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Abstract: Recent years have witnessed the booming of online social network and social media platforms, which leads to a state of in-
formation explosion. Though extensive efforts have been made by publishers to struggle for the limited attention of audiences, still, only
a few of information items will be received and digested. Therefore, for simulating the information propagation process, competition
among propagating items should be considered, which has been largely ignored by prior works on propagation modeling. One possible
reason may be that, it is almost impossible to identify the influence of propagation background from real diffusion data. To that end, in
this paper, we design a comprehensive framework to simulate the propagation process with the characteristics of user behaviors and net-
work topology. Specifically, we propose a propagation background simulating (PBS) algorithm to simulate the propagation background
by using users’ behavior dynamics and out-degree. Along this line, an ICpg (independent cascade with propagation background) model is
adapted to relieve the impact of propagation background by using users’ in-degree. Extensive experiments on kinds of synthetic and real
networks have demonstrated the effectiveness of our methods.
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1 Introduction

Online social networks play a significant role in our
daily lives, especially as a crucial type of information
propagation channel. Obviously, understanding the
spreading of topics, ideas, and memes in social networks
could be helpful to cognize human behaviors and get
commercial interests. Thus, large efforts have been made
on the propagation related problemsl!-6l.

In general, the information propagation process re-
flects users’ decisions on retweeting/sharing the content
items they received, which could be affected by several
factors, e.g., user preference or information topics. Among
them, the competition between items could be an import-
ant reason!’l. Usually, people in modern life may be con-
fronted with huge amount of information of any kind.
However, they could digest only a little of them due to
limited attention capacities. Therefore, users may only se-
lect those they like the most, or the most significant in-
formation to read, which leads to the fierce competition
among information publishers to attract attention[s.

Indeed, prior works have already concerned this phe-
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nomenon of information overload which exceeds the at-
tention capacity of users®. For instance, as shown in
Fig.1, more than 81% of users of Weibo follow more than
100 others, which leads to hundreds of new tweets every
day, while most of them will be ignored. Similar situ-
ations could be found during the propagation of video,
news and memes, in which popularity of each item will be
degraded when a number of competing items are simul-
taneously availablel!0-13],
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Fig.1 Following number distribution of Weibo in double

logarithmic coordinate. The horizontal axis denotes following
number and the vertical axis denotes corresponding ratio.
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Along this line, two main approaches were designed
for describing the propagation process in social networks.
On the one hand, the mainstream of propagation model-
ing neglected the competition among items, for both the
propagation/influence maximization problem1417 and the
retweet prediction task[!® 19, One possible reason may be
that it is almost impossible to differentiate which items
were missed or disliked from the item set that a user re-
ceived but didn't retweet when the real propagation data
was given. On the other hand, in a few agent based mod-
els, which result from the analysis on the propagation
process, a user's memory and attention capacity were
considered[20; 21],

However, traditional methods may fail to fully reflect
the competition among items. Specifically, the settings of
current agent based models are different from the real
situation, and they could not be combined with the main
stream machine learning based methods. To that end, in
this paper, we propose a novel algorithm to simulate the
competition and present a way to model it in the main
stream methods. Specifically, the scenario we considered
is the propagation of one or several items, when they are
spreading, there are huge amount of other items which
are also diffusing. If the users on the propagating paths of
items we considered receive other items, they will com-
pete for the limited attention of these users. And we use
the term “propagation background” to represent the
items other than the ones being considered and will
define it formally in Section 3.

In this study, we concentrate on the impact of
propagation background and ignore other factors except
the influence from neighbors. For that we cannot extract
ground truth from real propagation data, we need to con-
struct the propagation background itself first. Thus we
propose a novel propagation background simulating
(PBS) algorithm, which can simulate the propagation
background of online social networks. In the algorithm,
content items are generated by each user, the items a
user could deal with at a time is limited, and a user will
not conduct activities at every step. Then, we present an
ICpg (independent cascadell¥l with propagation back-
ground) model to relieve the impact of propagation back-
ground, which can estimate the content item’s diffusion
scope more accurately. The model has the same frame-
work with IC model, but before a node decides whether
to retweet an item, there is a probability associated with
its in-degree to miss the item.

Specifically, our main contributions can be summar-
ized as follows:

1) We propose the PBS algorithm which can simulate
the propagation background of online social networks.
The algorithm has closer settings to real scenarios than
previous agent based models.

2) We present the ICpp model that relieves the
propagation background’s impact on the diffusion process
by improving IC model. Thus, it provides an approach to
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incorporate the effect of attention competition into exist-
ing propagation models.

3) We test our methods on a series of synthetic and
real networks and the results demonstrate their effective-
ness.

The remainder of this paper is organized as follows. In
Section 2, we briefly discuss some related works. Section 3
presents our methods, including PBS algorithm and ICpp
model. Next, we report and analyze the experimental res-
ults in Section 4. Finally, we conclude this paper in
Section 5.

2 Related works

In this section, we briefly review the works that
modeled the competition among content items for users’
limited attention in social networks.

Weng et al.20 is the starting point of a series of
works, which constructed an agent based model to study
whether the competition of different memes may affect
their popularity. In this model, each agent has a screen
and memory, and both sized by time. The screen acts as
receive buffer, and memory records items the agent pos-
ted. At each step, a randomly selected agent has a chance
to create a new item. For other agents, the selected agent
is also included if it doesn’t produce a new item, they
choose items from their screen according to a predefined
probability, then either retweet the chosen items or tweet
an item in memory randomly.

Qiu et al.2ll improved Weng's model with more reas-
onable settings and studied the relationship between the
quality of an idea and its likelihood to become prevalent.
In the model, the fixed space list of reverse chronological
ordering is used as receive buffer. At each step, an agent
is randomly selected, then either produces a new item or
selects an item from the buffer by the items’ quality and
retweets it.

Furthermore, Gleeson et al.[?2 studied the phenomen-
on of competition induced criticality based on a simpli-
fied version of Weng's model. Fan et al.23] adopted a
model similar to Weng's model to study the emotion con-
tagion in online social networks. And Notarmuzi and Cas-
tellano?4 studied the dynamics of Qiu’s model by consid-
ering some simplification and gave some explicit formulas.

Besides, Su et al.2%] proposed an improved susceptible-
infected-recovered (SIR) model which considered the
user’s incomplete reading behavior. In their model, the
rate of reading per unit time was added to the SIR mod-
el when describing the process susceptible state trans-
lates to infected state.

In general, our PBS algorithm is also an agent based
method, but it is based on human dynamics and network
topology. The settings of the PBS algorithm are closer to
real situations. Specifically, our agents neither keep act-
ive every step nor conduct actions in random order, but
have their active time sequence based on human dynam-
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ics. Furthermore, in PBS, the receive buffer is sized by
space which is different from the Weng's model, and each
agent could retweet more items when it is active which is
different from the Qiu's model. As to Su's model, it con-
sidered the analogical problem with us, but that is a
macro model while ours is a micro one.

3 Methodology

We will present our PBS algorithm and ICpp model
in this section. But first of all, let's define what the
propagation background is.

Definition 1. Propagation Background. Suppose
there is an online social network N, I¢ presents the set of
content items that being considered, I presents the set of
content items that diffuse in N at time stamp ¢. The set
IBf = I — I¢ is the propagation background of J¢ at time
stamp ¢.

It is obvious that the influence IB; impacts on
propagation process is competing users’ attention with 7¢,
and J¢ is very tiny compared to I;, so that IB{ is almost
equal to I;. Therefore, what we will simulate is I, i.e.,
the propagation background of ¢.

3.1 Propagation background simulating

Information overload is an ordinary state for users of
online social networks. Therefore, the content items that
exceed a user’s attention capacity won't enter the user’s
viewing field and will be missed. Hence, the essence that
content items compete for a user’s limited attention is
striving for the position of the user’s viewing field. Be-
cause users will firstly see the recently posted items of
their neighbors in most social networks, a list of reverse
chronological ordering will be a reasonable approxima-
tion for a user's reading behavior. At any time, the most
recent item will occupy the nearest position to the user.
Furthermore, the content items will keep coming into the
list continuously, so the final result of competing also de-
pends on the time a user login, only the items come at
the right time could really hold the good positions.

Thus, to simulate the propagation background, i.e.,
implementing the PBS algorithm, there are 4 key ques-
tions to be answered: Where do the new content items
come from? When does each agent conduct activities?
What is the size of each agent's attention capacity? And
how does each agent act?

First, let’s look at how an agent acts overall, that is
the framework of PBS algorithm. Each agent has a re-
ceive buffer which contains the items it received. If an
agent receives too many, the item that came first will be
covered. Each agent has a step sequence that denotes at
which steps the agent conducts activities. When an agent
acts at a step, it will create a new item with a probabil-
ity, then deal with the items in its receive buffer, and
retweet each item with another probability.

Second, the content items are generated by each agent

in our background model, which is in accordance to the
scenario in real social networks where every user could
contribute to the platform’s contents. But as everyone
knows, there are huge differences among the number of
items created by different users. An active user may post
tens of items per day, but a user who is very inactive
may just post several items for one year or so.

Toubia and Stephenl26l empirically studied the two
main source utilities that may motivate users to post con-
tent in a microblog: intrinsic utility and image-related
utility. They pointed out that the intrinsic utility is de-
rived from posting content to be viewed by many follow-
ers, and image-related utility is derived from having
many followers. Therefore, the motivations for users to
produce contents in social media could be described by
their follower numbers. Furthermore, Kwak et al.[27]
found there is a positive correlation between follower
number and message number, and Li et al.[?8 found there
is a linear correlation between follower number and activ-
ity level for majority of users. Taking into account these
cognitions, we employ each agent’s out-degree, i.e., fol-
lower number, as the indicator of the probability an
agent produces a new item and adopt a linear function to
approximate it in our model. In addition, the propaga-
tion background results from ordinary uses’ behaviors.
And the time and energy an ordinary user could devote
to a social network platform is finite so that there should
be a maximum probability of post.

Let o, denote the probability that an agent u pro-
duce a new item when it conduct activities, which could
be computed as follows:

Qy = Qmax X __ODu (1)
Maz(OD)

where amax denotes the maximum probability of all
agents, which is a super parameter, OD,, denotes the out-
degree of agent u, Maz(OD) denotes the maximum out-
degree of all agents, and the agent with out-degree
Maz(OD) generates new item with probability aumax.

Third, it is obvious that users of online social net-
work platforms won't always conduct activities. So the
assumption that agents act at every step is not in con-
formity with the truth of human behaviors. Fortunately,
research in human dynamics have given us enough under-
standing of inter-posting time distribution. Besides, if the
human dynamics of posting behavior are considered on
minute scale, the periodic oscillations resulting from cir-
cadian rhythm[2% 30 should not be neglected. To these
ends, we consider the posting behavior on day scale.

Fig.2 presents the inter-tweeting time distribution of
Weibo on day scale. Based on the statistical result, the
inter activity conducting time distribution of an agent fits
power law with slope A = 1.785, i.e.,

p(r) oc 7 )
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Fig.2 Inter-tweeting time distribution of Weibo on day scale
in double logarithmic coordinate. The distribution fits power law
with cutoff, with the slope A=1.785.

where 7 indicates the inter active time.

In this paper, we adopt a power law distribution as
approximation to real inter active time distribution and
use the tool in [31] to generate the sequence of 7 for each
agent. Suppose that 7,1, Tu2, ..., Tun, ... 1S the inter active
time of agent w, and Ty1,Tu2, ..., Tuk, ... is the action time

of agent u, then we have

k
Tuk = ZTu]‘. (3)
j=1

At last, about the size of a user’s attention capacity or
the buffer size of an agent, it is related to each concrete
user and the time user login. It is obvious different users
would like to view different number of items, i.e., they
have different attention capacity. When a user logins, his
mood and state (e.g., if it is leisure time) also affect how
many items he'd like to read. Thus, the buffer size should
be a function of user and time at least. But note that the
items a user received will exceed his attention capacity at
most times, so what is most important is to ensure the
overflowing of buffer, thus we adopt a fixed size for sim-
plification.

Algorithm 1 shows our method of simulating the
propagation background. For convenience, we use an in-
teger to represent an item and equip a receive buffer and
a send buffer for each agent. In the algorithm, A is the
agent set, and M is the adjacent matrix of a network.
M,,» # 0 means there is an edge from agent u to agent v,
i.e., items could be propagated from u to v, and the value
of M, is the propagation probability of the edge. T'is the
time when agents conduct activities, T}, is v’ active time.
iBufSize denotes the size of buffer, and iStep denotes
the lasting time of agents’ activities. The function
random() draws a random value from interval (0,1).

Algorithm 1. Propagation background simulating al-
gorithm

Require: A, M, T, amax, iBufSize, iStep.
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Ensure: iMsg // The post number of agents

1) Create send buffer, receive buffer, posted item set
for each agent;

2) Compute the probability of producing new item for
each agent by Equation (1);

3) ItemNo = 0;

4) for ¢ =1 to iStep do

5) for each u € A do

6) if u is not active at current step then

7) continue;

8) end if

9) if random() < a, then

10) ItemNo + +;

11) Put ItemNo into u's send buffer;

12) Add ItemNo into u's posted item set;

13) end if

14) for each item in receive buffer do

15) read tuple(v, item) from receive buffer;
//v is u's neighbor, the source of item

16) if item € u's posted item set then

17) continue;

18) end if

19) if random() < My, then

20) Put item into u's send buffer;

21) Add item into u's posted item set;

22) end if

23) end for

24) clear u's receive buffer;

25) end for

26) S = shuffle(A);

27) for each u € S do

28) if u's send buffer is not null then

29) for each item in send buffer do

30) Put the tuple (u, item) into followers’ re-
ceive buffer;

31) end for

32) end if

33) clear u's send buffer;

34) end for

35) end for

36) Compute each agent's post number by its posted
item set.

At each step, for each agent that conducts activities,
first, the agent utilizes its chance to produce a new item
and deal with items in its receive buffer, all the items it
posts will be put into its send buffer. Then, the items in
each agent’s send buffer will be put into its followers' re-
ceive buffer. In the second sub-step, for the sake of lim-
ited size of receive buffer, we deal with each agent in ran-
dom sequence so that any agent will receive items from
other agents in random order. And if an agent's receive
buffer is full, the earliest one will be overwritten.

3.2 IC with propagation background

With the PBS algorithm, we could estimate a set of
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items’ propagation scope under propagation background.
But the computing cost is very expensive, and the re-
ceive buffer mechanism is still hard to incorporate into
main stream propagation models. Fortunately, there is
another choice to consider the impact of propagation
background, that is to incorporate the effect of attention
competition, not the process of competition, into existing
models.

On the other hand, in many scenarios, the huge num-
ber of parameters can jeopardize the applicability of
propagation models for their gigantic computational bur-
denl'”)] so we prefer a relatively concise model. To this
end, we consider relieving the impact of propagation
background based on IC model.

The IC model considers a social network as a weighted
graph. Nodes represent users and edges represent social
ties. The weight of an edge is the probability that an
item spreads from the starting node to end node of the
edge. Specifically, at time ¢, A; is the set of current act-
ive nodes. For node u € Ay, it has only one chance to af-
fect its inactive adjacent node v with the probability wy..
If succeeding, v becomes active and will try to affect its
own neighbors in the next time stamp ¢ + 1, otherwise v
keeps inactive and v has no chance to affect v any more.

We have known items compete for users’ limited at-
tention while users suffer from information overload in
real social networks. As to a specific user, the reason why
he misses content items is he follows too many. Accord-
ing to Weng et al.20l, at the competing level of “stand-
ard”, the probability that a message which a user re-
ceived could be read is only 0.016.

Based on this cognition, we propose the ICpp model.
The model’s key point is how to measure the probability
that a user received an item and missed it. It is obvious
that the more a user follows the more likely the items he
received will be omitted. Thus, we use the in-degree, i.e.,
following number, as an indicator for the probability that
items being missed. And a concise function should be
chosen according to Occam's Razor. Here, we adopt an
exponential function to describe the probability, because
the property of exponential function in accordance
without understanding of the competing. Let 3(u) repres-
ent the probability that an item being missed by agent u:

Bu)=1— o 8X1D(u) (4)
where ID(u) denotes the in-degree of agent u, § is an
adjust factor that needs to be selected by a concrete
network.

Then, we get ICpp by adding the impact of propaga-
tion background to IC model. In ICpp, the probability an
item propagated from agent v to w is

Pvu = Wyu X (1 - ﬁ(u)) (5)

Thus, the probability that v activates u is the product

of v's influence and the chance u sees the item.

So far, we have gotten the ICpp model. It just mod-
els the ideal case, and looks quite simple. Of course, fur-
ther work is needed to describe the complex real scenari-
os, for instance, network embedding and neural networks
could be used to replace B, but we only explain the basic
idea here because it is helpful to understand the essence.

Finally, let’s consider the influence function, denoted
by f(A), which is defined as the expected number of act-
ive nodes at the end of propagation process, given that A
is the initial active set Ag. Then, similar to the IC model,
the influence function of ICp g model is also satisfying the
properties of non-negative, monotone and submodular,
because the propagation probability of each edge is stable
if the network structure remains unchanged. That is the
basic assumption of most works today. So the greedy al-
gorithm could still be utilized for influence/propagation
maximization problem based on ICpp model.

4 Experiments

In this section, we demonstrate the effectiveness of our
methods on four synthetic networks and two real-world
networks. First, we show that our PBS algorithm could
well simulate the propagation background of real social
network. Then, we show that the ICpp model could re-
lieve the impact on propagation process from the back-
ground.

4.1 Experimental setup

Data. In order to test our methods, we adopted net-
works of several types of topology, including ER (Erdos-
Renyi) random network, WS (Watts-Strogatz) small
world network and BA (Barabasi Albert) scale free net-
workB2, GC (benchmark Graph with Community) net-
work®3], and two real networks, i.e., ego-Facebook and
email-Eu-Core®. Besides, each synthetic network has 512
nodes, while ego-Facebook and email-Eu-Core have 1005
and 4039 nodes, respectively.

Evaluated methods. The PBS algorithm is utilized
to simulate the propagation background. And the post
number distribution is a direct consequence of propaga-
tion background. We would evaluate it by checking the
post number distribution result of PBS and comparing it
with the statistical distributions of models in [20, 21].

As to the ICpp model, we compared its simulated
propagation scope to other models. All the scopes were
computed by Monte Carlo simulation[?l and we just coun-
ted the retweet times of the given items. First, on the
synthetic networks, we constructed the ground truth by
simulating a set of items’ propagation scopes while the
propagation background was considered. In the diffusion
process, agents would act the same way as in PBS al-
gorithm. We compared the diffusion result of ICpp with

thttp://snap.stanford.edu/data/
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results of the IC model. Second, on the real networks, we
compared ICpg's propagation scope to IC, ICnNpl!6l and
RAINDB4 33 without ground truth.

Parameter setting. We set each edge equal
propagation probability because it is better than setting
arbitrary random values when there is no real data to de-
duce them. When considering an item propagation in a
network, each item's source node number was sampling
from the power law distribution with a slope 2.5B6], and
its source nodes were selected randomly. The active time
sequences of agents were created based on the method in
Section 3.1.

The amax and iBufSize are core parameters of PBS,
their values were selected ensuring 2 things: 1) The distri-
bution of agents’ item number follows power law. 2) In-
formation overload occurs on most agents. We adopted
the grid search method on a GC graph to determine the
values, and set amax = 0.12, iBufSize = 32 in PBS al-
gorithm. The corresponding item number distribution
looks like Fig.3(d), and information overload occurs on
over 70% nodes. Because of too many distribution figures
and information overload rate pairs, we don't list them
here.

The value of ¢ in ICpp reflects the competing level, or
on the contrary, the probability that an item existing in
receive buffer will be read. In [20], the probability was set
to 0.205, 0.016 and 0.001 corresponding to weak, stand-
ard and strong competitions, respectively. Here we set fol-
lower number 100 for the case of low competition.

The decay rate of the ICyp model was set based on
[10], we adopted the default value, i.e., 0.3", where n is
the times that a user’s neighbors had posted/reposted an
item.

Enlightened by Yang et al.3%, in RAIN model, we
considered 10% of nodes with the highest PageRank
scores37 to be opinion leaders, 10% of users with the low-
est network constraint scoresB8! to be structural hole
spanners, and the remaining as ordinary nodes.

4.2 Experimental results

Background simulating. Research on human dy-
namics have found that the post number distribution of
online social networks fits heavy tail or power lawl(7: 29,

Fig.3 presents the simulating results of propagation
background. Each method just runs once at each net-
work. The parameters of the Weng's model and Qiu's
model were the same as their original papers. PBS and
Weng's methods run 4096 steps, and Qiu’s model runs
100000 steps.

As seen from Fig. 3, the Qiu’s model does not result in
the expected long tail distribution on real-world net-
works, so it is not very suitable for simulating the
propagation background. In addition, the idea that agents
conduct activities in random order also makes it difficult
to combine the Qiu’s model with IC and other models.
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Though the distributions of PBS are somewhat more like
to be power law than Weng's model, it is difficult to say
which method is better to simulate propagation back-
ground simply based on their message number distribu-
tions. However, there are two points to note here. 1) PBS
does not allow an agent to post the same content item
many times, and the memory mechanism of the Weng's
model determines that an agent could post an item many
times. 2) PBS's buffering mechanism, activity mechan-
ism and new item generation mechanism are closer to the
real situation than Weng's method. Besides, the time
complexity of PBS is lower than Weng's model, that is
O(nkn) verse O(kn) given that k and n denote step num-
ber and agent number respectively, and 1 < 1. Therefore,
PBS should be the best way to simulate the propagation
background at present.

Propagation scope simulating. To show the effect
of propagation estimating, we computed a set of items’
diffusion scope under different methods by Monte Carlo
simulation. The experiments were conducted under the
same settings, i.e., we employed equal propagation prob-
ability for each edge and same source nodes for each net-
work.

On each synthetic network, we conducted three exper-
iments, i.e., computing the propagation scopes of a set of
items with PBS, IC and IC;s, respectively. As mentioned
in Section 4.1, the propagation result of PBS was viewed
as ground truth because it was the closest to actual cir-
cumstance. The results are shown in Table 1.

In the experiments, we employed a series of propaga-
tion probabilities, such as 0.25, 0.2, 0.15, 0.10, 0.05, 0.01,
0.005, the computed propagation scopes varied greatly
when different propagation probabilities were used, but
the order of propagation scopes of three methods was
stable. We reported only the results of one propagation
probability in Table 1. Furthermore, the parameter of
equation (4) should be different for each network. But we
didn't adjust it to make the results very beautiful and
just show its effectiveness.

It could be seen that different propagation probabilit-
ies were utilized for different networks. This is because
the buffer mechanism will become invalid when the
propagation probability of network is below some
thresholds. And the thresholds are different for each net-
work.

The results show that IC model tends to overestimate
the propagation scope. And ICpp could get more reason-
able results in general. Specifically, ICp's results on ER
and WS are just between IC's and PBS’, they are as our
expectation. IC,'s results of iteml on GC are lower than
PBS’, but the difference is very small. This is because the
source node just lies in the fringe of the network and the
impact from the buffer mechanism is lower than the ef-
fect from equation (4). Most of the IC,'s results on BA
are lower than PBS’. The reason is that the topology of
BA network is more sensitive compared to others, and
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Fig.3 Propagation background simulating results. The first, second and third columns are results of PBS algorithm, Weng's model
and Qiu’s model, respectively. The first, second, third and forth rows are results on BA network, GC network, ego-Facebook network

and email-Eu-core network respectively.

the proper parameter of equation (4) for BA network is
different from others. And we verified it in experiments.
On the two real networks, we conducted five experi-
ments, i.e., computing the propagation scopes of a set of
items with PBS, IC, ICpp, ICNp and RAIN respectively

by Monte Carlo simulation. The results are shown in
Table 2.

If we consider only the results of PBS, IC and ICpp,

it is obvious that our statement on results of synthetic

networks also holds.

But there are also the results of

ICnyp and RAIN here. Thus, we couldn’t decide whose

results acted as ground truth. Therefore, let's look at
them another way.

First, we could sort the simulated propagation scopes
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Table 1 Simulated propagation scope on synthetic networks

Net P Method Item1 Ttem?2 Ttem3 Item4 Item5 Item6 Ttem7 Item8 Item9 Item10
PBS 20.95 70.08 23.66 55.82 20.10 25.24 46.18 77.54 20.56 46.95
ER 0.1 IC 150.73 290.64 166.00 274.25 184.56 193.13 249.38 296.40 170.95 263.01
ICpB 48.35 136.10 52.37 114.61 59.24 63.97 95.69 147.29 54.60 105.90
PBS 6.43 19.45 6.03 20.05 4.85 6.54 12.42 26.32 6.14 13.83
WS 0.25 1C 7.95 28.96 8.78 26.53 8.17 7.70 17.01 34.76 8.46 16.71
ICpB 6.76 25.35 7.38 22.15 7.18 6.74 14.69 29.77 7.15 14.18
PBS 5.33 94.12 16.39 46.42 10.68 6.72 24.97 62.49 17.00 20.60
BA 0.15 IC 22.94 122.66 27.83 78.37 18.63 12.28 41.63 96.88 31.42 37.78
ICpB 10.73 85.87 12.69 43.15 8.98 5.55 20.93 55.73 15.36 19.24
PBS 3.85 26.90 3.70 18.66 6.59 5.97 13.74 31.85 6.73 8.47
GC 0.1 IC 5.19 55.90 6.29 36.89 13.93 13.80 31.09 61.56 15.26 17.45
ICpB 3.83 33.56 4.57 21.82 7.62 7.79 17.84 37.38 8.63 11.06
The “P” in table means the propagation probability on each edge.
Table 2 Simulated propagation scope on real networks
Net P Method Iteml Item?2 Item3 Item4 Item5 Item6 Item?7 Item8 Item9 Item10
PBS 74.35 542.33 744.53 421.75 498.90 712.46 657.18 481.09 951.14 226.51
IC 711.93 2891.82  2091.09 2069.88 2901.93 2901.21  2862.23  2889.50 2903.03  2251.94
ego 0.1 ICpB 77.06 731.34 1416.48 739.98 1202.65  1541.30  1145.33  1045.41 1676.94 586.22
ICND 33.27 159.86 195.29 128.48 133.50 198.59 191.52 136.23 260.99 148.71
RAIN 215.59 2108.89  2320.66  1773.28  2373.25  2375.47 1785.37  2188.05 2392.95 1033.79
PBS 349.59 63.01 224.28 335.98 210.97 259.72 133.08 244.18 325.42 60.74
1C 657.29 208.76 619.29 657.66 591.56 640.01 468.32 653.84 658.06 214.46
email 0.1 ICpB 565.86 74.01 340.10 549.13 316.16 392.87 200.66 460.86 517.90 86.20
ICND 92.01 28.78 82.98 90.37 77.86 84.52 62.84 87.59 89.95 29.08
RAIN 533.31 73.11 360.35 530.84 299.51 399.20 211.20 440.42 517.36 74.67

The “P” in table means the propagation probability on each edge. For RAIN, we set the propagation probability from opinion leader to other
nodes 1.5P, the propagation probability from structural hole to other nodes P, and the propagation probability between ordinary nodes 0.5P.

of former four methods, i.e., [ICnxp < PBS < ICpp < IC.
The order is very stable. Second, the results of RAIN
fluctuate significantly compared to other methods. When

ive to IC model.
The effect of ICpp model was relatively stable on the

in valley, it is less than ICpp, and when at peak, it ex-

ceeds IC. This is because the source nodes belong to dif- ZZ I +%\% |
ferent types, say, opinion leader, structural hole or ordin- c 3 (B}é
ary user. Third, ICyp's inhibitory effect on IC is very '% 071 Tego_ 1
striking. It seems the inhibition is something more than §0.6 3 — - cmail] |
necessary. Finally, from the perspective of mechanism, E_ 05 L %\ . i
ICpp, ICNnp and RAIN model the different aspect of _; 04 | ~ o |
propagation process, and we are certain that ICpp does 5 AR
works, it grasps the underlying essence of propagation 2 03 1 e . )
background. g 0.2 R - 1
After showing the overall effectiveness of ICpp, we 0.1 b i
would like to demonstrate some details of the results in 0 . . . . . .
Tables 1 and 2. Fig.4 shows error bar diagram of the ef- 0 1 D) 3 4 5 6 7

fect of ICpp, where horizontal axis denotes the number of Source node number

the source node number of items, and the vertical axis

denotes the proportion of diffusion scope reducing relat- Fig.4 Effect of ICpp comparing to IC
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four synthetic networks. We think it is because they have
a single topology structure. Nevertheless, the effects on
real networks had obvious fluctuation. It maybe results
from their hybrid structure, they are scale-free, small
world and with community, etc. So deeper understanding
of influence on propagation from the network topology
structure is necessary.

4.3 Discussions

We would like to discuss two problems that are
caused by the neglect of propagation background.

First, in online business practices, often the effect of
word of mouth needs to be estimated. The problem is
known as influence/propagation maximization aimed to
select seed sets to maximize the effect of word of mouth.
But we believe that the expected effect could not be
reached if the propagation background was omitted.

Second, many tasks need to learn the propagation
probability from real data by machine learning methods.
In such cases, usually the items a user retweeted were
considered as positive samples and others as negative
samples. Thus, the items that a user missed were con-
sidered as those the user didn't like. So the learned
propagation probabilities were underestimated, we be-
lieve.

5 Conclusions

In this paper, we proposed an agent-based algorithm
to simulate the propagation background in online social
networks. According to the validation performance, it
could be among the best methods to simulate propaga-
tion background, and further establish a foundation for
future research on social propagation. Also, we presented
the ICpp model by considering the effect of propagation
background for better describing the propagation process.
Extensive experiments have demonstrated that our meth-
od could effectively relieve the impact from propagation
background on the diffusion process.
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