14% for the metrics R@20, P@20, and MAP@20. Besides, by com-
prehensively modeling the skill backgrounds and personal demands of employees, our proposed
DCBVNmethod also performs better than all of the other methods except DCCAN. The difference
between DCBVN and DCCAN in the normal setting is that DCBVN could adopt neighborhood
users’ competency information for completing the competency variables of users with sparse skill
profiles. As a result, DCCAN could perform slightly better than DCBVN, which demonstrates the
effectiveness of competency inferring process in our DCCAN method. Moreover, we can find that
DCBVN-O, i.e., the variant of DCBVN, also has better performance than other baselines. DCBVN-O
is a little worse than DCBVN, which demonstrates that user group information is actually bene-
ficial when modeling the user demands. Among the baselines, CVAE, CDL, and CTR also use the
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Table 2. The Overall Recommendation Performance of Different Approaches

in the Normal Setting

Methods R@10 R@20 P@10 P@20 MAP@10 MAP@20

WMF 0.1342 0.1577 0.0605 0.0429 0.0366 0.0203
CTR 0.1678 0.2150 0.0721 0.0496 0.0428 0.0238
NeuMF 0.1693 0.2178 0.0719 0.0495 0.0427 0.0238
DeepMF 0.1736 0.2228 0.0731 0.0503 0.0431 0.0244
LightGCN 0.1801 0.2296 0.0749 0.0518 0.0464 0.0254
CDL 0.1806 0.2311 0.0740 0.0511 0.0458 0.0250
CVAE 0.1890 0.2401 0.0754 0.0521 0.0468 0.0257
DCBVN-0 0.2023 0.2571 0.0791 0.0549 0.0503 0.0291
DCBVN 0.2105 0.2668 0.0810 0.0568 0.0522 0.0306
DCCAN 0.2177 0.2750 0.0839 0.0590 0.0541 0.0320

skill profile information for recommendations. However, they simply consider users’ skill labels
as auxiliary content information, while ignoring the close relationship between users’ competen-
cies and learning demands. They are also incapable of exploring courses’ characteristics by skill
profile data. Consequently, our methods could achieve better recommendation results. Meanwhile,
we can find that the performances of CVAE are only lower than our methods, which demonstrate
the embedding ability of variational autoencoder. By comparison, CTR, which leverages LDA in
its model, does not perform well due to the sparsity of skills. CDL, which employs a common
autoencoder, also performs a little worse. Besides, NeuMF and DeepMF perform better than CTR
and WMF due to the superior embedding performance of neural networks. Moreover, LightGCN
also exploits the graph neural network for recommendations. One important difference between
LightGCN and our methods is that LightGCN adopts graph neural networks for the user-item in-
teraction graph, while we design a graph attentive network architecture to explore the potential
correlations for user competency graphs. From Table 2, we can observe that LightGCN is able
to achieve comparable performance to CDL, while outperforming all the other baseline methods
which only use course records. However, since LightGCN does not exploit the user skill profile
information, it cannot perform better than our models.

5.4.2 Recommendation Performance in the Label-Missing Setting. Next, we evaluate the meth-
ods in the label-missing setting. Unlike the normal setting, here we mainly aim to validate the
recommendation performances on users who have no skill label. As introduced in Section 5.3, we
adopt two test sets T1 and T2. Table 3 and Table 4 present the recommendation performance results
on T1 and T2, respectively. We can observe that DCCAN achieves obvious superior results on all
three metrics. Specifically, DCCAN could outperform the best baseline method, by a relative boost
of 14.08%, 18.01%, and 6.76% for the metrics R@20, P@20, and MAP@20. This is because DCCAN
is capable of drawing support from the neighborhood users when modeling the user with zero
skill labels, while the other methods could only make predictions based on the learning records.
The superior performance clearly demonstrates the effectiveness of DCCAN on users with missing
skill profiles. Further, to investigate the competency inferring ability, we also adopt the test set T2.
Different from other methods, DCCAN-S uses the real skill labels for users in T2 to train the model.
We can observe from Table 4 that the performance of DCCAN is close to DCCAN-S, implying that
DCCAN has a good ability on inferring missing skill profiles and make recommendations based
on the supplementary competency variables.
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Table 3. The Recommendation Performance of Different Approaches on

Test Set T1 in the Label-Missing Setting

Methods R@10 R@20 P@10 P@20 MAP@10 MAP@20

WMF 0.1268 0.1708 0.0720 0.0514 0.0442 0.0261
NeuMF 0.1399 0.1868 0.0803 0.0588 0.0480 0.0281
DeepMF 0.1419 0.1877 0.0817 0.0593 0.0494 0.0285
LightGCN 0.1508 0.1974 0.0850 0.0622 0.0513 0.0296
DCCAN 0.1736 0.2252 0.0981 0.0734 0.0538 0.0316

Table 4. The Recommendation Performance of Different Approaches on

Test Set T2 in the Label-Missing Setting

Methods R@10 R@20 P@10 P@20 MAP@10 MAP@20

WMF 0.1318 0.1781 0.0543 0.0381 0.0321 0.0181
NeuMF 0.1522 0.1906 0.0670 0.0453 0.0425 0.0234
DeepMF 0.1519 0.2019 0.0661 0.0472 0.0420 0.0245
LightGCN 0.1629 0.2121 0.0687 0.0490 0.0435 0.0254
DCCAN 0.1856 0.2370 0.0750 0.0535 0.0464 0.0271

DCCAN-S 0.1976 0.2508 0.0801 0.0562 0.0525 0.0309

5.4.3 Cold-Start Scenarios with Zero Learning Records. In this subsection, we consider the cold-
start problem from the learning record perspective, which is a common hard problem in recom-
mender systems that new users have no historical record. It becomes even more serious on the
LMS due to the massive new employees in many modern fast-paced companies [41]. Without the
user-item interactions, most collaborative filtering methods would fail to make predictions. How-
ever, if the users have skill profiles, we can still make recommendations based on the competency
information by our proposed methods. In this part, we provide some analysis on the cold-start
scenarios with zero learning records.
We propose three different approaches to handle the cold-start problem under DCCAN frame-

work, namely DCCAN-C1, DCCAN-C2, and DCCAN-C3. Note that we can also apply these strate-
gies to the DCBVN framework. In DCCAN-C1, we only use the employees’ competency variables
for the recommendation, that is, the latent user variables are exactly the same as the skill variables
of new users. In DCCAN-C2, we place no assumption on different transfer patterns to calculate the
demand variables of each new user, that is, we let every transfer pattern have the same importance
score. In DCCAN-C3, for each new user, we only employ the user group information to calculate
the importance scores of the employees, that is, we adopt the group-based importance score and
set the balance parameter ρ as 0 in Equation (11). For comparison, we also provide the result of
DCCAN without cold-start restriction. Besides, most baseline recommendation methods are inca-
pable of handling the cold-start scenarios with zero learning records. since CVAE could still make
recommendations solely based on the user profiles, we also employ CVAE as the baseline method
in the cold-start setting.
In this experiment, we only use the users with skill profiles to avoid disturbance from the skill-

label perspective. First, we selected 50% of the users in the training stage and the rest of the users
were assumed to be new users. In order to be consistent with the normal setting, we randomly
chose 70% course records of training users to construct the training set for DCCAN and the three
variants. The rest of the 30% course records were used for validation. Then we selected 30% course
records of new users as the training set only for DCCAN. Notice that, for CVAE, DCCAN-C1,
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Table 5. The Recommendation Performance

Results in Cold-Start Scenarios

Methods R@20 P@20 MAP@20

CVAE 0.1754 0.0409 0.0177
DCCAN-C1 0.1780 0.0418 0.0198
DCCAN-C2 0.1869 0.0433 0.0214
DCCAN-C3 0.1973 0.0450 0.0232
DCCAN 0.2517 0.0562 0.0301

DCCAN-C2, and DCCAN-C3, these data would not be used. The rest of the 70% course records of
new users compose the test set for all four methods. The performance results are shown in Table 5.
From Table 5 we can easily find that DCCAN outperforms all the variants a lot, which clearly

demonstrates the necessity of considering the personal demands of employees for the recommen-
dation. Even DCCAN-C3 has utilized user group information, it still performs much worse than
DCCAN, showing the dominant effect of individual historical records. Among the three cold-start
variants, it can be observed that DCCAN-C1 still performs well, which verifies the effectiveness of
our framework even on the cold-start scenario. Besides, DCCAN-C2 performs better than DCCAN-
C1, which demonstrates again that it is improper to directly treat skill variable as the user demand
variable. Finally, we can observe that DCCAN-C3 outperforms the other two variants. This shows
the effectiveness of user group information even on the cold-start scenario. In addition, we can find
that the performance of CVAE is slightly worse than DCCAN-C1, which also only uses the employ-
ees’ competency variables for the recommendations. DCCAN-C2 and DCCAN-C3 both perform
much better than CVAE, which demonstrates the effectiveness of user demand modeling.

5.4.4 Graph Attention Analysis. In this subsection, we mainly discuss the influences of the two
employee competency graphs and the multi-head integration mechanism. We first conduct the
ablation experiments to validate the importance of each competency graph and the multi-head
integration mechanism. Then we will discuss the parameter sensitiveness of our designed multi-
head integration mechanism.
As mentioned before, DCCAN can draw support from neighborhood users in two employee

competency graphs to predict the competency variables and then transform them into the final
supplementary competency variables bymulti-head integrationmechanism. Here, we design three
different variants of DCCAN, named DCCAN-G1, DCCAN-G2, and DCCAN-G3. In DCCAN-G1,
we only input the employee competency graph G1, which contains the user relationships from
the learning perspective, during the modeling training and testing. Similarly, in DCCAN-G2, we
choose to only input the employee competency graph G2, which contains the user relationships
from the working perspective. As for DCCAN-G3, we input both of the graphs, but we simply
apply the average optimization for the outputs of graph attentive layers instead of the convolution
optimization. The performance results on test sets T1 and T2 are shown in Table 6. For comparison,
we also provide the result of the original DCCAN model.

From Table 6, we can observe that the employee competency graph G1 is more helpful than
G2 for improving the recommendation performance on both test sets, though we have found that
neighbors from the working perspective may have more similarities in skill profiles as discussed in
Section 2. The possible reason is that G2 is much sparser than G1, thus we could not always extract
enough useful competency information from the neighborhood users in G2. By combining the
outputs of G1 and G2, DCCAN-G3 performs better than DCCAN-G1 and DCCAN-G2 on both test
sets. However, the simple average optimization in DCCAN-G3 cannot fully exploit the competency
information frommulti views. Thus, DCCAN-G3 performs worse than the original DCCANmodel.
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Table 6. The Recommendation Performance Results of Different Variants of our Methods

(a) The results on T1 in label-missing setting.

Methods R@20 P@20 MAP@20

DCCAN-G1 0.2101 0.0656 0.0295
DCCAN-G2 0.1966 0.0631 0.0290
DCCAN-G3 0.2132 0.0674 0.0298
DCCAN 0.2252 0.0734 0.0316

(b) The results on T2 in label-missing setting.

Methods R@20 P@20 MAP@20

DCCAN-G1 0.2243 0.0511 0.0262
DCCAN-G2 0.2122 0.0494 0.0257
DCCAN-G3 0.2289 0.0518 0.0265
DCCAN 0.2370 0.0535 0.0271

Fig. 8. The recommendation performance with different values of n.

Fig. 9. The recommendation performance with different values of nc .

In the multi-head integration mechanism, there are two main important parameters, i.e., the
number of attentive heads n and the number of convolution kernels nc . First, we present the rec-
ommendation performance results for different values ofn in test set T1 in Figure 8. Then attentive
heads can be viewed as n views for inferring the competency variable from one user’s neighbor-
hood nodes. When n is too large, there may be many meaningless views. Obviously, n should be
smaller than the dimension K of the competency variables. In this experiment, we fix all the other
parameters as the same values and tune the value of n. When n = 1, the multi-head attention
structure actually degrades into normal attention architecture. We can observe from Figure 8 that
when n is smaller than 15, DCCAN does not perform very well. However, if n is too large, the
performance of DCCAN also decreases.
Next, we discuss the influence of the number of convolution kernels nc . Usually, more convo-

lution kernels can extract more useful features. However, since, in our DCCAN framework, the
size of convolution kernel is limited. Also, the dimension of each skill topic (which is equal to the
number of attentive heads n) is not large. Thus, too many convolution kernels would result in the
over-fitting problem. We present the performance results for different values of nc in test set T1
in Figure 9. It can be observed that the performance of DCCAN first increases and then decreases
when nc becomes larger.

5.4.5 Parameter Analysis. In this subsection, we mainly discuss some parameters that influence
the loss functions and our demand recognition mechanism. First, we evaluate the parameter λr in
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Fig. 10. The recommendation performance with different values of λr .

Fig. 11. The recommendation performance with different values of ρ.

Fig. 12. The recommendation performance with different values of T .

our methods, which represents whether we concentrate more on prediction accuracy or recon-
struction error. Figure 10 presents the results for different values of λr . When λr is small, the
penalty of prediction loss declines. Thus, our frameworks tend to reduce the effectiveness of col-
laborative filtering. Moreover, it requires a larger iterative number for our methods to convergence
with small λr . On the other hand, when λr grows larger, the quality of latent representations could
not remain good due to the over-fitting problem.
Then we discuss the influence of balance parameter ρ, which shows the demand recognition

mechanism focusing more on individual/group information. Figure 11 presents the results for dif-
ferent values of ρ. We can observe that, when ρ = 0.2, our frameworks get the best performance
results. Notice that ρ = 0.2 does not imply that we pay much more attention to group information

than individual information because we have normalized the group course records R̃i∗ so that the
absolute value of each dimension of R̃i∗ is much smaller than the individual records Ri∗.
Lastly, we investigate the influence of the number of demand transfer patterns. We assume that

there are T chief patterns in the practical scenes. With small T , we could not model the demand
transferring process very well. Nevertheless, if T is too large, it would lead to over-fitting. As
shown in Figure 12, T = 200 seems to be an appropriate choice. We find that our frameworks are
robust for over-fitting since they are inherently a Bayesian-generative model learning the latent
distributions rather than the point estimates of variables.
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Table 7. Case Studies on the Interpretable Recommendation

Top 3 topics of skills

a. distributed, hadoop, system design, apache, spark, hive, scheduling, storage, operation
b. products design, product operation, promotion, impact, planning, scheme, disassembly
c. retrieval, data flow, trigger, capture packets, stability, query, automation, building database

Selected courses

a. Information security awareness training

b. From technological backbone to manager

Top 3 topics of demands

1. distributed, hadoop, system design, apache, spark, hive, scheduling, storage, operation
2. business, service, management, guidance, strategy, organize, examine, implement
3. achieve, dispose, service, system, solution, develop, platform, workflow, leadership

Suggested courses

1. Office network security training

2. Application cases of big data on predictions

3.What are the success factors of a high-tech company

4. Engineering leadership talk: platform governance

5. How to use the tailor-made data storage system

6. Introduction to safety specification

7. The technology platforms in the company

8. Engineering leadership and strategy

5.5 Case Study

In this subsection, we aim to provide the interpretable insights of the recommendations obtained
by our proposed frameworks from both employee and course perspectives.

5.5.1 Employee Perspective. Table 7 shows a real user case study in our DLearner dataset. We
first present the top 3 topics of the user’s skills. From Table 7, we can speculate that she might be
an R&D engineer since her current skills are mostly related to data processing and programming.
Meanwhile, from the historical learning records, we can find that she preferred to learn about how
to grow into a manager of the team (course b). Besides, she was also interested in office privacy
and security (course a).
Thenwe provide the top 3 topics of the demands learned by ourmodel and the top recommended

courses in Table 7. It can be directly found from the topic 2 and topic 3 that the user-demand
variable correctly captures the differences of user’s current competencies and personal demands.
In this way, we successfully understand her career development goal, i.e., become a good manager.
Thus, we recommend some courses to enhance her business horizons (courses 2 and 3) and develop
her leadership abilities (courses 4 and 8). We also suggest some technical courses (courses 5 and 7)
to help her improve her current competencies. Besides, courses 1 and 6 are recommended due to
her demand for information safety awareness training.
One important characteristic of DCCAN is its ability to infer the competency variable of a user

from her neighbors. Here we present a case study to show the skill-topic inferring power of DC-
CAN. Note that DCCAN could both generate the competency variable from the real skill profile and
the supplementary variable from neighbors for users. Since we have ensured the interpretability
for each dimension of the competency variables in the process of graph attention and multi-head
integration, the skill topics of these two types of variables have exactly the same meanings. Thus,
we provide the top 3 topics of both the variables for a user in Table 8. First, since most of this
user’s colleagues in the same department and position have the skill topic a, which is relevant to
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Table 8. Case Studies on Skill-topic Inferring

Top 3 topics of skills obtained by real skill profile

a. front-end development, css, nodejs, react, review, linux, mysql, database, stability, redis, html
b. project management, business understanding, programme planning, market research, planning
c. rebuilding, git, usability, video, open source, visualization, interface, programming, web, docker

Top 3 topics of skills obtained by supplementary competency variable

1. front-end development, css, nodejs, react, review, linux, mysql, database, stability, redis, html
2. test tool, function test, jenkins, continuous integration, quality assurance, stress test, usability
3. project management, business understanding, programme planning, market research, planning

Fig. 13. The box plots of the Euclidean distances between competency and demand variables of employees

in different job categories and departments, respectively.

front-end techniques, DCCAN successfully predict the topic a as the top competency for her. DC-
CAN also predicts another popular topic of her neighbors, which is related to testing, as the top
competency. Actually, this topic is in the top five topics of the competency variable obtained by
real skill profile. Besides, many users who have learned the same courses with her have the skill
topic b, which is related to management, DCCAN also predicted the topic b as one of the top three
topics. This visualization hints that DCCAN has a good capability for capturing key information
for skill-topic inferring.
Next, we present some interesting results on the differences in employees’ skill backgrounds and

personal career development demands. Figure 13 shows the Euclidean distances between compe-
tency and demand variables of employees in different job categories and departments, respectively.
The small distance means they mainly choose courses based on their current competencies while
large distance implies the high impact of various career development demands. From Figure 13(a),
we can observe that the distances of employees in Technology and Manager categories are quite
smaller than employees in other categories. This may be because their career development goals
are tightly related to their current career directions. Meanwhile, employees in User Interface and
Product categories usually have a wide variety of learning preferences, which indicates they are
more likely to seek different career developments. We also present the Euclidean distances for five
departments that hold a large number of employees in Figure 13(a). Here we adopt the department
functions to denote the five departments but not their actual names due to the privacy preven-
tion purpose. We can find that employees in the departments related to development and big data
tend to focus on improving their current competencies. Meanwhile, employees in the departments
related to cloud and marketing have more wide variety of learning preferences. We can also find
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Table 9. Case Studies on Course Labeling

Exploring Selenium

a. function test, test tool, continuous integration, quality assurance, code, coverage rate, review, jenkins
b. debug, compile, shell, programming, sdk, encapsulation,match, hadoop, open source, reconfiguration
c. product design, redis, encapsulation, http, cache,spark, com, reviewing, cooperation, sdk, offline

Mr. Wu’s experience sharing

1. management, product, data, business, business requirements, scheme, service, design
2. plan, innovate, management, data analysis, put on market, project management, reposition
3. mining, orientation, data analysis, reposition, trans-department, solution, investigation & research

Fig. 14. The visualization of course clustering. (The clusters are distinguished by different colors.)

that the distances of employees in sales department are quite larger than all the other departments,
which may because salesmen need to learn about knowledge in various fields.

5.5.2 Course Perspective. Our frameworks are also able to label the courses with the topics of
skills, which is very helpful for users to make decisions. Especially when the course titles cannot
directly reflect the content, users would be quite confused andmost likelymiss the suitable courses.
For example, Table 9 presents the top 3 topics of two real courses in DLearner dataset. If one does
not knowwhat Selenium is, he/shemay feel puzzled about the course Exploring Selenium. However,
with the help of the skill labels learned by ourmodels, he/she could guess that the course is about an
automated testing tool (In fact, Selenium is an open-source Web automated testing tool). Similarly,
if one does not know who is Mr. Wu, he/she would absolutely have no idea about the course Mr.

Wu’s experience sharing. Actually, Mr. Wu is an excellent grassroots manager in the company and
we can easily infer this from the given topics.

Furthermore, we provide an overall view of the courses in DLearner dataset to show the inter-
pretability of our methods. We first performed k-means clustering [1] to partition all the 8,693
courses into eight clusters according to their latent skill variables {scj , j = 1, . . . , 8,693} obtained by
our methods. Then we utilize the t-SNE algorithm [33] to transform the original 50-dimensional
vector into a 2-dimensional space for visualization, as shown in Figure 14. We can observe that
clusters 5, 6, and 7 are quite close. Actually, courses in these three clusters are all technical courses
while cluster 5 focuses on underlying architecture and database; cluster 6 focuses on application
and algorithm; cluster 7 focuses on web andmobile devices. Moreover, clusters 2 and 3 are also very
close to, and are interlocked with, each other in the low-dimensional space. In fact, the courses in
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these two clusters are both relevant to product and marketing. Besides, cluster 1 mainly contains
courses about management and cluster 8 is mainly composed of courses helping improve the em-
ployees’ personal qualities, such as communication and leadership. Lastly, cluster 4, which is far
away from the other clusters, consists of some miscellaneous courses without a clear theme.

6 RELATEDWORK

In this section, we first introduce some general recommendation algorithms and then explainable
recommender systems. Lastly, we will focus on the domain of course recommender systems.

General Recommenders. For general recommenders, Collaborative Filtering (CF) methods
have been regarded as the most popular and successful technique for mining the relevance be-
tween users and items from the historical interactions [11, 16, 29, 32, 42]. Among various CF meth-
ods, the latent factor models (LFMs) [6, 37, 57] are the most widely used approaches due to
their advanced recommendation performance compared with the traditional neighborhood-based
methods [44]. For example, the probabilistic matrix factorization (PMF) [37], as a representa-
tive LFM, aims to factorize the rating matrix into the product of user and item latent matrices in a
low-rank space. Furthermore,Wang and Blei [56] proposed an approach to combine LFMwith clas-
sic topic models [3] for integrating content information. Recently, with the successful adoption of
deep learning methods in many fields [19, 40, 66], some researchers focused on building advanced
hybrid recommendation models to blend LFM and neural network for collaborative information
modeling [60]. For example, Wang et al. [59] exploited the Stacked Denoising Autoencoders for
achieving collaboratively content embeddings with latent content variables. Furthermore, Li and
She [27] utilized the Variational Autoencoder for modeling content information to construct a
Bayesian hybrid recommendation model. However, it is still a big challenge to combine the com-
petency modeling with course recommendations.

Explainable Recommenders. There are mainly two types of methods for constructing explain-
able recommender systems in the literature. One is post-hoc method, which chooses to separate
the recommending and interpreting processes and the explanations are picked from a group of pre-
defined templates [53]. The other is the embedded method, which tried to build a unified model
to integrate both the recommending and interpreting processes [5, 36, 61]. The existing embedded
methods are mainly based on reviews. For example, McAuley and Leskovec [36] obtained inter-
pretable textual labels for latent rating dimensions from product reviews. Besides, Chen et al. [5]
introduced an attention mechanism to explore the usefulness of reviews and produce review-level
explanations. Furthermore, Gao et al. [12] built an explainable deep hierarchy network with an at-
tentive multi-view learning framework. Chen et al. [7] designed a hierarchical co-attentive selector
to optimize accuracy and explainability in a joint way. However, these works tend to give the expla-
nation according to the items’ characteristics. In this article, for course recommendations, we aim
to provide explainable results on both the users’ competencies and demands, as well as courses.
Course Recommenders. Current course recommender systems mostly focus on the scenario

of student education [2, 65]. For example, Parameswaran et al. [38] studied the problem of
constraint-based course recommendations for students; Vialardi et al. [52] recommended how
many and which courses to study on the basis of previous students; Thai-Nghe et al. [49] proposed
to predict the student performance with LFM for recommendations; and Chu et al. [8] proposed
to recommend courses on the web with rule-based methods. Besides, there are also some recent
works that focused on online learning platforms, such as Massive Open Online Courses. For
example, Zhang et al. [63] designed a course recommender system for MOOC by association rules
mining. Jing and Tang [21] proposed a content-aware algorithm framework based on content-
based users’ access behaviors. Hou et al. [17] paid attention to the sequence of learning curriculum
and proposed a systematic recommendation methodology. Recently, some efforts were made to
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enhance the learning practices of individuals and organizations in talent management [35]. For
example, Klašnja-Milićević et al. [25] recognized different patterns of learning style and utilized
neighborhood methods for online training recommendations. Srivastava et al. [47] studied the
scenario of industrial training in organizations with sequence matching and mining.
Unlike the authors of the above works, we studied the problem of explainable personalized

training course recommendations with employees’ career development awareness.

7 CONCLUSIONS

In this article, we focused on studying the personalized online course recommender system for
improving employees’ training and development. We designed two novel explanatory end-to-
end hierarchical frameworks, the Demand-aware Collaborative Bayesian Variational Network
(DCBVN) framework and the Demand-aware Collaborative Competency Attentive Network (DC-
CAN) framework. A unique perspective of our systems is that we jointly model the employees’
current competencies and their sustainable career development. Specifically, in DCBVN, we ex-
tracted latent interpretable representations from their skill profiles and then learn the personal
demands of career development for different employees. Also, we designed an adapted collabora-
tive filtering algorithm for recommending the most appropriate training courses for employees.
Moreover, all the above processes are integrated into a unified Bayesian inference view. In the
improved DCCAN framework, we further considered the employees who have sparse and even
missing skill profiles. Specifically, we designed a graph-attentive network and a multi-head inte-
gration mechanism to infer one’s competency information from her neighborhood nodes. Finally,
we conducted extensive experiments on real-world data to demonstrate the effectiveness and the
interpretation power of both of our proposed frameworks, as well as their robustness on sparse
and cold-start scenarios.
Besides, the currently proposed models were designed for solving the personalized learning

demands in the practical industrial environment. However, our proposed frameworks can also be
applied to build the personalized recommender system for other learning platforms with adequate
user skill-profile information. Since the current open datasets usually do not contain such user
skill-profile data, we may not be able to directly transfer our frameworks to these datasets. In the
future, we will try to find more scenarios to transfer our models.
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