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Abstract
Recent studies have shown that both accuracy and
explainability are important for recommendation.
In this paper, we introduce explainable conversa-
tional recommendation, which enables incremen-
tal improvement of both recommendation accuracy
and explanation quality through multi-turn user-
model conversation. We show how the problem can
be formulated, and design an incremental multi-
task learning framework that enables tight collabo-
ration between recommendation prediction, expla-
nation generation, and user feedback integration.
We also propose a multi-view feedback integration
method to enable effective incremental model up-
date. Empirical results demonstrate that our model
not only consistently improves the recommenda-
tion accuracy but also generates explanations that
fit user interests reflected in the feedbacks.

1 Introduction
Recommender systems, which predict users’ personalized
preferences to items, have become one of the most effective
techniques for overcoming information overload. Recently,
researchers are reaching a consensus that both accuracy and
explainability are essential for recommendation. Explainabil-
ity requires that a system provides explanations about why
items are recommended. It has been shown that enhanced
explainability leads to improved user satisfaction, trust, and
efficiency [Tintarev and Masthoff, 2007].

Serving as a bridge between users and recommender sys-
tems, explanations not only help users understand the work-
ing mechanisms of the models, but also trigger potential user
feedbacks, e.g., inspiring users to inform the system when it
is wrong [Tintarev and Masthoff, 2007]. Existing methods
focus on providing single-turn explanations and lack the ca-
pability to incorporate user feedbacks [Sharma and Cosley,
2013; Zhang et al., 2014; He et al., 2015; Li et al., 2017;
Wang et al., 2018; Chen et al., 2019; Gao et al., 2019]. For
example, the explanation “This is a good documentary about
the battle of thermopylae” for recommending a movie may

∗Xiting Wang is the corresponding author

Model: I recommend Pulp Fiction. This is a dark comedy with a great cast.
User: I don't want to watch a comedy right now.
Model: How about Ice Age? It is a very good anime with a lot of action adventure.
User: I don’t like anime, but action movie sounds good. 
Model: I recommend Mission Impossible. This is by far the best of the action series.
User: Sounds great. Thanks for the recommendation!

Predefined Template Generated ExplanationRecommended Item

Figure 1: Conversation excerpts between a user and our explainable
conversational recommendation model.

help a user realize why the recommendation is wrong, i.e., the
model provides the recommendation based on his/her previ-
ous interest documentary. However, the user cannot commu-
nicate his/her findings with the system, e.g., his/her interest
has recently shifted to thrillers.

In this paper, we introduce explainable conversational
recommendation, which integrates user feedbacks into ex-
plainable recommendation to enable bidirectional user-model
communications through conversations. As shown in Fig. 1,
explainable conversational recommendation provides expla-
nations to help users understand the model, and collects user
feedbacks to understand and integrate user needs. During the
multi-turn user-model collaboration process, both recommen-
dations and explanations are iteratively refined.

Explainable conversational recommendation provides an
alternative interaction paradigm between users and recom-
mendation models. Prior works on conversational search
and recommendation lack the capability for providing expla-
nations [Christakopoulou et al., 2016; Zhang et al., 2018;
Sun and Zhang, 2018; Li et al., 2018; Bi et al., 2019].
Since they cannot trigger feedbacks through explanations,
these methods often collect user feedbacks by asking the
what questions, e.g., “What category of movies do you like?”.
While these methods are effective for users who have a clear
search target, they are less friendly for users wandering for
interesting items. In comparison, users of explainable con-
versational recommendation can simply inform the system
whether they like or dislike the features mentioned in the ex-
planations, which reduces user cognitive load. The features
in the explanations may also trigger users to come up with
related features that they like or help users understand model
imperfections. Both types of findings can be communicated
to the system through user feedbacks.
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While explainable conversational recommendation is
promising, designing such a model is a challenging multi-
objective problem. The model needs to effectively integrate
user feedbacks to ensure significant and stable improvement
of recommendation accuracy (O1) and explainability (O2).
Moreover, the model should seldom violate the user require-
ments reflected in the feedbacks (O3). For example, if a user
claims in the conversation that she does not like documen-
tary, the model should take this explicit request seriously
and avoids recommending documentaries. While objective
O3 requires the model to satisfy specific user requirements
(satisfaction), objectives O1 and O2 additionally request
effective understanding of users by generalizing feedbacks to
similar items and features (generalization).

In this paper, we aim to develop an Explainable
Conversational Recommendation (ECR) model that fulfills
objectives O1–O3. Our contributions are three-fold.

First, we design an incremental multi-task learning
framework for explainable conversational recommendation.
In our framework, multiple objectives can be simultaneously
achieved through tight collaboration among the recommen-
dation prediction task, the explanation generation task, and
the user feedback integration module. The collaboration is
achieved through context-aware modeling of item concepts
extracted by using Microsoft Concept Graph1. Modeling the
key concepts that a user likes about an item enables us to de-
rive the cross knowledge between the two tasks (recommen-
dation and explanation), trigger feedbacks about concepts,
and integrate the feedbacks for incremental model update.

Second, we propose a multi-view feedback integration
method to achieve effective incremental model update. Our
method combines two views of incremental learning. The
first view focuses on satisfying user requirements through lo-
cal propagation of user needs (satisfaction), and the second
view better generalizes user feedbacks by updating global
model parameters, e.g., addressing model imperfections by
learning a better concept embedding (generalization).

Third, we evaluate our method with different settings
of simulated users and human assessors. The experiments
demonstrate that our method consistently improves recom-
mendation accuracy, increases explainability, and seldom vi-
olates user requirements (O1-O3).

2 Problem Formulation
Fig. 2 shows the pipeline of explainable conversational rec-
ommendation. The model takes as input a user id u ∈ U ,
an item id v ∈ V , and side information Iu and Iv about the
user and the item. The model then outputs 1) a score ru,v
which predicts how much u likes v and 2) an linguistic expla-
nation Yu,v for the recommendation that consists of a word
sequence. Item v will be displayed to the user together with
the explanation if ru,v is the largest among the candidates V .
After the user checks the recommendation and the explana-
tion, s/he will provide a feedback F , which helps to refine
the recommendation model. This iterative process continues
until 1) the user is satisfied with the recommendation or 2)
the maximum number of communication turns is reached.

1https://concept.research.microsoft.com/
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Figure 2: Pipeline of explainable conversational recommendation.

Different choices of side information and user feedbacks
result in different types of recommendation models.
Side information Iu and Iv . Many explainable recom-
mendation methods take review comments as inputs to fa-
cilitate explanation generation [Zhang et al., 2014; Chen et
al., 2018]. Following these methods, we consider Iu and
Iv as review comments. Specifically, Iu denotes reviews
user u writes and Iv is the set of reviews about item v:
Iu = {Du,1, ...,Du,nd

}, Iv = {Dv,1, ...,Dv,nd
}, where nd

is the maximum number of reviews. Each review Du,i or
Dv,i is represented by a sequence of words. We also derive
the concepts from reviews by utilizing Microsoft Concept
Graph [Wu et al., 2012; Wang et al., 2015]. The concepts
are a subset of the words that correspond to important explicit
features mentioned in the review (e.g., documentary).
User feedbacks F . While free-form natural-language
feedbacks empower users with the most flexibility, it is very
likely that a model does not have the knowledge to process
such feedbacks. For example, a model cannot correctly
handle feedback “please recommend a movie that is currently
showing in the local cinemas”, because it does not know
the location of the user or what movies are showing in the
cinemas. We believe that a model should clearly define
feasible feedbacks and inform the users. In our framework,
concepts are the key for connecting different components.
Thus, we allow users to provide feedbacks about what
concepts they are (not) interested in together with their item
interests: F = {c+1 , ..., c+ng

} ∪ {c−1 , ..., c−nb
} ∪ {v−}. F is

the feedback provided at the current turn, c+i is a concept
that u likes, and c−i (or v−) is a concept (or an item) that u
is not interested in. To collect feedbacks about concepts, we
can ask questions like “Are you interested in [CONCEPT]?”)
and parse feedbacks with aspect-level sentiment analysis
tools [Zhang et al., 2014]. We may also collect concept-level
feedbacks by requiring users to respond with pre-defined
feedback templates. We set v− to the last item recommended
to the user. If u likes the last recommended item, the
conversation ends and no feedbacks will be provided.

3 Model Description
Fig. 3 shows the incremental multi-task learning framework
of our Eexplainable Conversational Recommendation (ECR)
model, which consists of two major parts. The first part, in-
cremental cross knowledge modeling, learns the transferred
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Figure 3: Our incremental multi-task learning framework for explainable conversational recommendation (ECR)
.

cross knowledge for the recommendation task and the ex-
planation task, and illustrates how the cross knowledge can
be updated by using incremental learning. The second part,
incremental multi-task prediction, illustrates how we gen-
erate explanations based on the cross knowledge, and how
we predict recommendation scores based on both the cross
knowledge and user feedbacks.

We will introduce two parts in detail and illustrate how they
can be jointly optimized to achieve end-to-end learning.

3.1 Incremental Cross Knowledge Modeling
A prior study shows that the transferred cross knowledge for
the recommendation task and the explanation task can be
modeled by using the key concepts that a user likes about an
item [Chen et al., 2019]. We first illustrate how their concept
embedding method can be extended to facilitate incremental
feedback and improve model performance. Then, we show
how concept importance can be computed by combining two
views of incremental learning. Finally, we introduce how to
select key concepts by considering concept importance from
both views. The selected concepts will be included in the ex-
planations to trigger feedbacks and used for recommendation
prediction. As shown in Fig. 3, the incremental cross knowl-
edge modeling part consists of four major modules:

Context-aware concept embedding
For each user u, we collect concepts cu,1, .., cu,nc

that appear
in reviews Du,1, ...,Du,nd

and calculate their latent represen-
tations. While a concept can be represented by using its word
embedding [Chen et al., 2019], we also find its context, i.e.,
related reviews, to be important for concept modeling. Thus,
our embedding cu,i of concept cu,i is a concatenation of its
word embedding and context embedding: cu,i = [cwu,i; cnu,i],
where cwu,i is computed by using a word embedding lookup
layer, and cnu,i is calculated by averaging the embeddings of
related reviews, i.e., cnu,i = (

∑
j∈Γu,i

du,j)/|Γu,i|. Here, du,j
is the embedding of review Du,j , and Γu,i denotes the set
of reviews that contains concept cu,i, i.e., Γu,i = {j|cu,i ∈
Du,j}. We follow [Tay et al., 2018] to calculate the re-
view embedding d by summing up its word embeddings:
d =

∑
ω∈D w.

Given item v, we can similarly collect concepts in the re-
views of v and calculate their context-aware embeddings.

Co-attentive concept importance modeling
Given concept embeddings cu,1, ..., cu,nc

of user u and con-
cept embeddings cv,1, ..., cv,nc

of item v, we calculate co-
attention weight matrix Φ ∈ Rnc×nc to model deep user-
item interactions: φi,j = f(cu,i)TWcf(cv,j), where Wc ∈
Rlw×lw is a learning weight matrix and f(·) is a lf -layered
feed-forward neural network with activation function ReLU.
We obtain user (item) concept importance vectors a and (b)
to find concepts with the maximum co-attentions:

ai=ζ(maxj=1,...,nc φi,j) and bj =ζ(maxi=1,...,nc φi,j)

Here, ζ(·) is a Softmax function that ensures
∑
i ai = 1 and∑

j bj = 1. ai (or bj) represents the probability that the con-
cept in the reviews of u (or v) is important for the user-item
pair. Concepts with larger ai or bj values have a larger prob-
ability to be selected and included in the explanations.

User feedbacks {c+i } and {c−j } provide ground-truth labels
for important and unimportant concepts. These labels can be
naturally incorporated by using a concept-level feedback loss:

LFc =
∑
i log(1− a+

i ) +
∑
j log(a−j )+∑

i log(1− b+i ) +
∑
j log(b−j )

(1)

Here, a+
i , b+i (or a−j , b−j ) are the entries in a and b that cor-

respond to c+i (or c−j ) and denote the probabilities for c+i (or
c−j ) being considered important.

We consider minimizing LFc as a global view of incremen-
tal learning, since it fixes model imperfections that affect all
user-item pairs, e.g., it refines concept embeddings. While
this method is intuitive and useful for parameter refining, it
usually fails to ensure satisfaction of user needs, e.g., signif-
icantly reduce the importance of c−j and remove it from the
explanations. This is because LFc ’s impact on ai and bj is
indirect, i.e., can only be achieved by changing model param-
eters. Since the number of feedbacks is small, the influence
of this indirect method is limited.

Local propagation of user-concept interest
To solve the aforementioned issue of indirect feedback inte-
gration, we use local label propagation, in which importance
of concepts are measured according to their distance with c+i
and c−j (the labels). To this end, we first calculate the aggre-
gated embedding ĉ+

= αt

ng
(
∑ng

i=1 c+
i ) + (1 − αt)p+, where
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p+ records the value of ĉ+ at the last turn, and 0< αt ≤1
balances current and previous feedbacks. Similarly, we have
ĉ− = αt

nb
(
∑nb

i=1 c−)+(1−αt)p−. We then compute a prefer-
ence score βc of the concept c based on the 2-norm distances
between its embedding and the aggregated embeddings:

βc = (||c− ĉ+|| − ||c− ĉ−||)/(||̂c+ − ĉ−||) (2)

Accordingly to the triangle inequality, −||̂c+−ĉ−||≤(||c-
ĉ−||−||c−ĉ+||)≤||̂c+−ĉ−||. Thus, βc ∈ [−1, 1] and obtains
the maximum (or minimum) value when c = ĉ+ (or c = ĉ−).
The local concept importance vectors can be obtained by:
a′i = ζ(βcu,i

) and b′j = ζ(βcv,j
).

Multi-view concept selection
The multi-view concept importance are computed with:

āi = (1− αc)ai + αca
′
i, and b̄j = (1− αc)bj + αcb

′
j (3)

where αc ∈ R is a learnable parameter. We further ensure
that the multi-view importance match user-concept interests
reflected in the feedbacks by using a loss LFd similar with LFc

LFd =
∑
i log(1− ā+

i ) +
∑
j log(ā−j )+∑

i log(1− b̄+i ) +
∑
j log(b̄−j )

(4)

Based on āi and b̄j , we select a set of key concepts that
will be included in the explanations and considered in rec-
ommendation prediction. To avoid the model being non-
differentiable, we use the Straight-Through Gumbel-Softmax
function Gumbel(·) [Tay et al., 2018]:

zu = Gumbel(log ā) and zv = Gumbel(log b̄) (5)

Here, zu = (zu,1, ..., zu,nc
) ∈ {0, 1}nc . zu,i is 1 (or 0) if

cu,i is (or is not) selected. Similarly, zv = (zv,1, ..., zv,nc
) ∈

{0, 1}nc denotes whether concepts {cv,j} are selected. Each
time we calculate Gumbel(·), only one concept will be se-
lected, i.e.,

∑
i zu,i = 1. However, a user may consider

multiple concepts of an item. To select np concepts, we run
Gumbel(·) np times with different Gumbel noises and co-
attention weight matrices Wc. As a result, we obtain multiple
selected concepts {c(1)

u , ..., c
(np)
u } and {c(1)

v , ..., c
(np)
v }.

3.2 Incremental Multi-Task Prediction
We predict recommendation scores and generate explanations
based on the selected concepts. Considered as concepts that
user u likes about item v, the selected concepts can be used to
1) calculate user and item embeddings and 2) determine the
key words that must appear in the explanations.

We first leverage the context-aware embeddings of the se-
lected concepts to learn user and item embeddings eu =

σ(Wp[c
(1)
u , ..., c(np)

u ] + bp) and ev = σ(Wp[c
(1)
v , ..., c(np)

v ] +
bp). Here Wp ∈ Rlp×2nplw , bp ∈ Rlp and σ is the sig-
moid function. Since explicit factors such as concepts and
related reviews may fail to include all information about a
user or an item, we additionally compute implicit user and
items representations. In particular, a lookup layer is used
to transform u (v) into implicit representations hu ∈ Rlu
(hv ∈ Rlv ). The final user and embeddings are xu = [eu; hu]
and xv = [ev; hv], which capture both explicit and implicit
factors about a user or an item.

Multi-view recommendation
We predict recommendation scores based on two views. The
global view learns a recommendation model based on all
training samples. The local view ensures satisfaction of user
feedbacks by considering local user-item interest.

Global FM-based recommendation. Factorization machine
(FM) [Rendle, 2010] is used to predict recommendation score
ru,v = w0 +

∑n
i=1 wiqi +

∑n
i=1

∑n
j=i+1〈mi,mj〉qiqj

(6)
where qi ∈ R is the i-th entry of q = [xu; xv]. wi ∈ R and
mi ∈ Rlm are parameters to be learned.

The FM can be pre-trained with offline training instances
Ωu by using the BPR loss [Rendle et al., 2009].

LΩu
r = − 1

|Ωu|
∑
v′∈Ωu

lnσ(ru,v′ − ru,v′′) (7)

v′ ∈ Ωu denotes an item that u likes. For each v′, an item v′′

that u does not like is obtained through negative sampling.
Items v− provided in F can be integrated similarly:

LFr = − 1
|Ωu|

∑
v′∈Ωu,v−∈F lnσ(ru,v′ − ru,v−) (8)

Local estimation of user-item interest. Given F , we can
compute a recommendation score based purely on whether
feedbacks are satisfied. Specifically, estimated score r̂u,v is
set to 0 if v=v− or if none of c+1 , ...c

+
ng

is contained in the
reviews of v. Otherwise, r̂u,v is set to 1. We then calculate
the local recommendation score r′u,v with: r′u,v = αtr̂u,v +
(1−αt)τu,v , where τu,v is the r′u,v score at the previous turn.

Multi-view combination. The final recommenda-
tion score is obtained by combining the two views:
r̄u,v = (1 − αr)ru,v + αrr

′
u,v , where αr is a learnable

parameter. We use LFs to learn r̄u,v:

LFs = − 1
|Ωu|

∑
v′∈Ωu,v−∈F lnσ(r̄u,v′ − r̄u,v−) (9)

Constrained explanation generation
We generate an linguistic explanation Yu,v by considering
two types of constraints. The first type is a hard constraint,
which requires that the first selected concept c(1)

v must appear
in the explanations. This better ensures that a concept that
u likes will be included in the explanations. Note that c(1)

v

can only be selected if it appears in the item reviews. Thus,
requiring c(1)

v to appear in the explanation will not introduce
false claims about item v in the explanation. The second type
is soft constraints, which punish the model if other selected
concepts are not included.

To satisfy the first constraint, we use a bi-directional gener-
ation method based on Gated Recurrent Unit (GRU) [Chung
et al., 2014]. In particular, two GRUs are learned: a back-
ward GRUb and a forward GRUf . GRUb considers c(1)

v as
the first generated word, and outputs all words before c(1)

v .
When GRUb reaches the start of the explanation (<SOS>),
GRUf starts to generate words after c(1)

v by considering all
words output by GRUb. In both GRUs, the initial state is set
to tanh(Wuxu + Wvxv + bs) ∈ Rls , where Wu,Wv, bs are
parameters to be learned. The two GRUs can be trained by
using the widely-adopted negative log-likelihood loss

LΩu
n = 1

|Ωu|
∑
v′∈Ωu

∑T
t=1(− log ot,yu,v′,t∗) (10)
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where yu,v′,t∗ is the ground truth word at time t for the (u, v′)
pair and ot,y is the probability of word y being generated.

To satisfy the second constraint, we use the concept rel-
evance loss [Chen et al., 2019]. Let us denote the selected
concepts as s ∈ R|V|, where |V| is vocabulary size. sk is 1
when the k-th word is a concept and has been selected for the
(u, v′) pair and is 0 otherwise. The concept relevance loss is

LΩu
c = 1

|Ωu|
∑
v′∈Ωu

∑T
t=1(maxk (−sk log ot,k)) (11)

3.3 Learning Process
As shown in Fig. 3, the model is first pre-trained with offline
data Ωu. This is achieved by minimizing the following loss
LΩ =

∑
u∈U (LΩu

r + λnLΩu
n + λcLΩu

c ) + λθ‖Θ‖22 (12)
where λs denote the importance of different losses and Θ
represents the model parameters. During pre-training, local
views are disabled, i.e., αc and αr are set to 0. We choose
Adam [Kingma and Ba, 2014] as the optimizer.

When a feedback F is provided by u, we incrementally
update the previous model parameters and learn local use in-
terests. This is achieved by minimizing
LF = LFc + λdLFd + λrLFr + λsLFs + λ′θ‖Θ−Θ′‖22 (13)

Here, Θ′ represents the previous model parameters. When
a sequence of feedbacks F1, ...,FT are given, we incremen-
tally update the model by processing Ft one by one.

4 Experiment
4.1 Experimental Settings
Dataset. As shown in Table 1, we use three publicly avail-
able datasets. Electronics and Movie&TV are two categories
of the Amazon dataset2, and Yelp contains restaurant reviews
from Yelp Challenge 20163. Each dataset is split into a train-
ing set (80%), a validation set (10%) and a test set (10%).
The training set is used to derive Ωu, which consists of items
that u provided reviews for. Following [Li et al., 2017;
Chen et al., 2019], we consider the ground-truth explana-
tions as the first sentence in the reviews. The validation set is
used for model hyperparameter tuning and the test set is lever-
aged for simulating conversations. The goal of the model is
to correctly predict the ground-truth items and explanations
in the test set. If it fails to recommend the ground-truth item,
user feedbacks will be provided to help it refine the results.
Feedback simulation. Most works on conversational
search and recommendation directly use ground-truth con-
cepts (or features) as user feedbacks [Bi et al., 2019]. In our
setting, the ground-truth concepts are the ones mentioned in
the ground-truth explanations (reviews). Different from pre-
vious works, we assume that a user will only give a ground-
truth concept c+i when the generated explanation contains a
concept that is similar with c+i . We consider the cosine simi-
larity between BERT embeddings [Devlin et al., 2018] of the
concepts and assume that the 20 most similar concepts of c+i
will trigger c+i . We further assume that the user will point out
a unimportant concept c−i if it appears in the explanation. Ef-
fects of different simulation settings are evaluated in Sec. 4.3.

2http://jmcauley.ucsd.edu/data/amazon/
3https://www.yelp.com/dataset/challenge

Dataset Users Items Reviews Concepts
Electronics 146,481 50,526 844,702 652

Movies&TV 90,227 42,553 830,004 791
Yelp 96,304 39,596 769,991 1,004

Table 1: Statistics of three experiments datasets.

Baselines. We find that no existing works can be used di-
rectly for explainable conversational recommendation. To
evaluate our method, we design two baselines by extending
existing explainable recommendation methods NRT [Li et
al., 2017] and CAML [Chen et al., 2019]. We train both
models with the BPR loss. NRT is updated with λrLFr +
λ′θ‖Θ−Θ′‖22. Other feedback losses cannot be used because
NRT does not model concepts and cannot perform multi-view
incremental learning. CAML is updated similarly, except that
the concept-level loss LFc is also used.
Evaluation measures. We evaluate recommendation accu-
racy by using three widely-adopted measures: HR (hit ratio),
NDCG (normalized discounted cumulative gain), and MRR
(mean reciprocal rank). Following [Zhang et al., 2018], we
calculate HR, NDCG and MRR based on the top 1, 10 and
100 recommended item(s), respectively. Following [Chen
et al., 2019], the explanation quality is evaluated by using
BLEU [Papineni et al., 2002] and ROUGE-L [Lin, 2004],
which are widely adopted to measure the similarity between
ground truth and generated texts. We also propose criterion
CSR to measure the Concept-level feedback Satisfcation
Ratio. We consider c+i to be satisfied if it appears in the
generated explanation, and c−i to be satisfied if the concept is
removed from the explanation.
Implementation details. For all methods, the maximum
number of conversation turns is set to 5 and negative sam-
pling is used to reduce the candidate size to 256. Most hy-
perparameters are set and tuned by following the papers of
the baselines [Li et al., 2017; Chen et al., 2019]. The λs
for balancing different losses are set to 1 except for λc=0.05.
We tune np by performing grid search over {1, 2, .., 5}. The
learning rates of LΩ and LF are set to 10−3 and 10−2, re-
spectively. αt is set to 0.8, and αc, αr are initialized by using
0.9 and automatically tuned during the learning process.

4.2 Overall Performance
Performance after 5 turns of conversation. Table 2 com-
pares our method with the baselines in terms of objectives
O1–O3. To facilitate comparison, we also test Ours-G. Sim-
ilar with CAML, Ours-G considers only the global view
(αc=αr=λd=λs=0). Note that all the evaluated methods take
concept feedbacks as inputs except for NRT. The results show
that our method significantly outperforms the baselines in
terms of all three objectives. For example, compared with
CAML, our method achieves 41.9% to 121.8% better HR
(recommendation accuracy) and 42.0% average ROUGE-L
improvement (explainability). Moreover, our method can al-
most always satisfy concept-level user feedbacks, with the
CSR score ranging from 94% to 97%.

We draw three conclusions from the results. First, concept-
level feedbacks are useful for model improvement, since the
other methods perform better than NRT. Second, our model
structure better facilitates feedback integration compared
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Dataset Electronics Movie&TV Yelp
Metric NRT CAML Ours-G Ours NRT CAML Ours-G Ours NRT CAML Ours-G Ours

O1
HR 0.176 0.202 0.272 0.448 0.194 0.272 0.274 0.386 0.204 0.234 0.258 0.432

NDCG 0.285 0.311 0.312 0.534 0.309 0.314 0.354 0.474 0.310 0.335 0.343 0.510
MRR 0.244 0.279 0.303 0.500 0.266 0.285 0.427 0.439 0.272 0.298 0.313 0.479

O2 BLEU 1.04 1.12 1.49 2.10 1.49 1.47 1.53 2.31 1.26 1.15 1.52 2.17
ROUGE-L 13.16 14.74 15.73 19.88 14.43 14.56 15.78 18.92 11.36 12.00 13.37 19.34

O3 CSR 0.08 0.12 0.38 0.94 0.20 0.19 0.45 0.97 0.14 0.13 0.39 0.97

Table 2: Comparison of recommendation accuracy (O1), explainability (O2), and feedback satisfaction ratio (O3) after 5 conversation turns.
Ours-G is a variant of our method that considers only the global view. Ours-G and CAML use the same loss function for feedback integration.

Figure 4: Recommendation accuracy and explainability on Electron-
ics at different conversation turns.

Figure 5: Human evaluation of explanation fluency and usefulness.

with CAML, since Ours-G outperforms CAML even when
they use the same feedback integration method. This may be
caused by our design of context-aware concept embeddings.
Third, Ours outperforms Ours-G, which illustrates the impor-
tance of combining the global view with the local view.
Performance gain during conversation. Fig. 4 shows the
recommendation accuracy and explainability of four methods
at each conversation turn. As the number of conversation
turns increases, the number of feedbacks increases, and the
performance of all methods improves. Among all methods,
ours increases the fastest, followed by Ours-G, CAML,
and NRT. The explanation quality is highly related to the
accuracy of selected concept and may become saturated once
we find the ground-truth concept.
Human evaluation. Fig. 5 shows the human evaluation re-
sults on explanation quality, which illustrates that our expla-
nations are considered more fluent and useful than the base-
lines. We hire three experienced human assessors to label the
explanations generated after 5 turns of conversation. 100 test
cases are sampled from the Electronics dataset, and each as-
sessor labels whether an explanation is fluent and whether it is
useful. Explanations of NRT, CAML, and Ours are provided
to the assessors in random order. The Fleiss Kappa score is
0.423 for fluency and 0.303 for usefulness, which shows a
moderate agreement and a fair agreement among assessors.

Method View User Simulation
Metric Ours-G Ours-L Ours-P Ours-N Ours

HR 0.272 0.230 0.406 0.272 0.448
NDCG 0.312 0.316 0.501 0.321 0.534
MRR 0.303 0.287 0.464 0.307 0.500
BLEU 1.49 1.60 1.89 1.13 2.10

ROUGE-L 15.73 19.51 19.69 14.37 19.88
CSR 0.38 1.00 0.93 0.99 0.94

Table 3: Ablation study on Electronics with 5 conversation turns.
Ours-G (Ours-L) uses only the global (local) view. In Ours-P (Ours-
N), simulated users provide only c+1 , ...c

+
ng

(c−1 , ...c
−
nb

).

4.3 Ablation Analysis
Effectiveness of multi-view learning. Table 3 shows that
our final model (Ours) outperforms the model with only the
global (Ours-G) or local (Our-L) view in terms of recommen-
dation accuracy and explainability. This demonstrates the ef-
fectiveness of multi-view learning. The reason is that Ours-G
has not fully integrated user feedbacks while Ours-L ignores
users’ personal interests. The CSR of Ours-L is 1.0 since it
considers only user feedbacks.

Effect of different user simulations settings. Table 3
shows the result of our model when only c+1 , ...c

+
ng

(Ours-
P) or c−1 , ...c

−
nb

(Ours-N) are provided as feedbacks. Ours
outperforms Ours-P and Ours-N, which indicates that our
method can leverage both types of user feedbacks to improve
performance. By comparing this result with the result at con-
versation turn 0 (Fig. 5), we can find that Ours-N success-
fully improves HR and explainability by using only 5 nega-
tive feedbacks (no ground-truth concepts provided).

5 Conclusion
We propose a framework for explainable conversational rec-
ommendation, which enables tight collaboration between the
recommendation task, the explanation generation task, and
the incremental feedback integration module. A multi-view
method is also proposed to effectively incorporate user feed-
backs. Experiments show that our approach achieves stable
and significant improvement of both recommendation and ex-
plainability, and can effectively satisfy user requirements.
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