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Abstract

Background: Biomedical event extraction is a fundamental and in-demand technology that has attracted
substantial interest from many researchers. Previous works have heavily relied on manual designed features and
external NLP packages in which the feature engineering is large and complex. Additionally, most of the existing works
use the pipeline process that breaks down a task into simple sub-tasks but ignores the interaction between them. To
overcome these limitations, we propose a novel event combination strategy based on hybrid deep neural networks
to settle the task in a joint end-to-end manner.

Results: We adapted our method to several annotated corpora of biomedical event extraction tasks. Our method
achieved state-of-the-art performance with noticeable overall F1 score improvement compared to that of existing
methods for all of these corpora.

Conclusions: The experimental results demonstrated that our method is effective for biomedical event extraction.
The combination strategy can reconstruct complex events from the output of deep neural networks, while the deep
neural networks effectively capture the feature representation from the raw text. The biomedical event extraction
implementation is available online at http://www.predictor.xin/event_extraction.
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Background
PubMed recorded over 28 million papers in 2018 [1]
which reflects the rapid growth of the biomedical lit-
erature. The knowledge and discoveries reported in the
biomedical literature receive substantial attention, but
the large volume of the literature poses a challenge to
information retrieval; therefore, text mining has become
an in-demand technology and a popular research focus.
Event extraction, which is an effective way to represent
the structured knowledge from unstructured text [2], is a
fundamental technology for text mining. However, event
extraction is particularly difficult due to the complex and
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arbitrary structure of events in biomedicine, so related
research is urgently needed [3].
The definition of a biomedical event, according to the

BioNLP [4], consists of (1) a trigger word that indicates the
existence of an event and belongs to a certain event type
and (2) multiple arguments in which an argument can be
viewed as a relation between the event triggers and enti-
ties or other event, and each argument has an argument
type as well. Therefore, the task of event extraction is to
recognize the event triggers with their arguments from the
raw text.
We illustrate biomedical events with Fig. 1 as example.

The word “promote” is an event trigger of the event type
Positive Regulation. This event has a Theme argument
linked to the word “tumorigenesis”, which is an entity
of Carcinogenesis type, and an Cause argument linked
to “over-expression”. Notice that some events can be the
argument for other events, i.e., a nested structure, such
as “over-expression” serving as an Gene Expression event
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Fig. 1 A sentence with visualized events, provided by BioNLP-ST2013

trigger as well as an argument of Positive Regulation event.
Therefore, the event can be viewed as a directed graph in
the text for which the node of graph is the event trigger or
entity and the directed edges indicate the arguments.
Since biomedical event extraction was defined as a stan-

dard task, various methods have been proposed. Most
previous work can be classified into three types: rule-
based approaches [5, 6], traditional shallow machine
learning models and deep learning models. The Turku
Event Extraction System (TEES) [7, 8] is a biomed-
ical event extraction system that uses rich features
from dependency parsing. The TEES utilizes a step-wise
approach based on multi-class SVMs by breaking down
the whole task into straightforward consecutive graph
node and edge classification tasks. The EventMine [9] is a
similar SVM-based pipelinemethodwith handcrafted fea-
tures. Majumder et al. [10] exploited a stacking model for
biomedical event extraction. The system uses SVC, SGD
and LR as the base-level classifiers and takes SVC as the
meta-level classifier. A transition-based model for event
extraction [11] is another approach leveraging a struc-
tured perception for encoding and decoding with a beam
search to find the global best prediction.
In recent years, deep learning methods have been

applied to this task that extend the feature representa-
tion from text and promote the performance. Wang et
al. [12] proposed a convolutional neural network (CNN)
with multiple distributed features for biomedical event
extraction. The distributed features contain not only the
word embedding but also trigger types, POS labels and
topic representation. Li et al. [13] utilized dependency-
based word embedding and a parallel multi-pooling con-
volutional neural network to extract biomedical events.
This approach reserves more information by pooling
the multi-segment of a sentence divided by word trig-
gers and arguments. Björne and Salakoski [14] integrated
CNN into the original TEES to supply more features,
and replaced the SVM classifier with dense layers, which
suggested that the inclusion of the neural network signif-
icantly enhanced the performance. Li et al. [15] proposed
a framework that using gated recurrent unit networks
with attention mechanism to extract biotope and bacteria
events.

However, deep learning methods are still rarely used
for biomedical event extraction, which is partially due
to the complexity of the task-specific event structures.
More deep models have focused on the sub-tasks of event
extraction such as event trigger detection [16–18] and
relation classification [19–22], and most of these models
obtained superior performance compared to traditional
shallow methods.
Despite the success of existing methods in biomedi-

cal event extraction, they generally suffer from two lim-
itations. First, most of them heavily rely on manually
designed features and usually need complicated natural
language processing (NLP) from external NLP toolkits
with poor generalizability. Second, these methods orga-
nize the task in a pipeline manner and separate it into
independent sub-tasks, which simplifies the problem but
ignores the interaction between the sub-tasks and makes
the process prone to accumulating errors.
Due to the aforementioned limitations, we propose a

biomedical event extraction method with a novel com-
bination strategy based on deep neural networks. Our
method detects the candidate event triggers and relations
from raw text with recurrent neural networks (RNN) and
convolutional networks (CNN), and then the Combina-
tion Strategy (CS) constructs the event from the detected
results by solving an optimization problem. The proposed
method takes advantage of neural networks that can rep-
resent features from word embedding in semantic space
[23] and removes the reliance on feature engineering. The
CS, which integrates global information to optimize a
penalty, alleviates the error accumulation.
We evaluated our method with three common biomed-

ical event extraction tasks: the Multi-Level Event Extrac-
tion (MLEE) [24], Cancer Genetics (CG) and Pathway
Curation (PC) from BioNLP Shared Task 2013 (BioNLP-
ST2013) [4]. Ourmethod outperforms the state-of-the-art
methods for all of these tasks according to overall F1
scores. The experimental results demonstrate the effec-
tiveness and generalizability of the hybrid networks and
the CS. Additionalty, our method only needs a minimized
task-specific configurations without the adjustment on
method, which makes it easy to facilitate for various
biomedical event extraction tasks.
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The contributions of this paper are summarized below:

• Describes the first attempt to use hybrid deep neural
networks (CNN and RNN) aimed at achieving
biomedical event extraction.

• Proposes a novel combination strategy to integrate
the detected triggers and relations in an optimized
manner.

• Utilizes end-to-end learning as well as avoids reliance
on manual feature design and external NLP packages.

Results
Dataset
We trained and evaluated our method using three com-
mon annotated datasets: CG, PC and MLEE. Each dataset
is initially divided into three parts: training, development
and test sets, and the statistics of these datasets are listed
in Table 1. CG data concerns the extraction of events rel-
evant to cancer, including molecular foundations, cellular
tissue, and organ-level effects. PC data targets reactions
relevant to the development of biomolecular pathway
models. MLEE data focuses on events across multiple lev-
els of biological organization from the molecular level to
the organ system level. All of these datasets have pro-
vided entity labels for each word so that task can focus on
targeting event extraction.
The pre-processing is simple; we only split each docu-

ment into sentences and tokenized them into sequences of
words, which does not rely on any additional NLP toolkits.

Training
The main hyper-parameters, which were tuned on the
development set, were set as follows: learning rate = 0.007,
ratio of class weight of positive and negative classes for
TR and RC was 5:1, weight decay = 0.0002, batch size =
16, α = 0.5, β = 0.25, γ = 0.125, thresholdt = −2.0 and
thresholdr = −2.0. The other hyper-parameters of our
model are listed in Additional file 1: Table S11. We set
k = 10 in inverse sigmoid decay function. The activa-
tion function was leaky-relu. The optimizer we used was
Adam. We used 5 single models for ensemble learning.
Some tricks were employed, including using pretrained
Char-level CNN and word embedding on large external
corpus [25], Xavier initialization for neural layers [26],
dropout in LSTM and undersampling in EE. The under-
sampling is to keep the class balance of positive/negative
event samples in each sentence.

The final model were trained by the union of training
and development set through 100 epochs for each task and
the loss curve on CG corpus is shown as Fig. 2. The loss of
each module was calculated individually and the gradient
of them was propagated simultaneously to update param-
eters at the end of every batch. The loss of TR declines
first, followded by the loss of RC, while the loss of EE
has the slowest change. This phenomenon is reasonable
because the latter two losses rely on the former detected
results. The black curve is the total loss that sums up
of loss from TR, RC and EE. The oscillation of the loss
curve is due to the variance in the length of sentences
and different number of events among the batches. The
figure shows that the model has converged after 100 train-
ing epochs. The 100-epochs training on CG corpus (400
documents) takes about 12 h on an i7-7700 CPU. The pre-
diction of a single model for each document takes about
20 s on average and ratio of time consuming of each mod-
ule (TR, RC, EE and CS) is 55.97%, 20.75%, 23.06% and
0.23%, respectively.

Performance
We used standard recall, precision and F1 scores as eval-
uation metrics. The event was regarded as true-positive
only if both trigger and arguments were detected cor-
rectly. Our evaluation followed the primary criteria, i.e.,
approximate span matching and approximate recursive
matching [27].
Table 2 shows the overall performance of our method

and other state-of-the-art methods for CG, PC andMLEE
on test set. RelAgent [6] is a linguistically motivated rule-
based system to extract biomedical events. NCBI [5] uses
an approximate sub-graph matching-based approach.
Zhou and Zhong [28] utilized a semi-supervised learn-
ing framework with un-annotated corpora. The TEES
[7, 8] and EventMine [9] are both SVM-based pipeline
models with hand-designed rich features. The TEES
CNN [14] is the upgraded version of TEES coupled with
CNN and uses mixed 5 model ensemble with random-
ized train/development set split. Wang et al. [12] and Li
et al. [13] both developed convolutional network-based
methods.
Table 2 shows that our method achieved the highest

F1 scores for all three datasets by 58.04% for CG, 55.73%
for PC and 60.05% for MLEE respectively, which sug-
gests the effectiveness and generalization ability of the
hybrid networks and CS. We conducted student’s t-test

Table 1 Statistics of datasets

Dataset Entity type Entity Event type Event Word Document (training) Document (development) Document (test)

CG 18 21683 40 17248 129878 300 100 200

PC 4 15901 23 12125 108356 260 90 175

MLEE 14 8291 28 6677 56588 131 44 87
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Fig. 2 The sequence of training loss within 100 epochs

[29] on the best existing F1 score and F1 scores of our pro-
posed method in multiple runs. The results indicate that
the improvements are statistically significant on CG and
MLEE task with p-value< 10−3, and p-value on PC task is
0.062 (the detailed statistics are listed in Additional file 1:
Table S7–S9). The precision was dramatically higher than
the recall in all datasets, which was probably due to the
highly diverse event schemes and insufficient training set.
Table 3 shows the detailed performance for our method

and other existing methods for grouped event categories
of CG. As shown in Table 3, our method outperformed
other methods for all the event categories. The most sig-
nificant improvement was for Modification events, and
these events relied highly on the global contextual infor-
mation that was modelled precisely by the recurrent
network of EE. Through vertical comparison, the lower
scores for Regulation, Planned Pro andModification com-
pared to those of other categories were due to their nested

structure, i.e., these events usually took other events as
arguments, which were more difficult to correctly detect.
The full detailed performance for CG, PC and MLEE is
listed in Additional file 1: Table S4–S6.

Discussion
Alternatives comparison
Before the proposed method was determined, we con-
ducted ablation experiments on several variations of the
proposedmethod to validate the effectiveness of each part
of the method. Table 4 shows results of the ablation study,
which evaluated the ensemble learning, the EE module,
CS algorithm, threshold setting and Char-CNN module.
In these experiments, methods were trained on train-
ing set and tested on development set. The Single-model
is the proposed method in singleton without ensemble
learning. The Single-pipeline-model seperates TR, RC and
EE into independent networks without parameter sharing.

Table 2 Comparison of overall performance on CG, PC and MLEE task (test set)

CG PC MLEE

Methods Recall Precision F1 Scores Recall Precision F1 Scores Recall Precision F1 Scores

RelAgent [6] 41.73 49.58 45.32 - - - - - -

NCBI [5] 38.28 58.84 46.38 - - - - - -

Zhou and Zhong [28] - - - - - - 59.19 55.76 57.41

TEES [8] 48.76 64.17 55.41 47.15 55.78 51.10 - - -

EventMine [9] 48.83 55.82 52.09 52.23 53.48 52.84 49.56 62.28 55.20

Wang et al. [12] - - - - - - 56.23 60.65 58.31

Li et al. [13] - - - - - - 53.61 67.23 59.65

TEES CNN [14] 50.77 66.55 57.60 50.34 62.16 55.62 - - -

Proposed 51.91 65.81 58.04 50.65 61.95 55.73 55.02 66.08 60.05
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Table 3 Detailed performance comparison on CG

Event Class TEES EventMine NCBI RelAgent Proposed

Anatomical 77.20 71.31 73.68 70.82 79.78

Pathological 67.51 59.78 54.19 48.14 68.46

Molecular 72.60 72.77 67.33 60.72 73.16

General 52.20 53.08 44.70 40.89 59.45

Regulation 43.08 39.79 29.21 35.58 44.31

Planned Pro 39.43 40.51 34.28 28.57 48.15

Modification 34.66 29.95 0.00 30.88 39.67

The Combination-rule-single does not use the EE mod-
ule and replaces the CS with a rule-based method to
assign only one event to each detected event trigger.
The Combination-rule-all similarly replaces the CS with
another rule-based method to generate all possible com-
binations from triggers and relations. The EE-probability
directly uses the probability outputing from TR, RC and
EE to determine the final events instead of using CS,
i.e., the method extracts events simply by the classifica-
tion results of each network modules (setting all thresh-
olds to 0). The Zero-threshold resets both thresholdt
and thresholdr to zero and keeps other setting same as
proposed method. The Without-CharCNN removes the
Char-CNN module from the method. The Single-model-
pipeline and Without-CharCNN need retrain the neural
networks while othermethods do not retrain the networks
since they only change the settings in post-processing
steps.
As shown in Table 4, the proposed method achieved

higher F1 scores than other alternative variations. The
contrast results of Single-model show that the ensem-
ble learning noticeably improved the F1 performance by
3%-5%, which was mainly contributed by the improve-
ment in precision of 6%-8%. Since the randomness in the
training led to variance among the different runs (which
also caused performance differences by several percentage
points, e.g., the F1 scores by multiple runs of Single-model

on CG have a standard deviation of 0.532%), the ensemble
could eliminate the variance and obtain higher precision.
The F1 scores of Single-model-pipeline sightly declined
by 0.2%-1.6% that suggests parameter sharing is effec-
tive and efficient (the training of Single-model-pipeline
takes longer time than proposed joint model). The per-
formance of Combination-rule-single decreasedmarkedly
by 3%-6% compared to the proposed method, especially
for recall because the method only assigned one event for
each detected trigger and multiple events associated with
one trigger were discarded through its rule (such multiple
events accounts for 59.7% of total events in CG corpus, for
example). The Combination-rule-all obtained high recall
that is even higher than the recall of our proposed method
on CG and PC tasks, but it suffered from much lower
precision and the F1 scores decreased markedly because
it constructed too many incorrect events. Both of these
ablation tests show that the EEmodule is valuable. Remov-
ing EE module yeilded a 0.8%-2.6% decline of F1 score
by EE-probability, which indicates that the CS contributes
a positive effect by optimizing the penalty value. How-
ever, EE-probability obtained higher precision because
the method applied stricter extraction. EE-probability
assigned an event only when all of TR, RC and EEmodules
returned positive classification results, thus the detected
events were lesser then the proposed method did (e.g.,
2225 vs. 2354 on CG development set). Additionally, the
comparison with the Zero-threshold demonstrates that
setting a lower threshold for the candidate triggers and
relations can construct more valid events and promote
overall performance. The contrast results in the last row
demonstrate that the Char-CNN module is beneficial to
the overall performance by providing the lexical features.

Error and limitation analysis
We divided extraction errors into five types, including
wrong trigger label, wrong trigger span, wrong arguments,
redundant arguments and other errors. Detailed statistics
for the errors in prediction phase are listed in Table 5. The

Table 4 Performance comparison across variations of our method on development set

CG PC MLEE

Methods Recall Precision F1 Scores Recall Precision F1 Scores Recall Precision F1 Scores

Proposed 51.29 63.34 56.68 49.32 59.90 54.10 53.53 62.34 57.60

Single-model 48.34 55.73 51.77 48.43 52.32 50.30 49.96 55.64 52.65

Single-pipeline-model 47.68 54.80 51.00 47.49 52.95 50.07 48.43 53.73 50.94

Combination-rule-single 50.50 57.46 53.75 46.92 55.94 51.04 48.09 55.28 51.43

Combination-rule-all 54.51 52.05 53.25 50.21 47.69 48.92 52.51 48.77 50.57

EE-probability 49.16 64.22 55.69 46.74 60.60 52.77 48.43 63.72 55.03

Zero-threshold 50.74 62.24 55.90 48.90 57.06 52.66 53.02 62.30 57.29

Without-CharCNN 50.57 62.18 55.78 46.08 55.08 50.18 51.57 63.52 56.93
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Table 5 Statistics for the extraction errors in CG/PC/MLEE

Corpus Wrong T_Label Wrong T_Span Wrong Argu Redundant Argu Other Error Total Error

CG 5.09% 12.11% 9.57% 5.65% 3.25% 35.67%

PC 4.75% 18.28% 4.47% 5.72% 4.22% 37.44%

MLEE 2.38% 15.72% 5.48% 6.38% 3.97% 33.93%

* The statistics are derived by training method on training set and testing on development set of CG/PC/MLEE.
* TheWrong T_Label represents the event triggers with the wrong assigned label. TheWrong T_Span represents the range of the trigger words that were wrong (including
detected triggers that do not exist in the gold standard). TheWrong Argu indicates that the event trigger was correctly detected but the arguments were wrongly assigned.
Similarly, the Redundant Argu indicates that redundant arguments were assigned for correctly detected triggers.

statistics suggested that the most common error type was
the wrong trigger span, which constituted about half of
the total errors, indicating that the range of trigger words
is the most difficult information to detect.
Moreover, similar to other works, two special cases were

ignored to simplify in our method. First, a few events
had trigger words and arguments spanning across more
than one sentence, but our method only detects events
within a single sentence. Secondly, a few words were
associated with more than one event trigger labels, but
our method could assign only one trigger label to them.
Ignoring such cases could cause a performance reduc-
tion, but these cases are relatively rare (approximately
2% - 4.5%) and had limited effect (see Additional file 1:
Table S10).
Some limitations still exist and need further improve-

ment. Ourmethod is based on a deep neural network with
a large number of learnable parameters but the training
set with hundreds of documents is somewhat insufficient.
The tuning of hyper parameters relied on grid searching
in a development set, which was time consuming.

Conclusions
In this paper, we present deep neural networks coupled
with a combination strategy to extract biomedical events.
Our method detects the event trigger and classifies the
relations jointly while taking advantage of deep neural
networks that extract feature representation automati-
cally and do not rely on manual feature engineering. This
novel Combination Strategy integrates the outputs from
different stages to construct the events in an optimiza-
tion manner, which alleviates the error accumulation. The
evaluation results show that our method has achieved
state-of-the-art performance compared to existing meth-
ods, which indicates that the Combination Strategy and
the deep neural networks in our method are effective.
In the future, we plan to extend our method with semi-
supervised learning to address the insufficiency of the
training corpora. Since biomedical text mining is a desir-
able technology for converting the large number of arti-
cles to structured information at high-layer semantics, we
believe the proposed method has the potential to facil-
itate event extraction in broad, real-world scenarios for
researchers.

Methods
We apply end-to-end supervised deep learning for event
extraction. The overall architecture of the networks is
illustrated in Fig. 3, which consists of 5 modules: the
Character-level CNN (CharCNN), Bi-directional LSTM
(BiLSTM), Trigger Recognition (TR), Relation Classifica-
tion (RC) and Event Evaluation (EE). The CharCNN and
BiLSTM encode a sentence into a sequence of feature vec-
tors. The TR, RC and EE are stacked on BiLSTM and
determine the type and probability of each event trigger,
relation and candidate event, respectively. These modules
are trained simultaneously in a joint manner, which can
benefit from parameter sharing [19, 21]. Finally, the out-
puts of these modules are integrated into the CS, which is
a post-processing step that is applied in prediction phase
to generate the final events.
We cast the argument assignment as a relation clas-

sification task, so we use the term relations instead of
arguments in the rest of this paper.

Character-level cNN
Character-level CNN (CharCNN) extracts the character-
level features of each word. The module is inspired by
previouswork [21] that has been shown to be effective due to
the ability to capture the morphological information [30].
For each word, the module first looks up an embedding

layer to get the vector representation of each charac-
ter. Let the sequence of embedding vectors be V (c) ={
v(c)
1, v

(c)
2 , ..., v(c)

n
}
where v(c)

i is the vector of i-th character.
Then, the sequence is fed to convolution layer, which is
computed by:

y(c)
i = f

(
conv

(
W1,V (c)

i:i+k

)
+ b1

)
, (1)

where k denotes the kernel size, conv(·, ·) is the convo-
lutional operator, f (·) is the activation function, W1 ∈
R
d×k×nc is the parameter of the convolution layer where

nc is the number of output channels and b1 ∈ R
nc is

the bias vector. Therefore, we obtain the representation
matrix y(c) ∈ R

n×nc for an n-length word. To obtain the
fixed length representation of the word, the adaptive max
pooling is then applied to the output vector:

chj = max
1≤i≤n

y(c)
ij , (2)



Zhu and Zheng BMC Bioinformatics           (2020) 21:47 Page 7 of 12

Fig. 3 The overall networks structure (CharCNN, BiLSTM, TR, RC, EE), some components are omitted for brevity(detailed structures are shown in
Additional file 1: Figure S1–S3)

where ch ∈ R
nc is the char-level representation of the

word.

Bi-directional lSTM
The Bi-directional LSTM (BiLSTM) encodes a sentence
into a list of hidden vectors. The LSTM can model the
long-distance dependency that benefits from its memory
and forget blocks, and a signal from two directions helps
the module sense the context [31].
Given a sentence with n words, the word embedding

layer maps each word into a vector as wi. Similarly, the
entity label of each word is also mapped to vector ei by
the entity label embedding layer. We have obtained the
character-level representation of each word denoted as
chi from Char-CNN. Then, the above vectors are con-
catenated and denoted as vi =[wi, ei, chi]. The vector
representation of n words forms V = {v1, v2, ..., vn}, and
then it is fed to the LSTM layers with two parallel (forward
and backward) directions. The computation of the LSTM
layer at the time step i is:

ii = σ(Wjjvi + bjj + Whjhi−1 + bhj),
fi = σ(Wjf vi + bjf + Whf hi−1 + bhf ),
gi = tanh(Wjgvi + bjg + Whghi−1 + bhg),
oi = σ(Wjovi + bio + Whohi−1 + bho),
ci = fi · ci−1 + ii · gi,
hi = oi · tanh(ci),

(3)

where ii, fi, gi, oi and ci are the input gate, forget gate, inter-
mediate state, output gate and cell state, respectively. σ(·)
is the sigmoid function. hi =

[−→
hi ,

←−
hi

]
is the hidden vector

from LSTM at time step i, which consists of two direc-
tions. Finally, we obtain the sentence encoding sequence
H = {h1, h2, ..., hn} ∈ R

2hd×n where hd is the hidden size.
Additionally, we also obtain the sequence of entity label
embedding E = {e1, e2, ..., en}.

Trigger recognition
We cast the Trigger Recognition (TR) as a sequence
labelling task. The TR module receives the output of BiL-
STM and assigns an event label to each word in the
sequence in the BILOU scheme [32].
Given the input sequence H = {h1, h2, ..., hn}, we assign

the label in a greedy manner from left to right. At the time
step i, we concatenate the encoded vector hi and previous
event trigger label vector ti−1 into xi =[ hi, ti−1] and then
send them into a linear layer and a log softmax layer, which
is written as:

y(t)
i = W3(f (W2xi + b2) + b3),

p(t)
i,j = log

⎛
⎝ exp

(
y(t)
i,j

)

∑
k exp

(
y(t)
i,k

)
⎞
⎠ ,

(4)

where W2 and W3 are the weight matrices of the two lin-
ear layers, respectively, b2 and b3 are the bias vectors, and
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f (·) is the activation function. The softmax layer trans-
forms the y(t)

i to the trigger label probability vector p(t)
i .

The event trigger label of the i-th word is assigned as the
m-th trigger type wherem is the index of the maximal ele-
ment in p(t)

i except for p(t)
i,none if p

(t)
i,m − p(t)

i,none > thresholdt ;
otherwise we assign none to the word. The trigger label is
then transformed to ti by the event trigger label embed-
ding layer and then sent to the next time step. Finally, we
obtain the sequence of trigger label embedding vectors
T = {t1, t2, ..., tn}.
Here we define a support value to measure the confi-

dence of the assigned label.

Definition 1 A Support Value is the probability dif-
ference between the assigned label m and the label none.
The lager support value means the more confidence of the
recognised label.

For each recognized event trigger with index m, a sup-
port value is computed by:

s(t) = p(t)
m − p(t)

none, (5)

where none is the index of none type.
In the training of TR, we use a scheduled sampling trick

to eliminate the gap between training anf inference [33].
We take inverse sigmoid decay function ε = k/(k +
exp(i/k)) to decide the probability of using true token or
inference token, where i is the number of training epochs.

Relation classification
The Relation Classification (RC) module predicts the rela-
tion type for each candidate pair. The sentence represen-
tation is derived from BiLSTM, and the event trigger is
detected by the TR before. Here, we use the information
from the events/entities and the sub-sentence between
them to predict the type of relation.
Since the TR module has detected the event trig-

gers and the entities are given, we combine all possi-
ble trigger-entity and trigger-trigger pairs. The set of
candidate pairs is written as RL = {(e(1), e(2)) |e(1) ∈
event_trigger_set, e(2) ∈ event_trigger_set ∪ entity_set}.
To predict the relation type of (e(1), e(2)) ∈ RL,
we first take the truncated sequence of BiLSTM hid-
den vectors Hstart1:end1 , the sequence of trigger label
vectors Tstart1:end1 and entity label vectors Estart1:end1 ,
where start1, end1 are the start and end location of
e(1). The three vectors are concatenated into src =
[Hstart1:end1 ,Tstart1:end1 ,Estart1:end1 ]. Then, we get dst =
[Hstart2:end2 ,Tstart2:end2 ,Estart2:end2 ] in same manner for
e(2). The sub-sentence between e(1) and e(2) is denoted
as mid =[Hend1:start2 ,Tend1:start2 ,Eend1:start2 ]. Here, we
assume end1 < start2 without loss of generality. If e(1) and

e(2) are adjacent, we assign a learnable vector to mid to
represent this situation.
The src and dst are then fed to the adaptive max pooling

layer to get a vector with a fixed shape that is denoted as
srcmax and dstmax, which is the same as Eq. 2. Meanwhile,
the sub-sentencemid is fed to a convolutional layer and an
adaptive max pooling layer to extract the feature vector,
which is denoted asmidmax, same as Eq. 1.
Additionally, Zheng et al. [20] mentioned that the dis-

tance of two entities start2 − end1 can determine the
relation significantly. Therefore, we use a distance embed-
ding vector to provide extra information that is ignored by
the max pooling operation, and the vector is denoted as
dv.
The above vectors are concatenated into r =

[ srcmax,midmax, dstmax, dv] and apply two linear layers:

y(r) = W5(f (W4r + b4) + b5), (6)

whereW4,W5 and b4, b5 are the weight matrices and bias
vectors of two linear layers, respectively. Finally, the vector
is fed into a log softmax layer as follows:

p(r)
j = log

⎛
⎝ exp

(
y(r)
j

)

∑
k exp

(
y(r)
k

)
⎞
⎠ , (7)

where p(r) ∈ R
c is the probability that the relation belongs

to each relation class of total c classes. We assign them-th
class of relation to the candidate pair (e(1), e(2))wherem is
the index of the maximal element of p(r) except for p(r)

none if
p(r)
m − p(r)

none > thresholdr ; otherwise we assign none to the
relation.
For each recognized relation with class index m, we

compute a support value by:

s(r) = p(r)
m − p(r)

none, (8)

where none is the index of none type.

Event evaluation
Since the entities, event triggers and relations have been
recognized, we then apply the Event Evaluation (EE) mod-
ule to estimate the probability that a candidate event
structure is a valid event.
We use another BiLSTM to represent the event struc-

ture. We have obtained the word encoding sequence
H = {h1, h2, ..., hn} and the entity label embedding
sequence E = {e1, e2, ..., en} from BiLSTM, the trig-
ger label embedding sequence T = {t1, t2, ..., tn} from
TR, and the recognized relation set RL_recognized ={(

e(1)i , relation_typei, e(2)i

)∣∣∣ i = 1, 2, ...
}

from RC. Then,
we enumerate all the valid combinations of event triggers
and relations that have to meet the structure definition of
the certain task. All the valid combinations in a sentence
form the candidate events set denoted as C.
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For each candidate event in C, a sequence of role label
R = {r1r2, ..., rn} is leveraged to represent the role of
each word in the candidate event. The i-th item in R is
assigned to event_trigger or relation_typek or none_type
according to the role that the i-th word plays. The role
label sequence is then transformed into vectors by the
role label embedding layer, and the result is denoted as
V (e) =

{
v(e)
1 , v(e)

2 , ..., v(e)
n

}
.

Then, we concatenate each corresponding vector from
sequence H, E, T and V (e) in parallel, which is written as
X = {x1, x2, ..., xn} where xi =[ hi, ei, ti, v(e)

i ]. The sequence
X is fed to another BiLSTM layer:

h(e)
i = BiLSTM(xi), i = 1, 2, ..., n. (9)

The last outputs from two directions of BiLSTM h(e)
last =[−→

h(e)
n ,

←−
h(e)
1

]
are fed to a full connection layer and then

mapped to log probability p(e) ∈ R
2 by a log softmax

layer. The probability vector p(e) denotes that the event
is a positive sample or a negative sample. Meanwhile, we
use another full connection layer and log softmax layer,
which is branched from h(e)

last , to learn a vector p(m) ∈ R
3

that denotes the modification information of the event.
The three items in p(m) represents the log-probability of
Negation, Speculation and None, respectively.
For each candidate event, we compute a support value

by:

s(e) = p(e)
1 − p(e)

2 , (10)

where p(e)
1 is the log probability that the candidate event is

a valid event and p(e)
2 is not.

After we obtain the probability vectors p(t), p(r), p(e) and
p(m) from TR, RC and EE, an end-to-end training is then

Fig. 4 A simple example to illustrate the principle of CS
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applied to optimize the NLLloss of these vectors accord-
ing to the correct labels of triggers, relations, events and
modifications, respectively.

Combination strategy
After we have obtained the support value of each candi-
date trigger, relation and event, the Combination Strategy
(CS) is then applied to integrate all of the information and
determine the set of final extracted events in prediction
phase. CS does not participate in training.
The principle of CS is to minimize the penalty value,

which is designed to measure the discordance between
the final events and the outputs of previous modules. The
penalty consists of two parts as follows. If a trigger or
a relation has a positive support value, but it does not
appear in any event of the final extracted events, it gen-
erates a penalty called “support waste”. In contrast, if a
candidate event with a negative support value is included
as one of the final extracted events, it generates a penalty
called “support lacking”. These two penalties are conflict-
ing objectives. The more candidate events that are added
into the final set, the less “support waste” penalty will be,
but the penalty for “support lacking” will increase, and
vice versa. So, the goal will be tominimize the total penalty
so that the final extracted events can be determined.
Formally, this target is written as follows:

cbest = argmin
c⊆C

penalty_score(c), (11)

where cbest is the set of final extracted events, c enumer-
ates all the subsets of C, and:

penalty_score(c) =
⎛
⎝ ∑

eventk∈c
max(1 − α · s(e)k , 0)+

β
∑

triggeri /∈c
s(t)i + γ

∑
relationj /∈c

s(r)j

⎞
⎠ ,

(12)

where s(e)k denotes the support of the k-th candidate
event, s(t)i denotes the support of i-th event trigger, and
s(r)j denotes the support of the j-th relation. The first
term accounts for the support lacking penalty, the last
two terms accounts for the support waste penalty and
reweighted by parameters α, β and γ .
Figure 4 is a simple example to illustrate the principle of

CS. As shown in Fig. 4, three entities (T1, T3 and T5) were
given, and two event triggers (T2 and T4) and six rela-
tions were detected, then a total of six candidate events
were constructed from them. After computing them, the
minimized penalty was obtained when choosing the two
of them to be the final result.

To optimize Eq. 11, we have to enumerate all of the
subsets of C, which requires exponential time complexity.
For some sentences, there are many complex events with
many candidate arguments and lead to a very large com-
putation cost (26 in Fig. 4 for example). Therefore, the CS,
which is an approximation algorithm, is proposed to solve
the problem within the O(n2) time complexity.
The CS receives the set of candidate events C, the sup-

port value of triggers, relations and candidate events in
a sentence, and then it returns the set of final extracted
events. Before the CS, the candidate events are sorted by
the topological order of their nested structure if it exist,
and the events relating to different triggers are handled
independently, except for transmitting the support value
between them. In the CS, the initial set of chosen events
is empty, and then the candidate events are added into the
set one by one in a greedy manner. The pseudo code of the
CS is shown in Algorithm 1.
To prevent the nested events from forming event loops,

we set a loop detector after CS. The extracted events
are added into the final set one-by-one, we discard the
event if the inclusion of it would cause event loop.
We assign event modifications (sepculation/negation or
none-modification) for the events in the final extracted set
according to their modification vectors p(m).

Algorithm 1 Event Combination Strategy (CS)
Require: C : set of all candidate events
Ensure: Event_Set : set of final extracted events
1: Event_Set = {}, Echosen = {} ;
2: penaltybest = penalty_score(Echosen);
3: for i = 1, ..., sizeof (C) do
4: for each event ∈ C − Echosen do
5: penalty = penalty_score(Echosen ∪ event);
6: if penalty < penaltybest_tmp then
7: penaltybest_tmp = penalty;
8: eventthis_round = event;
9: end if

10: end for
11: Echosen = Echosen ∪ eventthis_round ;
12: if penaltybest_tmp < penaltybest then
13: penaltybest = penaltybest_tmp;
14: Event_Set = Echosen;
15: end if
16: end for
17: return Event_Set;

There are two advantages of the CS. First, the CS can
address event triggers and relations with negative support
value. In the TR and RC, we can set negative thresh-
olds thresholdt and thresholdr to obtain more candidate
event triggers and relations, which is especially useful for
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ensemble learning to improve recall. Second, the CS can
alleviate the error accumulation effectivelly. Even though
a true event trigger is wrongly assigned a negative sup-
port value (TR fails), but the related arguments and event
structure are recognized as positive instances (RC and EE
work), the trigger can still be correctly constructed as a
final event with the CS.
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