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Posed and Spontaneous Expression Distinction Using Latent

Regression Bayesian Networks
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QIANG JI, Rensselaer Polytechnic Institute

Facial spatial patterns can help distinguish between posed and spontaneous expressions, but this informa-

tion has not been thoroughly leveraged by current studies. We present several latent regression Bayesian

networks (LRBNs) to capture the patterns existing in facial landmark points and to use those points to differ-

entiate posed from spontaneous expressions. The visible nodes of the LRBN represent facial landmark points.

Through learning, the LRBN captures the probabilistic dependencies among landmark points as well as la-

tent variables given observations, successfully modeling the spatial patterns inherent in expressions. Current

methods tend to ignore gender and expression categories, although these factors can influence spatial pat-

terns. Therefore, we propose to incorporate this as a kind of privileged information. We construct several

LRBNs to capture spatial patterns from spontaneous and posed facial expressions given expression-related

factors. Facial landmark points are used during testing to classify samples as either posed or spontaneous,

depending on which LRBN has the largest likelihood. We conduct experiments to showcase the superiority

of the proposed approach in both modeling spatial patterns and classifying expressions as either posed or

spontaneous.

CCS Concepts: • Computing methodologies → Biometrics;

Additional Key Words and Phrases: Latent regression Bayesian network, posed and spontaneous expression

distinction, spatial pattern, privileged information

ACM Reference format:

Shangfei Wang, Longfei Hao, and Qiang Ji. 2020. Posed and Spontaneous Expression Distinction Using Latent

Regression Bayesian Networks. ACM Trans. Multimedia Comput. Commun. Appl. 16, 3, Article 80 (July 2020),

18 pages.

https://doi.org/10.1145/3391290

1 INTRODUCTION

Recent years have seen increasing research on expression recognition [2, 30, 43], where posed
and spontaneous expression distinction is a challenging work. Spontaneous expressions disclose
a person’s inner feelings; posed expressions can be used to dissemble and do not always rep-
resent a person’s true emotions. Automatically distinguishing between spontaneous and posed
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Fig. 1. Posed and spontaneous expression samples from the DISFA+ database. (a) Posed happiness. (b) Spon-

taneous happiness.

expressions can benefit many real-life scenarios in human–computer and human–human inter-
action. For example, social assistant robots can understand users more deeply and provide users
timely assistance if they are able to accurately assess their feelings. Judges can feel more confi-
dent about cases if they know whether the criminal suspects are lying by distinguishing a natural
expression from a manufactured one.

Due to the significant subject-dependent variations in expressions and the subtlety of the differ-
ences between posed and spontaneous expressions, classifying facial expressions is a challenging
task. Current works use discriminative features or powerful classifiers. For feature extraction, ei-
ther handcrafted features or learned representation through deep networks has been employed.
Static and dynamic learning methods have both been used to differentiate between posed and
spontaneous facial expressions.

Behavioral research indicates that the spatial patterns of a spontaneous expression are different
from those of a posed expression. As shown in Figure 1(a) and Figure 1(b), in a spontaneous smile,
both the orbicularis oculi (AU7) and zygomatic major (AU12) muscles contract. Only the zygomatic
major contracts if the happiness expression is posed [9]. Additionally, the zygomatic major is more
likely to contract symmetrically for spontaneous smiles than it is for posed ones [10].

Such inherent spatial patterns can facilitate the distinction between posed and spontaneous
expressions, yet they have not been thoroughly exploited in the current research. We use a gen-
erative model, the latent regression Bayesian network (LRBN) [12, 36], to capture the embedded
spatial patterns. This is a directed graphical model made up of a latent layer and a visible layer.
We use the visible nodes of the LRBN to represent facial landmark points. Through learning, the
parameters of the LRBN depict the probabilistic dependencies among both the latent and visible
variables, faithfully representing inherent facial spatial patterns.

Current research typically ignores expression-related factors like gender or expression category,
although several studies find that facial behavior patterns differ by gender [11], and different facial
muscle movements formulate varying facial expressions [9, 10, 23]. Our method leverages these
expression-related factors as privileged information while spatial patterns are modeled. Specifi-
cally, several LRBNs are created to model the embedded spatial patterns using posed and spon-
taneous expression data with different genders and expression categories. The displacement of
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feature points are represented by the visible variables of the LRBN. In this way, the spatial pat-
terns of different types of data are obtained by the probabilistic dependencies among visible nodes
and among hidden nodes. During testing, images are assigned the expression label as the model
with the maximum likelihood.

An earlier version of this article appears as Reference [12]. This article expands on that work by
introducing these two expression-related factors during spatial pattern modeling. We then con-
duct experiments demonstrating that the incorporated gender and expression categories can help
construct gender-specific and expression-specific spatial patterns for better distinction between
posed and spontaneous expressions.

2 RELATED WORK

Current research on this task primarily focuses on feature extraction and posed versus sponta-
neous discriminators. Typically, spatial features and temporal features are specially designed to
differentiate between posed and spontaneous facial expressions. Distance and angle are spatial
features [7]; acceleration, amplitude, duration, speed, symmetry, and trajectory are temporal fea-
tures [5, 33, 34]. Some studies also adopt features that are commonly used for expression recog-
nition, including completed local binary patterns from three orthogonal planes (CLBP-TOP) [27],
Gabor wavelet features [20], scale-invariant feature transform (SIFT) appearance features, and geo-
metric facial animation parameter features [44]. Recently, learned features using deep networks
have also been proposed [13]. After features have been extracted, either a static or dynamic ma-
chine learning method is employed to accomplish expression distinction. Both learning methods
capture the relationships between expressions and extracted features, but dynamic classifiers also
incorporate temporal dynamics. Static classifiers include linear discriminant analysis [5], support
vector machines [20], Adaboost [20], gentle Boost, and relevance vector machines [34]. Dynamic
classifiers include hidden Markov models [7] and dynamic Bayesian networks [33]. This research
improves the ability to distinguish posed from spontaneous expressions. However, most of these
feature-driven methods explore discriminative features and powerful classifiers without explicitly
representing and leveraging the inherent spatial patterns.

Behavioral research shows that a posed expression is temporally and spatially different from
a spontaneous one. The movement of facial muscles, i.e., the occurrence of facial action units
(AUs), can be seen as certain spatial patterns. The most frequently observed AUs for spontaneous
disgust, for example, are AU6 (cheek raiser), AU7 (lid tightener), and AU10 (upper lip raiser). A
person deliberately depicting disgust typically activates AU4 (brow lowerer), AU7 (lid tightener),
and AU17 (chin raiser). These three AUs are also frequently observed in posed sadness, but not in
spontaneous sadness [23]. Such observations prove that embedded spatial patterns can aid in the
distinction between spontaneous and posed expressions.

Wang et al. [38] recently proposed a model-based method that captured facial spatial patterns
using multiple Bayesian networks (BNs). This method is limited by the first-order Markov as-
sumption of Bayesian networks; only local probabilistic dependencies are captured. Wu et al. [40]
proposed restricted Boltzmann machines (RBMs) to explicitly capture complex probabilistic de-
pendencies among feature points, since RBMs use a layer of latent units to represent higher-order
probabilistic dependencies [15].

While RBMs are able to model global probabilistic dependencies among visible units, the hidden
units remain independent of one another other given visible units. The introduction of probabilistic
dependencies among those units will improve a model’s ability to explain the patterns embedded
in visible units. Compared to undirected latent variable models like RBMs, the LRBN is a directed
model. It is made up of a layer of visible nodes, a layer of latent nodes, and the directed connections
from the latent nodes to the visible nodes. The displacement of feature points are represented by
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Fig. 2. Spatial patterns captured by LRBN for posed and spontaneous expression distinction.

visible variables. Spatial patterns are obtained by the probabilistic dependencies among both visible
and hidden nodes. This type of model is better able to represent visible units by capturing not only
the probabilistic dependencies among visible nodes, but also the probabilistic dependencies among
hidden nodes given visible variables [12]. Therefore, we employ the LRBN to capture high-order
and global probabilistic dependencies among the facial landmarks.

Few methods for posed and spontaneous expression distinction take advantage of expression-
related factors like gender and expression categories, despite research demonstrating that males
and females manifest facial expressions differently, and that different expression categories usually
evoke different spatial patterns [19, 42]. Their work required those factors for training as well as
testing. A sequential approach such as this is prone to propagating any errors of an expression-
related factor on to the expression recognition task. Wang et al. [38] classified posed and sponta-
neous expressions with the help of gender and expression categories used as privileged informa-
tion [35]. As privileged information, these factors are required for training but not testing. Like
Wang et al., we choose to consider these factors privileged information. During training, multiple
LRBNs are created to model the spatial patterns embodied in expressions given the expression-
related factors. In the testing phase, the samples are assigned a label based on the LRBN with the
largest likelihood.

3 PROPOSED METHOD

3.1 Brief Introduction of LRBN

The LRBN [24] is made up of a visible layer and a latent layer, as shown in Figure 2. A directed
edge connects each latent variable to each visible variable. We denote visible variables as x =
(x1, . . . ,xnd

) and latent variables as h = (h1, . . . ,hnh
), where nd and nh are dimensions of visible

variable and latent variable respectively.
The joint probability of all variables in an LRBN, P (x ,h), is shown in Equation (1),

P (x ,h) =

nh∏

j=1

P (hj )

nd∏

i=1

P (xi |h). (1)

Equation (1) shows that the joint probability of a particular LRBN is equal to the product of the
prior probabilities of a latent variable hj , i.e., P (hj ) and the conditional probabilities of a visible
variable when considering all the latent variables, i.e., P (xi |h).
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Equation (2) defines prior probability for a latent variable hj , P (hj ),

P (hj = 1) = sigm(dj ), (2)

where sigm(dj ) = 1/(1 + exp(−dj )) is the sigmoid function and dj is the parameter. Essentially, it
is a Bernoulli distribution.

Given latent variables, the conditional probability of a visible variable P (xi |h) is defined as linear
Gaussian, as shown in Equation (3)

P (xi |h) ∼ N
(
wT

i h + bi ,σi

)
, (3)

in which the mean of the linear Gaussian distribution is a linear combination of latent variables h
values. The connecting weight between nodes hj and xi are represented by wi j ; bi stands in as a
constant, and the standard deviation is σi .

Incorporating Equation (2) and Equation (3) into Equation (1), we obtain Equation (4),

PΘ(x ,h) =
∏

j

exp(djhj )

1 + exp(dj )

∏

i

N
(
xi : wT

i h + bi , σi

)

=
exp(−EΘ(x ,h))

(2π )nd /2
∏

i σi

∏
j

(
1 + exp(dj )

) ,
(4)

where Θ = {W ,σ ,b,d }, and

EΘ(x ,h) =
∑

i

(xi − bi )2

2σ 2
i

−
∑

i

xi − bi

σ 2
i

wT
i h

+
∑

i

1

2σ 2
i

(
wT

i h
)2
− dTh.

(5)

Compared to the Gaussian-Bernoulli restricted Boltzmann machine (GRBM) [16], which uses
undirected links, the LRBN directly links visible and hidden nodes. This results in the term∑

i
1

2σ 2
i

(wih)2 in Equation (5), which is similar to the energy function used by the GRBM. The

relationships among latent variables are captured by this term. Patterns in the input data may be
partially explained by probabilistic dependencies among the latent layer, taking the visible layer
into account. As an additional advantage over the GRBM, an LRBN does not have a problem with
intractable partition functions. Instead, the prior and conditional probabilities are multiplied to
obtain the joint distribution.

3.2 Capturing Spatial Patterns through Model Learning

We construct several LRBN models using posed and spontaneous data given expression-related
factors. Model inputs are the displacements of facial feature points. The LRBN can capture prob-
abilistic dependencies among visible variables as well as the probabilistic dependencies among
hidden variables through model learning. It is able to faithfully represent feature point displace-
ments and successfully capture embedded spatial patterns.

In parameter learning, the goal is to most accurately estimate the parameters Θ when given

a set of data samples D = {x (m) }Mm=1. M is the number of samples. This is done via marginal log
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likelihood maximization as shown in Equation (6), whereM represents the number of data samples,

L (D; Θ) =
∑

m

log PΘ(x (m) )

=
∑

m

log
��
�

∑

h

PΘ(x (m),h)��
�
.

(6)

Gradient ascent is used to maximize the above objective function. The exact gradient, taking
parameter θ into account, is shown in Equation (7):

�θL (D; Θ) =
∑

m

∑

h

PΘ(h |x (m) )
∂ − EΘ(x (m),h)

∂θ
. (7)

To obtain the gradient, we calculate the posterior probability PΘ(h |x ) and the summation. The
former is intractable for even one configuration h, and the latter includes exponential terms for
summation.

Variational inference algorithms are typically employed to minimize KL-divergence and ap-
proximate the true posterior distribution PΘ(h |x ) with a factorized distribution QΦ(h |x ), shown
in Equation (8):

KL(QΦ(h |x )‖PΘ(h |x )). (8)

Some approximations, such as the mean field algorithm [32], the wake-sleep algorithm [17],
and inference networks [14, 18, 22, 29] result in a gap between the true and approximate poste-
riors, as the approximate distribution is unable to capture probabilistic dependencies. We use the
true posterior probability through Gibbs sampling, which draws samples for one latent variable
conditioned on all the other variables and therefore preserves probabilistic dependencies.

To deal with the exponential terms in the summation, we adopt the Markov chain Monte Carlo
(MCMC) method, which is frequently utilized to estimate summation using samples as shown in
Equation (9):

�θL (D; Θ) ≈ 1

n

∑

m

∑

n

∂ − EΘ(x (m),h (m,n) )

∂θ
, (9)

where h (m,1), . . . ,h (m,n) represent n samples from P (h |x (m) ). We use a stochastic approximation
procedure (SAP) framework to avoid multiple Gibbs chains [31]. The SAP estimates the gradient
using a single sample of the latent variables.

If the learning rate γt satisfies conditions in Equation (10):

∞∑

t=1

γt = ∞,

∞∑

t=1

γ 2
t < ∞.

(10)

then the SAP will converge at the local optimum [41].
The gradient can then be predicted as Equation (11):

�θL (D; Θ) ≈
∑

m

∂ − EΘ(x (m),h (m) )

∂θ
. (11)
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The derivative of wi j is shown in Equation (12):

∂ − EΘ(x (m),h (m) )

∂wi j

=
h (m)

j (x (m)
i −wT

i h
(m) )

σ 2
i

. (12)

The gradient of other parameters can be derived similarly.
We use Gibbs sampling to draw a sample from P (h |x ), so probabilistic dependencies can be

preserved. We sample a single latent node while the others remain fixed,

ht
j ∼ P

(
hj |x ,ht−1

−j

)
, (13)

where h−j depicts the set of all latent variables with the exception of hj . Algorithm 1 presents the
SAP for LRBN learning.

ALGORITHM 1: Parameter Learning for an LRBN [12].

Input database D = {x (m) }M
m=1;

Output parameters Θ = {W ,σ ,b,d }.
1: Randomly initialize the parameters Θ;

2: Generate Gibbs samples at time step 0;

3: while parameters are not converged, do

4: Randomly select a batch of data samples x ;

5: Perform Gibbs sampling to get a single sample of the latent variables for each input data,

h(t ) ∼ P (h |x ,h(t−1) ), where h(t ) = (h
(t )
1 , . . . ,h

(t )
nh

), P (h |x ,h(t−1) ) = (P (h1 |x ,ht−1
−1 ), . . . ,

P (hnh
|x ,ht−1

−nh
));

6: Compute the gradient using Equation (12);

7: Update the parameters,

θt = θt−1 + γt�θL (x ).
8: end while

3.3 Using LRBN Inference for Posed and Spontaneous Expression Recognition

In this work, the LRBN is generative, modeling different types of facial expressions. Training results

in several models M = {M (i, j ), i ∈ {1, 2}, j ∈ {1, . . . ,n}}, where i ∈ {1, 2} represents spontaneous
and posed expressions, and n is the number of expression-related factors. For instance, if gender
is privileged information, the n is 2. Taking into account the features of test image x , posed and
spontaneous expression distinction is conducted according to its likelihood for models P (x |M ):

i, j = arg max
i, j

P (x |M ), (14)

where i indicates the label of posed or spontaneous expression and j is the index of expression-
related factors. Compared with our previous work, we have extended the proposed models through
incorporating expression-related factors, i.e., gender and expression categories, as privileged in-
formation during spatial pattern modeling.

The inference task refers to computing the marginal likelihood P (x ) as shown in Equation (15):

P (x ) =
∑

h

P (x ,h). (15)

However, it would be intractable to directly compute P (x ) because of the exponential terms in
the summation. We use a collection of samples drawn from the model given the input variables
to implement the conservative sampling-based log-likelihood (CSL) method [3] for estimating the
log-probability as shown in Equation (16):

log P̂ (x ) = log meanh∈SP (x |h), (16)
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where S indicates a set of latent variable samples h collected from P (h |x ). It has been observed
[3] that as the length of the Markov chain approaches infinity, the CSL estimator approaches
the ground-truth log-likelihood. The expectation of the estimator is lower bound of the true
log-likelihood.

4 EXPERIMENTS

4.1 Experimental Conditions

Several databases provide posed expressions as well as spontaneous expressions, including the
BBC smile database [25], the UvA-Nemo smile database [6], the MAHNOB-Laughter database [26],
the spontaneous vs. posed facial expression (SPOS) database [28], the USTC-NVIE (NVIE) data-
base [37], and the DISFA+ database [21]. The first three databases consist of the smile expression
only, while the last three contain multiple expression categories. As we want to analyze the per-
formance of our models on general cases, we conduct our experiments on the SPOS, NVIE, and
DISFA+ databases.

The SPOS database captures posed and spontaneous expressions for six emotions (i.e., happi-
ness, sadness, anger, surprise, fear, and disgust) from seven subjects. There are 147 spontaneous
and 84 posed expressions. Every expression sequence begins with an onset frame and concludes
at the apex frame. We used all of the onset frames and apex frames for every expression sequence
for our experiments.

The NVIE database contains onset and apex frames of those six expressions for both posed
and spontaneous expression subsets. Following the same sample selection criteria as that in
Wang et al. [39], we use 514 posed expressions and 514 spontaneous expressions. The samples
are taken from 55 male subjects and 25 female subjects.

The DISFA+ database is extended from the DISFA database [21], adding posed expression videos
of nine subjects. The DISFA database consists of spontaneous expression videos of happiness,
surprise, disgust, sadness, and fear, collected from 27 subjects as they watched YouTube videos.
The expression videos of the nine subjects who have both spontaneous expressions and posed ex-
pressions were used in our experiments. Each video starts with a neutral expression, and the apex
frames are extracted by AU intensity, yielding 572 posed and 252 spontaneous expression samples.

Following the experimental conditions in Wang et al. [39] for the NVIE and the SPOS databases,
we used displacement of 27 facial feature points (see Figure 2) between the apex and onset frames as
the features. For the DISFA+ database, the features were defined as the displacement between apex
and onset frames of 49 feature points (as shown in Figure 2) provided by the database constructors.
Z-score normalization was used to normalize the features [1] so they satisfy standard Gaussian
distribution and are unit free.

Subject-independent experiments were conducted to eliminate the influence of subject-
dependent factors on model performance. We adopted leave-one-subject-out cross-validation for
the SPOS and DISFA+ databases, as there were fewer subjects. For the NVIE database, we divided
subjects into ten groups containing eight subjects each and applied leave-one-group-out cross-
validation.

Three experiments were conducted: posed and spontaneous expression distinction without con-
sidering expression-related factors (i.e., the PS model), posed and spontaneous expression distinc-
tion using gender information as privileged information (i.e., the PS_gender model), and posed and
spontaneous expression distinction using expression categories as privileged information (i.e., the
PS_expression model). For the PS model, we built two LRBNs, one from posed samples and one
from spontaneous samples. For the PS_gender model, we constructed four LRBNs: one from posed
female samples, one from spontaneous female samples, one from posed male samples, and one
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Table 1. Experimental Results on the SPOS, NVIE, and DISFA+ Databases

The SPOS database The NVIE database The DISFA+ database
P S P S P S

PS P 49 35 501 13 572 0
S 21 129 0 514 78 174
Accuracy(%) 76.07 98.74 90.53
F1-score 0.6364 0.9872 0.9362

PS_gender P 507 7 572 0
S / 0 514 48 204
Accuracy(%) 99.32 94.17
F1-score 0.9931 0.9597

PS_expression P 497 17 546 26
S / 0 514 4 248
Accuracy(%) 98.35 96.36
F1-score 0.9832 0.9733

Note: “P” represents posed expression and “S” represents spontaneous expression.

from spontaneous male samples. For the PS_expression model, we trained N × 2 LRBNs from sam-
ples with expression information, where N is the number of expression categories. Since the SPOS
database does not have enough samples to train posed models as well as spontaneous models for
each gender and expression category, we conducted the PS_gender and PS_expression models on
the NVIE and the DISFA+ databases only. During the training phase, the number of latent nodes
is limited to avoid complex networks and over-fitting. The number of hidden nodes on the SPOS
and NVIE databases is the same as Reference [12], which are 100 and 200. The number of hidden
nodes on the DISFA+ database is 200. During the testing phase, we approximated the value of
the log-likelihood by collecting 100,000 samples from a Markov chain for each test sample. We
evaluated results using F1 score and accuracy.

4.2 Experimental Results and Analyses

4.2.1 Results and Analyses of Posed and Spontaneous Expression Distinction. Table 1 shows the
results of our experiments on the task of posed versus spontaneous expression distinction. We can
make the following observations:

First, for the PS model, the proposed LRBN achieves high accuracy and F1 scores for the recog-
nition of posed and spontaneous expressions on all three databases, demonstrating its capability
in capturing the global spatial patterns inherent in the two kinds of expressions. The performances
on the NVIE database and the DISFA+ database are significantly better that the results of exper-
iments on the SPOS database. This is reasonable, as these databases have nearly five times more
samples. It further proves the importance of data size for pattern recognition. The models also
perform better on the NVIE database than the DISFA+ database. While similar in size, the data
distribution is much more balanced for the NVIE database, leading to better performance.

Second, the PS_gender model achieves higher accuracy and F1 scores than the PS model on both
the NVIE and the DISFA+ databases. Specifically, the PS_gender model improves accuracy by 0.58%
and 3.64% on the NVIE and the DISFA+ databases, respectively. For F1 score, the PS_gender model
achieves 0.59% and 2.35% improvement over the PS model on the NVIE and the DISFA+ databases,
respectively. This demonstrates that gender information available during training is beneficial for
modeling gender-specific facial spatial patterns in both posed expressions and spontaneous ex-
pressions, which improves distinction performance during testing.
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Table 2. Experimental Results on the NVIE Database

Male Female Happiness Disgust Fear Surprise Anger Sadness

PS
Accuracy(%) 98.39 99.65 100.00 98.92 100.00 99.36 96.70 97.50

F1-score 0.9837 0.9964 1.0000 0.9891 1.0000 0.9935 0.9659 0.9744

PS_gender
Accuracy(%) 99.20 99.65 100.00 100.00 100.00 99.36 96.70 100.00

F1-score 0.9919 0.9964 1.0000 1.0000 1.0000 0.9935 0.9659 1.0000

PS_expression
Accuracy(%) 97.99 99.29 100.00 100.00 99.26 96.15 96.15 98.13

F1-score 0.9795 0.9929 1.0000 1.0000 0.9926 0.9600 0.9600 0.9809

Table 3. Experimental Results on the DISFA+ Database

Male Female Happiness Disgust Fear Surprise Sadness

PS
Accuracy(%) 88.92 91.85 91.15 91.48 86.67 90.16 90.68

F1-score 0.9264 0.9444 0.9422 0.9421 0.9130 0.9314 0.9371

PS_gender
Accuracy(%) 91.89 96.04 94.25 94.89 95.00 93.03 94.92

F1-score 0.9451 0.9721 0.9617 0.9644 0.9655 0.9504 0.9647

PS_expression
Accuracy(%) 97.03 95.81 95.58 96.02 98.33 95.90 98.31

F1-score 0.9786 0.9688 0.9686 0.9707 0.9880 0.9688 0.9877

Third, compared to the PS model, the PS_expression model achieves better performance on the
DISFA+ database. Accuracy on the DISFA+ database improves by 5.83%, and F1 score improves
by 3.71%. This demonstrates that expression information available during the training phase may
allow the LRBN to better capture expression-specific patterns to some extent. Results on the NVIE
database are comparable. Compared with the performance of the PS model on other databases, the
PS model already performs well enough on the NVIE database, so that the space of improvement
is little. That is may be the reason that the PS_expression model on the NVIE database performs a
little bit worse than the baseline PS model.

To analyze the statistical difference, we conducted t-test for LBRN versus LBRN + gender and
LBRN+expression on the DISFA+ and NVIE database. On the DISFA+ database, the p-value is
5.4259e-20 and 3.2463e-21 for gender and expression respectively. On the NVIE database, the p-
value is 0.0098 for gender. Thisp-value is less than 0.0500. The results indicate that the performance
improvements by introducing gender and expression are statistically significant.

Tables 2 and 3 show the result respectively for different genders and expression categories when
comparing the PS_gender/PS_expression model against PS model. From Tables 2 and 3, we can see
the following. First, PS_gender model has achieved better results than PS model on different gen-
ders. This demonstrates that gender information helps improve distinction performance. Second,
compared with the PS model, the PS_expression model greatly improves the results on the DISFA+
database. This indicates that expression information may help to capture expression-specifc pat-
terns to improve distinction performance.

To avoid complex networks and over-fitting, we also do ablation studies to discuss the number
of latent nodes. Take DISFA+ database as example, we perform ablation experiment of PS model
on the DISFA+ database, the results are shown in Figure 3. From Figure 3, we find that when the
number of hidden nodes is 200, the PS model performs best on the DISFA+ database. Therefore,
we set the number of hidden nodes as 200 for the experiments on the DISFA+ database.

4.2.2 Spatial Pattern Analysis. To investigate the learned facial spatial patterns inherent in
posed expressions and spontaneous expressions, the parameter W captured by LRBN models is
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Fig. 3. The results of PS model on the DISFA+ database.

visualized. For each visible node vi , we get Wi by average wi j for all latent nodes, where i is the
index of the visible node vi and j is the index of the latent node hj . Logically, as parameterWi in-
creases, the influence of vi on captured spatial patterns also increases. Each facial landmark point
corresponds to two visible nodes representing the x- and y-axes. We summarize the Wi for the
x- and y-axes for each facial landmark point. Finally, the parameter W captured by the LRBN is
visualized in a three-dimensional coordinate to illuminate the captured spatial patterns. Figures 4,
5, 6, and 7 show the captured spatial patterns embedded in posed expressions and spontaneous
expressions for the PS model, the PS_gender model, and the PS_expression model.

From Figure 4, we find the following. First, every database shows that captured spatial
patterns differ when expressions are posed rather than spontaneous. This finding is corroborated
by current behavioral research. Second, on all three databases, the distribution of W is more
symmetrical when an expression is posed. This may indicate that spontaneous expressions have
more complex spatial patterns than posed expressions. Third, the W from the mouth region for
posed expressions is larger than those for spontaneous expressions, while theW from the eye and
eyebrow regions for posed expressions are smaller than those for spontaneous expressions on all
three databases. This may indicate that the mouth region is more important to the display of posed
expressions, while the eye and eyebrow regions are more essential for conveying spontaneous
expressions. This is reasonable, since it is easier for people to control mouth movements than
it is to control eye and eyebrow movements. These successfully captured spatial patterns result
in good performance by the PS model described in Section 4.2.1 on posed and spontaneous
expression distinction. We also find that on the NVIE and DISFA+ databases, the differences
between the types of expressions are much greater than they are on the SPOS database. This may
lead to the lower accuracy and F1 scores of the PS model on the SPOS database, as compared to
the NVIE and DISFA+ databases. The learned Ws of the three databases are different for both
types of models, proving the existence of database bias.

Figure 5 shows the differences in male and female spatial patterns. The difference inWs between
a male posed expression and a male spontaneous expression is much smaller than those for the
females. This indicates that males may be better at disguising their expressions than females, since
their posed and spontaneous expressions are more similar. Males usually spend more time in social
situations and have more opportunity to display and practice their posed expressions. This obvious
difference in the captured spatial patterns results in the good performance of the PS_gender model
described in Section 4.2.1.

From Figures 6 and 7, we find unique patterns for the distributions of parameters W learned
from posed and spontaneous expressions. It proves that different expressions tend to evoke
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Fig. 4. The learned spatial patterns for posed and spontaneous expressions from three databases.

different spatial patterns. Specifically, for disgust, the Ws of points related to AU17 (i.e., points
25, 26, and 27 on the NVIE database and points 39, 40, 41, 42, 43, 47, 48, and 49 on the DISFA+
database) are slightly larger for posed models than spontaneous models. TheWs of points related
to AU10 and AU12 (including points 20–24 on the NVIE database and points 32–38 and 44–46 on
the DISFA+ database) are smaller for posed models than spontaneous models. This suggests that
the upper lip raiser (AU10) as well as the lip corner puller (AU12) occur more frequently when
an expression of disgust is spontaneous, and the chin raiser (AU17) is more frequent when the
expression is posed. This observation is in accord with previous studies [23]. On the NVIE and
DISFA+ databases, theWs of points related to the zygomatic major and the orbicularis oculi parts
are larger than other parts for spontaneous happiness models. However, for posed models, only the
Ws of points related to the zygomatic major part are larger than other parts on the two databases.
This observation is in accordance with previous studies [23]. For the surprise expression, theWs
of points related to AU1 (inner brow raiser), AU2 (outer brow raiser), AU5 (upper lid raiser), AU25
(lips part), and AU26 (jaw drop) are slightly larger for posed models than for spontaneous models
on the NVIE and DISFA+ databases. These five AUs more frequently appear in posed expressions
of surprise than in spontaneous surprise expressions. This observation is also in accord with pre-
vious studies [23]. It is difficult to distinguish between posed and spontaneous fear; the Ws for
posed and spontaneous models are very similar on the NVIE and DISFA+ databases. For sadness,
theWs for the spontaneous model are slightly lower than for those of the posed model. This may
suggest that compared to a posed expression of sadness, spontaneous sadness is individual or less
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Fig. 5. The learned gender-specific spatial patterns for posed and spontaneous expressions from three

databases.

likely to be observed. This is in accord with previous studies in References [23], [8], and [4]. For
anger, the Ws for the spontaneous model are greater than for the posed model in most cases on
the NVIE database. This may demonstrate that a spontaneous angry expression is stronger than a
posed one.

4.3 Comparison to Related Work

To further validate our proposed method, we take a look at four other works that used either the
SPOS database or the NVIE database to conduct experiments: Zhang et al.’s [44], Pfister et al.’s [28],
Wang et al.’s [38], and Wang et al.’s [39]. The DISFA+ database was recently released, and thus no
related works conduct posed and spontaneous expression distinction on it.

The first two methods are feature driven. Zhang et al. [44] utilize SIFT appearance-based
features as well as FAP features to differentiate between posed expressions and spontaneous
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Fig. 6. The learned expression category-specific spatial patterns for posed and spontaneous expressions from

the NVIE database.
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Fig. 7. The learnt expression category specific spatial patterns for posed and spontaneous expressions from

the DISFA+ database.

expressions. They adopt SVM as a classifier. Their experiments were conducted on 3,572 posed
and 1,472 spontaneous images from the NVIE database. Since selection criteria were not provided,
we could not obtain identical samples. We show the results from their experiments for reference
only. Pfister et al. [28] propose CLBP-TOP as well as a cascaded framework for differentiation
between posed and spontaneous expressions. They conducted experiments using the SPOS
database. The latter two studies use model-based techniques. They proposed multiple Bayesian
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Table 4. Comparison with Related Works on the SPOS Database and the NVIE Database

PS PS_gender PS_expression

accuracy (%) F1 score accuracy (%) F1 score accuracy (%) F1 score
Comparison with related work on the SPOS database

Pfister et al. [28] 72.00 / / / / /
Wang et al. [38] 74.79 0.67 / / / /
Wang et al. [39] 76.07 0.64 / / / /

Ours 76.07 0.64 / / / /
Comparison with related works on the NVIE database
L. Zhang et al. [44] 79.43 / / / / /

Wang et al. [38] 91.73 0.92 92.61 0.83 91.83 0.92
Wang et al. [39] 91.63 0.91 92.22 0.92 92.90 0.93

Ours 98.74 0.99 99.32 0.99 98.35 0.98

networks [38] and restricted Boltzmann machines [39] to capture inherent facial spatial patterns
from feature points.

Table 4 shows the comparative results. It yields these observations:
First, for the PS model, the three model-based approaches achieve superior performance com-

pared to the feature-driven techniques on all three databases. Although the latter works extract
both appearance and geometric features, the model-based methods achieve better performance
with geometric features only. From this, we can determine that the approaches based on models
are successful at capturing and leveraging the spatial patterns inherent in posed and spontaneous
expressions.

Second, when we examine the model-based methods, our proposed LRBN model performs best,
achieving the highest F1 and accuracy scores in most cases. For the PS model on the NVIE database,
the proposed LRBN model improves accuracy by 19.31% when compared to Pfister et al. [28], and
it improves accuracy by 7.01% and F1 score by 0.07 when compared to Wang et al.’s work [38]. Our
model improves accuracy by 7.11% and improves F1 score by 0.08 when compared to Wang et al.’s
work [39]. On the SPOS database, the proposed LRBN improves accuracy by 4.07% and 1.28% com-
pared to Pfister et al. [28] and Wang et al.’s work [38], respectively. On the NVIE database, the
proposed PS_gender model improves accuracy by 6.71% and improves F1 score by 0.16 when com-
pared to Wang et al.’s work [38], and it improves accuracy by 7.1% and F1 score by 0.07 when
compared to Wang et al.’s work [39]. The proposed PS_expression model also achieves better per-
formance than other methods on the NVIE database. Specifically, it outperforms Wang et al. [38]
by 6.52% for accuracy and 0.06 for F1 score. It outperforms Wang et al. [39] by 5.45% for accuracy
and 0.05 for F1 score. Unlike a BN, which is only able to model local rather than global depen-
dencies among the variables, the proposed LRBN uses hidden units to obtain global probabilistic
dependencies. Although an RBM can also represent global probabilistic dependencies among vari-
ables, hidden units are independent given the visible units. The proposed LRBN is able to leverage
the probabilistic dependencies among latent variables given the observation. It is also able to cap-
ture global probabilistic dependencies among visible variables. These probabilistic dependencies
are essential to faithfully represent the data, leading to the improved performance of the LRBN.

5 CONCLUSION

We propose several LRBNs designed to clearly model complex joint distributions over feature
points, also called spatial patterns. These patterns are embedded in posed and spontaneous expres-
sions and can be leveraged to distinguish between the two. Furthermore, considering the different
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facial spatial patterns in gender and expression categories, we employ these categories as privi-
leged information to enhance recognition performance. Specifically, we construct several LRBNs
that are able to model embedded spatial patterns during training. During testing, the samples are
classified as either posed or spontaneous according to the LRBN that has the largest likelihood. We
also propose efficient learning and inference algorithms. The results of our experiments on three
benchmark databases show the ability of the suggested models to capture spatial patterns, and
demonstrate their superiority over existing techniques. Furthermore, the results on the NVIE and
DISFA+ databases indicate that incorporating the privileged information, i.e., gender and expres-
sion categories, during training can help construct gender-specific and expression-specific spatial
patterns, and are thus beneficial for posed and spontaneous expression distinction.

REFERENCES

[1] Hervé Abdi and L. J. Williams. 2010. Normalizing data. In Encyclopedia of Research Design. 935–938.

[2] Elisabeth Andre. 2013. Exploiting unconscious user signals in multimodal human-computer interaction. ACM Trans.

Multimedia Comput. Commun. Appl. 9, 1s (2013), 48.

[3] Yoshua Bengio, Li Yao, and Kyunghyun Cho. 2014. Bounding the test log-likelihood of generative models. In Proceed-

ings of the International Conference on Learning Representations (Conference Track).

[4] George A. Bonanno and Dacher Keltner. 1997. Facial expressions of emotion and the course of conjugal bereavement.

J. Abnorm. Psychol. 106, 1 (1997), 126.

[5] J. F. Cohn and K. L. Schmidt. 2004. The timing of facial motion in posed and spontaneous smiles. Int. J. Wavelets

Multires. Inf. Process. 2, 02 (2004), 121–132.

[6] H. Dibeklioğlu, A. Salah, and T. Gevers. 2012. Are you really smiling at me? Spontaneous versus posed enjoyment

smiles. In Proceedings of the European Conference on Computer Vision (ECCV’12). Springer, 525–538.

[7] Hamdi Dibeklioglu, Roberto Valenti, Albert Ali Salah, and Theo Gevers. 2010. Eyes do not lie: Spontaneous versus

posed smiles. In Proceedings of the International Conference on Multimedia. ACM, 703–706.

[8] Paul Ekman. 2003. Darwin, deception, and facial expression. Ann. N. Y. Acad. Sci. 1000, 1 (2003), 205–221.

[9] Paul Ekman and Wallace V. Friesen. 1982. Felt, false, and miserable smiles. J. Nonverb. Behav. 6, 4 (1982), 238–252.

[10] Paul Ekman, Joseph C. Hager, and Wallace V. Friesen. 1981. The symmetry of emotional and deliberate facial actions.

Psychophysiology 18, 2 (1981), 101–106.

[11] Byron N. Fujita, Robert G. Harper, and Arthur N. Wiens. 1980. Encoding-decoding of nonverbal emotional messages:

Sex differences in spontaneous and enacted expressions. J. Nonverb. Behav. 4, 3 (1980), 131–145.

[12] Quan Gan, Siqi Nie, Shangfei Wang, and Qiang Ji. 2017. Differentiating between posed and spontaneous expressions

with latent regression Bayesian network. In Proceedings of the Annual Cconference on Artifical Intelligence (AAAI’17).

4039–4045.

[13] Zhe Gan, Ricardo Henao, David Carlson, and Lawrence Carin. 2015. Learning deep sigmoid belief networks with data

augmentation. In Proceedings of the International Conference on Artificial Intelligence and Statistics (2015).

[14] Karol Gregor, Andriy Mnih, and Daan Wierstra. 2014. Deep AutoRegressive networks. In Proceedings of the 31st

International Conference on Machine Learning (2014).

[15] Geoffrey Hinton. 2010. A practical guide to training restricted Boltzmann machines. Momentum 9, 1 (2010), 926.

[16] Geoffrey Hinton and Ruslan Salakhutdinov. 2006. Reducing the dimensionality of data with neural networks. Science

313, 5786 (2006), 504–507.

[17] Geoffrey E. Hinton, Peter Dayan, Brendan J. Frey, and Radford M. Neal. 1995. The “wake-sleep” algorithm for unsu-

pervised neural networks. Science 268, 5214 (1995), 1158–1161.

[18] Diederik P. Kingma and Max Welling. 2014. Auto-encoding variational bayes. In Proceedings of the International Con-

ference on Learning Representations (ICLR’14).

[19] C. Lithari, C. A. Frantzidis, C. Papadelis, A. B. Vivas, M. A. Klados, C. Kourtidou-Papadeli, C. Pappas, A. A. Ioannides,

and P. D. Bamidis. 2010. Are females more responsive to emotional stimuli? A neurophysiological study across arousal

and valence dimensions. Brain Topogr. 23, 1 (2010), 27–40.

[20] G. C. Littlewort, M. S. Bartlett, and K. Lee. 2009. Automatic coding of facial expressions displayed during posed and

genuine pain. Image Vis. Comput. 27, 12 (2009), 1797–1803.

[21] Mohammad Mavadati, Peyten Sanger, and Mohammad H. Mahoor. 2016. Extended DISFA dataset: Investigating posed

and spontaneous facial expressions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Workshops. 1–8.

[22] Andriy Mnih and Karol Gregor. 2014. Neural variational inference and learning in belief networks. In Proceedings of

the 31st International Conference on Machine Learning (2014).

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 16, No. 3, Article 80. Publication date: July 2020.



80:18 S. Wang et al.

[23] Shushi Namba, Shoko Makihara, Russell S. Kabir, Makoto Miyatani, and Takashi Nakao. 2017. Spontaneous facial ex-

pressions are different from posed facial expressions: Morphological properties and dynamic sequences. Curr. Psychol.

36, 3 (2017), 593–605.

[24] Siqi Nie, Yue Zhao, and Qiang Ji. 2016. Latent regression Bayesian network for data representation. In Proceedings of

the 23rd International Conference on Pattern Recognition (ICPR’16). IEEE, 3494–3499.

[25] E. Paul. [n.d.]. BBC-Dataset. Retrieved from http://www.bbc.co.uk/science/humanbody/mind/surveys/smiles/.

[26] S. Petridis, B. Martinez, and M. Pantic. 2013. The MAHNOB laughter database. Image Vis. Comput. 31, 2 (2013), 186–

202.

[27] T. Pfister, X. Li, G. Zhao, and M. Pietikainen. 2011. Differentiating spontaneous from posed facial expressions within

a generic facial expression recognition framework. In Proceedings of the IEEE International Conference on Computer

Vision Workshops (ICCV Workshops’11). IEEE, 868–875.

[28] Tomas Pfister, Xiaobai Li, Guoying Zhao, and Matti Pietikäinen. 2011. Differentiating spontaneous from posed fa-

cial expressions within a generic facial expression recognition framework. In Proceedings of the IEEE International

Conference on Computer Vision Workshops (ICCV Workshops’11). IEEE, 868–875.

[29] Danilo J Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic backpropagation and approximate inference

in deep generative models. In Proceedings of the 31st International Conference on Machine Learning (ICML’14). 1278–

1286.

[30] Fabien Ringeval, Björn Schuller, Michel Valstar, Jonathan Gratch, Roddy Cowie, and Maja Pantic. 2018. Introduction

to the special section on multimedia computing and applications of socio-affective behaviors in the wild. ACM Trans.

Multimedia Comput. Commun. Appl. 14, 1s (2018), 25.

[31] Herbert Robbins and Sutton Monro. 1951. A stochastic approximation method. Ann. Math. Stat. 22, 3 (1951), 400–407.

[32] Lawrence K. Saul, Tommi Jaakkola, and Michael I. Jordan. 1996. Mean field theory for sigmoid belief networks.

J. Artif. Intell. Res. 4, 61 (1996), 76.

[33] M. Seckington. 2011. Using dynamic Bayesian networks for posed versus spontaneous facial expression recognition.

Master’s Thesis, Department of Computer Science, Delft University of Technology (2011).

[34] M. F. Valstar, M. Pantic, Z. Ambadar, and J. F. Cohn. 2006. Spontaneous vs. posed facial behavior: Automatic analysis

of brow actions. In Proceedings of the 8th International Conference on Multimodal Interfaces. ACM, 162–170.

[35] V. Vapnik and A. Vashist. 2009. A new learning paradigm: Learning using privileged information. Neur. Netw. 22, 5–6

(2009), 544.

[36] Shangfei Wang, Longfei Hao, and Qiang Ji. 2019. Facial action unit recognition and intensity estimation enhanced

through label dependencies. IEEE Trans. Image Process. 28, 3 (2019), 1428–1442.

[37] Shangfei Wang, Zhilei Liu, Siliang Lv, Yanpeng Lv, Guobing Wu, Peng Peng, Fei Chen, and Xufa Wang. 2010. A

natural visible and infrared facial expression database for expression recognition and emotion inference. IEEE Trans.

Multimedia 12, 7 (2010), 682–691.

[38] Shangfei Wang, Chongliang Wu, Menghua He, Jun Wang, and Qiang Ji. 2015. Posed and spontaneous expression

recognition through modeling their spatial patterns. Mach. Vis. Appl. (2015), 1–13.

[39] Shangfei Wang, Chongliang Wu, and Qiang Ji. 2016. Capturing global spatial patterns for distinguishing posed and

spontaneous expressions. Comput. Vis. Image Understand. 147 (2016), 69–76.

[40] Chongliang Wu and Shangfei Wang. 2016. Posed and spontaneous expression recognition through restricted boltz-

mann machine. In MultiMedia Modeling. Springer, 127–137.

[41] Alan L. Yuille. 2005. The convergence of contrastive divergences. In Advances in Neural Information Processing Sys-

tems. 1593–1600.

[42] S. Yunus and T. Christopher. 2006. Cascaded classification of gender and facial expression using active appearance

models. In Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (FGR’06). 393–

400.

[43] Feifei Zhang, Qirong Mao, Xiangjun Shen, Yongzhao Zhan, and Ming Dong. 2018. Spatially coherent feature learning

for pose-invariant facial expression recognition. ACM Trans. Multimedia Comput. Commun. Appl. 14, 1s (2018), 27.

[44] L. Zhang, D. Tjondronegoro, and V. Chandran. 2011. Geometry vs. appearance for discriminating between posed and

spontaneous emotions. In Neural Information Processing. Springer, 431–440.

Received March 2019; revised March 2020; accepted March 2020

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 16, No. 3, Article 80. Publication date: July 2020.

http://www.bbc.co.uk/science/humanbody/mind/surveys/smiles/

