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Product Quantized Collaborative Filtering
Defu Lian, Xing Xie, Enhong Chen and Hui Xiong

Abstract—Because of strict response-time constraints, efficiency of top-k recommendation is crucial for real-world recommender
systems. Locality sensitive hashing and index-based methods usually store both index data and item feature vectors in main memory,
so they handle a limited number of items. Hashing-based recommendation methods enjoy low memory cost and fast retrieval of items,
but suffer from large accuracy degradation. In this paper, we propose product Quantized Collaborative Filtering (pQCF) for better
trade-off between efficiency and accuracy. pQCF decomposes a joint latent space of users and items into a Cartesian product of
low-dimensional subspaces, and learns clustered representation within each subspace. A latent factor is then represented by a short
code, which is composed of subspace cluster indexes. A user’s preference for an item can be efficiently calculated via table lookup. We
then develop block coordinate descent for efficient optimization and reveal the learning of latent factors is seamlessly integrated with
quantization. We further investigate an asymmetric pQCF, dubbed as QCF, where user latent factors are not quantized and shared
across different subspaces. The extensive experiments with 6 real-world datasets show that pQCF significantly outperforms the
state-of-the-art hashing-based CF and QCF increases recommendation accuracy compared to pQCF.

Index Terms—Recommendation, Product Quantization, Collaborative Filtering, Maximum Inner Product Search
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1 INTRODUCTION

R ECOMMENDER systems aim at finding a short list of
items to be consumed with the highest chance. They

have been widely used in many online services for dealing
with information overload. Matrix factorization (MF) is
one of the most popular recommendation methods, even
with the recent development of deep-learning-based rec-
ommendation. By using advanced loss functions, MF can
show very competitive recommendation performance [1],
[2]. Moreover, MF has been extended for incorporating
side information by applying deep learning for processing
the side information [3], [4], [5]. Their recommendation
performance can be comparable to other deep-learning-
based recommendation methods, such as DeepFM [6] and
XDeepFM [7]. Therefore, in this paper, we only focus on the
MF-based recommendation models. Another reason of this
choice is that the MF models are more efficient to train and
predict.

In MF modes, both users and items are represented by
points in a joint latent space. The score of matching between
a user i represented by pi and an item j represented by
qj is estimated by the inner product 〈pu, qj〉 = pT

uqj . A
higher score indicates user’s higher preference for the item.
Given a user, the top-k recommendation task selects k items
with the largest scores among N candidate items. The time
complexity is O(k log k + NK), where K is the dimension
of latent space. The massive growth of users and items in
online services gives rise to the challenge of efficient top-
k recommendation. In most recommender systems, user
interest evolves over time, so that it is not a good choice
to precompute top-k items, and then store them into a
database. This paper studies the scalability of the top-k
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commendation based on matrix factorization.
To instantly generate recommendation, locality-sensitive

hashing (LSH) and index-based methods have been widely
used in practical scenarios such as news recommenda-
tion [8] and movie recommendation [9]. Note that the inner
product generally violates the triangle inequality, so maxi-
mum inner product search should be transformed to nearest
neighbor search [10], [11], [12]. Index-based methods, such
as KD-tree and metric tree [13], are usually better than
LSH for real data because of the usage of data distribution.
However, both LSH and index-based methods are required
to perform a fine re-ranking step based on exact distance,
so that in addition to index structure, item feature vectors
are also stored in main memory. This constraint restricts the
number of items to handle. Recently, hashing-based recom-
mendation methods are proposed for efficient collaborative
filtering [14], [15], [16], [17], [18] with limited memory usage.
These algorithms directly learn short binary codes from
rating/preference data represented by a user-item matrix
R, and efficiently estimate preference scores via hamming
distance. However, these algorithms suffer from challenge
of optimization and large quantization errors.

Motivated by much lower approximation errors of prod-
uct quantization (PQ) than hashing [19], [20], in this pa-
per, we propose product Quantized Collaborative Filtering
(pQCF) to construct short codes for users and items. pQCF
decomposes the joint space of users and items formed
by matrix factorization into a Cartesian product of lower-
dimensional subspaces, and learns clustered representation
within each subspace, as demonstrated the left (training)
part of Fig. 1. As a result, a latent feature vector of either
user or item is represented by a short code composed of
subspace cluster indexes. The representation capacity is then
much larger than binary Hamming space. For the sake of
illustration, these cluster indexes are represented by one-hot
indicators in Fig. 1. In fact, each cluster index can be more
compactly encoded using logC bits if there are C clusters in
a subspace. By constructing lookup tables between cluster
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centers within each subspace, the preference score can be
efficiently computed with a few additions, as shown in the
right (prediction) part of Fig. 1. Therefore, time consumption
is comparable to hamming distance in hashing-based CF.
The storage cost is also close to hashing-based CF, with a
few extra spaces for storing lookup tables.

It is straightforward to apply PQ for quantizing user
latent factors and item latent factors separately. However, as
evidenced by empirical results, this quantizer can be signifi-
cantly improved since PQ is based on the Euclidean distance
rather than the inner product [19]. Though PQ is subse-
quently extended for maximum inner product search [21],
quantization is only performed over item latent factors
learned from matrix factorization. Different from this ex-
tension, pQCF only takes rating/preference data as input
and unifies quantization and the learning of latent factors
into a joint framework. This can be better tailored for col-
laborative filtering with only rating data1 provided. In spite
of this, pQCF can be still effectively optimized using block
coordinate descent. The time complexity of optimization in
each iteration is also linearly proportional to the number of
ratings, not higher than the matrix factorization algorithms.

To summarize, the main contributions are four-fold:
• We propose product Quantized Collaborative Filtering

(pQCF) to learn semi-structured latent factors for users
and items from rating data. This essentially extends prod-
uct quantization from the Euclidean space to the inner
product space, and strikes a better balance between effi-
ciency and accuracy of item recommendation.

• We propose an efficient block coordinate descent algo-
rithm for parameter learning. The time complexity of each
iteration is only linearly proportional to the number of
ratings. We also reveal how pQCF integrates the learning
of latent factors into quantization.

• We extend pQCF to an asymmetric version – QCF, where
only item latent factors are quantized and user latent fac-
tors are shared across different subspaces. QCF is shown
to dramatically increase recommendation accuracy due to
approximating the inner product more precisely.

• We evaluate the proposed algorithms with six real-world
explicit or implicit datasets. The empirical results demon-
strate the significant superiority of the proposed algo-
rithms to the state-of-the-art hashing-based CF methods
with comparable retrieval time and a few extra memories.
pQCF also achieves 30x speedup for top-k recommenda-
tion tasks with negligible accuracy degradation.

2 RELATED WORK

This work targets for striking a better balance between
efficiency and accuracy of item recommendation. We first
review recent advance of non-sequential recommendation
models in improving recommendation accuracy. Then, we
turn to recommendation efficiency. Since the preference
score is estimated by the inner product between latent
factors, it is closely related with the research of maximum
inner product search (MIPS) given latent feature vectors of
users and items. It is also closely related with hashing-based
collaborative filtering given users’ rating data.

1. Below rating/preference data are collectively denoted rating data.

2.1 Recommendation Models

The recent advance of non-sequential recommender systems
can be classified into three categories. The first taxonomy
is to design new loss functions for recommendation mod-
els, such as the Bayesian Personalized Ranking (BPR) loss
[22], [23], Gravity Regularizer [24], [25], [26], Weighted
Approximate-Rank Pairwise (WARP) loss [27], Ranking-
based implicit regualrizer [28], CliMF [29], Sampled Soft-
max [3]. The second taxonomy is to design preference
functions, which are based on dot product, Euclidean dis-
tance [1], multilayer perception [30], or cosine similarity [3].
The final taxonomy is to model feature interaction, whose
representative models include PNN [31], Deep&Cross [32],
Wide&Deep [33], XDeepFM [7] and GCN based models [34],
[35]. In spite of the recent advance of recommender systems,
MF with the advanced loss functions plays an important
part in collaborative filtering, due to its competitive recom-
mendation accuracy and superior computational efficiency.

2.2 Maximum Inner Product Search

The MIPS problem has been studied for many years and
attracts much renascent attention recently. The challenge
of the MIPS problem is that the inner product violates
the basic axioms of a metric, such as triangle inequality
and minimality. Several works try to transform MIPS to
nearest neighbor search (NNS) approximately [10], [36] or
exactly [11], [12], [37]. Note that if the database vectors are
of the same norm, MIPS is equivalent to NNS. Therefore, the
key idea of the transformation lies in augmenting database
vectors to ensure them an (nearly) identical norm. The
differences of these works also include the transformation
of query vectors, such as ensuring their norm identical to
database vectors [12], [37] or keeping them unchanged [11],
[36]. Though scaling query vectors does not affect the perfor-
mance of retrieval, it leads to different distortion errors [12].
Following the transformation, a bulk of algorithms can
be applied for ANN search, such as Euclidean Locality-
Sensitive Hashing [38], Signed Random Projection [36],
PCA-Tree [11], Hierarchical K-means trees [1], [39], [40].
Alternatively, MIPS can be accelerated by branch and bound
algorithms with the metric tree [13] and clustering [41], by
the threshold algorithms [42], or an attribute pruning-based
algorithms [43].

Different from these works, we study the MIPS problem
from the perspective of quantization, and unify quantization
with the learning of latent factors. Therefore, there is no
need of transforming MIPS to NNS any more. In fact, the
proposed algorithm can be integrated with these advanced
techniques for approximated MIPS. Several existing works
also studied quantization-based MIPS by exploiting addi-
tive nature of inner product, such as additive quantiza-
tion [44], composite quantization [45] and residual quantiza-
tion [46]. However, they belong to alternative quantization
to product quantization, without specific consideration of
the problems of the inner product. Another work about
quantization-based MIPS extended PQ from the Euclidean
distance to the inner product [21]. However, they only took
some query (user) latent factors as held-out samples for
training, and did not take rating data into consideration.
Therefore, it is totally different from our settings, where
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Fig. 1. The framework of product quantized collaborative filtering.

rating data is taken as input, and quantization is unified
with the learning of latent factors of both users and items.

2.3 Hashing-based Collaborative Filtering
Hashing-based collaborative filtering learns hash codes
from rating data and (or) side information. In other words,
they are data-dependent, in contrast data-independent
hashing such as L2LSH [14] and MinHash [8], [47], [48].
Hashing-based collaborative filtering can be organized into
two categories: two-stage hashing and discrete hashing.

Two-stage hashing methods separate binarization from
the learning of latent factors. For example, Zhou and Zha
utilized iterative quantization (ITQ) to learn binary codes
from user/item latent factors, which are learned from matrix
factorization [15]. In order to ensure hash codes as compact
as possible, a decorrelated constraint was imposed over
latent factors before quantization [49]. As observed by [16],
quantization results in the loss of magnitude information of
latent factors, so existing methods only preserve similarity
rather than the inner product between the user and the item.
Therefore, they proposed to impose a constant feature-norm
constraint on latent factors, and then quantized magnitude
and similarity separately.

Discrete hashing methods aim to reduce large quanti-
zation errors from which the two-stage hashing methods
suffer. For example, Zhang et al. proposed to directly learn
binary codes for users and items in matrix factorization
by cyclic coordinate descent [17]. To ensure hash codes
informative and compact, the balanced and decorrelated
constraints were imposed. In order to adapt from rating
data (explicit feedback) to implicit feedback, Zhang et al.
proposed to optimize pairwise ranking loss between each
user’s interacted items and other items [50]. Lian et al.
proposed a unified framework for both explicit and implicit
datasets by introducing an interaction regularization [18],
[51] and further incorporated auxiliary information by a
regression-based method.

Different from these works, the proposed algorithm
learns compact codes for collaborative filtering from the
perspective of quantization. As observed from experimental
results, this leads to reduction of quantization errors and
substantial improvements of recommendation accuracy.

3 PRELIMINARY

Before introducing pQCF, we first introduce some notations
and review some background. Denote M the number of
users, N the number of items, K code length, D the di-
mension of each subspace, F the number of subspaces, C
the number of clusters within each subspace. Note that the
number of clusters across subspaces is assumed identical.
The code length K is distinguished from k, the number
of items to be recommended. Let i index a user, j index
an item, c index a cluster, f index a subspace. Denote R
a user-item rating matrix, and denote pi, qj ∈ RK latent
factor of a user i, an item j, respectively. Other notations are
introduced in the context.

3.1 Matrix Factorization for Top-k Item Recommenda-
tion
Recommender system first concentrated on rating predic-
tion based on rating data. Many algorithms have been
developed particularly at the time of Netflix prize. Item
recommendation has been started in implicit feedback [22],
[24], since the algorithms tailored for rating prediction per-
form poorly in this case. One simple yet effective method
is weighted regularized matrix factorization. In this model,
missing values are considered zero-rated, but zero ratings
are assigned a much lower confidence than observed ones.
In fact, a regularizer is imposed to penalize non-zero estima-
tion of preference scores [25]. Interestingly, a similar model
has also been proposed for explicit feedback [52], where
zero ratings are considered prior on missing values. Since
this model is suitable for item recommendation based on
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both explicit and implicit feedback, we choose it as our base
model and dub it MF. Formally, MF optimizes the following
objective function

min
pi,qj∈RK

∑
i,j

wij(rij − pT
i qj)

2 + λ(‖P ‖2 + ‖Q‖2), (1)

where wij equals to α + 1(α � 0) if rij is observed and
1 otherwise. P ∈ RK×M is a matrix stacking user latent
factors by column and Q ∈ RK×N is a matrix stacking
item latent factors. The first part can be decomposed into a
well-known rating prediction loss and a regularization term∑

(i,j)/∈Ω(pT
i qj)

2.

3.2 Product Quantization
Product quantization is proposed for nearest neighbor
search. It decomposes feature space into the Cartesian prod-
uct of subspaces and performs k-means clustering in each
subspace. Each feature vector is represented by a short code
composed of cluster indexes in each subspace. The efficient
computation of distance between feature vectors based on
lookup tables enables faster nearest neighbor search. Below
we introduce product quantization for item feature vectors.
Denote item feature vector q ∈ RK as the concatenation of F
subvectors of equal length D, q = [q1, · · · , qf , · · · , qF ]. The
subvectors are quantized separately using F distinct quan-
tizers. Formally, the f -th quantizer is a function hf mapping
a D-dimensional vector qf ∈ RD to a codeword in code-
book Vf , which is defined as Vf = {vf

c |c ∈ {1, · · · , C}}.
The Cartesian product V = V1 × · · · × VF is the set in
which a codeword v ∈ V is also formed by concatenating
the F codewords : v = [v1, · · · ,vf , · · · ,vF ]. The objective
function of PQ is formulated as follows:

min
V,d

∑
q

∑
f

‖qf − V fdf‖2 (2)

The c-th column of V f ∈ RD×C corresponds to the c-
th codeword. df is an one-hot vector, indicating to which
codeword qf is assigned. d = [d1, · · · ,df , · · · ,dF ] is a
long binary vector, comprising codeword assignments of
all subspaces. This objective function can be split into F
independent subproblems, each of which corresponds to a
k-means problem.

User latent factors are similarly quantized into the Carte-
sian product codebook U = U1×· · ·×UF with the same set-
tings. After that, the simple baseline for product quantized
collaborative filtering is ready. Notice that PQ was improved
by optimizing space decomposition [20], [53] so it is intuitive
to apply it for improving quantization. However, optimizing
space decomposition separately is not reasonable, as axises
are not aligned with each other after independent rotation.
This may lead to meaningless inner product. The solution to
this problem is introduced in next section.

4 OPTIMIZED PRODUCT QUANTIZATION FOR COL-
LABORATIVE FILTERING

To improve the baseline that simply applies PQ for indepen-
dently quantizing user latent factors and item latent factors,
we can jointly optimize quantization and space decomposi-
tion. According to [20], [53], optimal space decomposition is

important for ANN search, so it should be also important
for MIPS. As discussed, optimizing space decomposition
separately for users and items leads to unaligned axises,
so that it is meaningless to operate inner product between
them. To this end, we rotate the joint latent space with an
orthogonal matrix H . Note that the preference scores do not
change with such a rotation. In particular,

r̂ij = (Hpi)
T (Hqj) = pT

i H
THqj = pT

i qj (3)

Since Frobenius norm is unitarily invariant, rotating joint
latent space does not alter optimality. In other words, if
(P ,Q) is an optimal solution of Eq (1), (HP ,HQ) is also
optimal with the same loss. Therefore, OPQ should be
adaptive to collaborative filtering based on the following
optimization:

min
Θ,H
‖P −HT ŨB‖2F + ‖Q−HT Ṽ D‖2F (4)

where Θ = {Ũ , Ṽ ,B,D}. Ũ and Ṽ are block diagonal,
B comprises the codeword assignments of users and D
comprises the codeword assignments of items. Ṽ and D
are defined as follows:

Ṽ =


V 1 0 · · · 0
0 V 2 · · · 0
...

. . .
...

0 0 · · · V F

 ,D =


d1

1 d1
2 · · · d1

N

d2
1 d2

2 · · · d2
N

...
...

. . .
...

dF
1 dF

2 · · · dF
N

 ,
(5)

Ũ and B are similarly defined and are not shown here.
Given the orthogonal matrix H , the optimization prob-

lem is the same as PQ. Given Ũ , Ṽ ,B,D, the optimization
with respect to H is equivalent to the following problem

max
H

trace
(
HT (ŨBP T + Ṽ DQT )

)
,

s.t.HTH = I and HHT = I
(6)

This is the Orthogonal Procrustes problem [54] and there
is a closed-form solution: first apply SVD on ŨBP T +
Ṽ DQT = XΣY T and then let H = XY T . The overall
optimization alternates between learning H and learning Θ
until convergence. This algorithm is dubbed as OPQ CF. If
only item latent factors are quantized via OPQ, this turns
to an asymmetric OPQ, dubbed as OPQ CF+. The optimal
rotate matrix from OPQ will multiply user latent factors, to
align them with items in the same space and enable valid
inner product between them.

5 PRODUCT QUANTIZED COLLABORATIVE FIL-
TERING

Both OPQ CF and PQ postprocess latent factors learned
from MF. Since PQ is based on Euclidean distance, it is
not consistent with the inner product used for estimating
the preference scores. This causes that two items similarly
preferred by some user may be distant from each other
in the Euclidean space. Formally, the triangle inequality is
violated. For example, denote p = [1, 0] user latent factor,
and q1 = [x, y1], q2 = [x, y2] latent factors of two items.
The preference scores with these two items are the same,
but distance between two items, |y1 − y2|, can be arbitrarily
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large. It is intuitively feasible to exploit the Euclidean dis-
tance [1], [9] rather than the inner product to estimate the
preference scores. However, they deviate from the familiar
MF framework and can not benefit the existing MF based
recommender systems.

5.1 Loss Function
In this part, we will directly learn codebooks and assign-
ments from rating data instead of latent factors. To be
specific, we propose product Quantized Collaborative Fil-
tering (pQCF) to integrate the learning of latent factors into
quantization. The partition of either users or items is not
based on the Euclidean distance but the inner product pref-
erence. Therefore, product quantization is extended from the
Euclidean space to the inner product space. According to
Eq (4), quantizers are defined as minimizing distortion error
between P and HT ŨB, between Q and HT Ṽ D. From
another perspective, HT Ṽ dj is a quantized representation
of qj , where dj is the j-th column of D. Then we can use
quantized latent vectors to estimate the preference score:

r̂ij =
(
HT Ũbi

)T
(HT Ṽ dj) = bTi Ũ

T Ṽ dj

=
∑
f

(Ufbfi )T (V fdf
j )

(7)

The objective function of pQCF is then formulated by:

min
U,V,B,D

∑
i,j

wij

(
rij −

∑
f

(Ufbfi )T (V fdf
j )
)2

+ λ
(∑

f

‖Uf‖2F +
∑
f

‖V f‖2F
)

(8)

where the terms in the second line act a regularizer to
prevent overfitting. U and V are the Cardesian product
codebooks. In this objective function, it is worth noting
that rotating the joint latent space is implicitly achieved,
and explicit rotation does not take effect. Moreover, only
inner product is used so that there is no violation of triangle
inequality. Next we elaborate how to learn parameters.

5.2 Optimization
Codebooks and codeword assignments among different
subspaces are not independent, so that the learning of
codebooks and codeword assignments can not be completed
separately for each subspace. This is also different from PQ
and OPQ. However, it is possible to iteratively learn the
codebooks and codeword assignments for each subspace.
Below we focus on the learning of parameters in the f -th
subspace. Denote Ṽ −f block diagonal with V f excluded,
Ũ−f block diagonal with Uf excluded, and let B−f and
D−f comprise the codeword assignments of all subspaces
but the f -th. For simplifying notations, we introduce two
new variables: si = Ũ−fb−fi and tj = Ṽ −fd−fj . The prefer-
ence score r̂ij is simplified as r̂ij = sTi tj +(Ufbfi )T (V fdf

j ).
Without confusion, the superscript f is dropped for further
simplification. The objective function is then rewritten as

min
U ,V ,B,D

∑
i,j

wij

(
rij−sTi tj−bTi UTV dj

)2

+λ
(
‖U‖2F +‖V ‖2F

)
(9)

Here B ∈ {0, 1}C×M and D ∈ {0, 1}C×N are slightly
abused for referring codeword assignments in the f -th
subspace. The columns of U ,V ∈ RD×C corresponds to
codewords in the f -th subspace.

Due to the symmetric between U and V , between B
and D, we only derive the update rule for U and B.
Let’s consider how to update bi for a user i first. Denoting
q̃j = V dj , expand the loss function and discard the terms
irrelevant to bi

L(bi) = bTi U
T
(∑

j

wij q̃j q̃
T
j

)
Ubi − 2bTi U

T
∑
j

wij q̃jrij

+ 2bTi U
T
(∑

j

wij q̃jt
T
j

)
si. (10)

Since bi is an one-hot vector, we can efficiently enumerate
all choices of bi and choose the one with the minimal loss. If
the user i is assigned to the c-th codeword, i.e., bic = 1, the
loss Lic is defined as

Lic = uT
c

(∑
j

wij q̃j q̃
T
j

)
uc − 2uT

c

∑
j

wij q̃jrij

+ 2uT
c

(∑
j

wij q̃jt
T
j

)
si. (11)

For concise, it can be rewritten in a matrix form,

Lic = uT
c Q̃W iQ̃Tuc−2uT

c

(
Q̃(wi◦ri)−Q̃W iT Tsi

)
(12)

where W i is a diagonal matrix with wi on the diagonal
and T ∈ R(K−D)×N is a matrix stacking tj by column. ◦
operates element-wise product between vectors. Based on
the setting of wij , Q̃W iQ̃T and Q̃W iT T can be efficiently
computed with a simple trick [24]. For example, Q̃W iT T =
αQ̃iT

T
i + Q̃T T , where Q̃i is a submatrix of Q̃ selected by

rated items of the user i. Be independent of the user i, Q̃T T

can be precomputed. Similarly, Q̃W iQ̃T = αQ̃iQ̃
T
i +Q̃Q̃T .

Without considering precomputing overhead, the time com-
plexity of choosing the assignment with the minimal loss
for the user i is O(ΩiDK + CD2), where Ωi is the number
of her ratings. With overhead, updating assignment for all
users costs O(ΩDK + MCD2), where Ω =

∑
j Ωj equals

the number of ratings.
Regarding codebook generation, we also expand the loss

function and discard the terms irrelevant to U . The objective
function with respect to U is written as follows:

L =
∑
i

bTi U
T
∑
j

(wij q̃j q̃
T
j )Ubi−2

∑
i,j

wij(rij−sTi tj)bTi UT q̃j

We can observe that it is difficult to derive the closed form
for updating the whole codebook once a time. It is intuitive
to derive the gradient of L with respect to U and to apply
gradient descent for parameter learning. However, we are
more interested in deriving the closed-form solutions for
updating codebooks since there is no need of parameter
tuning. Let’s consider the loss function with respect to a
codeword uc, i.e., the c-th column of U , which is defined as

L(uc) = uT
c

( ∑
i∈Ec

∑
j

wij q̃j q̃
T
j + λI

)
uc

− 2uT
c

∑
i∈Ec

∑
j

wijrij q̃j + 2uT
c

∑
i∈Ec

∑
j

wij q̃jt
T
j si (13)
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Algorithm 1: pQCF
Input: Rating matrix R, code length K , confidence

of observations α.
Output: U ,V,B,D

1 Initialize U ,V,B,D ;
2 repeat
3 for f ∈ {1, · · · , F} do
4 S ← Ũ−fB−f ; // O((K −D)M)

5 T ← Ṽ −fD−f ; // O((K −D)N)

6 Q̃← V fDf ; // O(DN)

7 Cache Q̃Q̃T and Q̃T T ; // O(DKN)
8 for i ∈ {1, · · · ,M} do
9 Compute Lic,∀c ∈ C ;

// O(ΩiDK + CD2)
10 c? ← arg minc Lic ;
11 Update bfi such that bfic? = 1;

12 for c ∈ C do // C = {1, · · · , C}
13 Update uf

c with Eq (15) ;
// O(ΩI

cDK +D3)

14 P̃ ← UfBf ; // O(DM)

15 Cache P̃ P̃ T and P̃ ST ; // O(DKM)
16 for j ∈ {1, · · · , N} do
17 Compute Ljc,∀c ∈ C;

// O(ΩjDK + CD2)
18 c? ← arg minc∈C Ljc ;
19 Update df

j such that dfjc? = 1;

20 for c ∈ C do // C = {1, · · · , C}
21 Update vf

c based on Eq (15);
// O(ΩJ

cDK +D3)

22 until Convergent;

where Ec is the user set assigned to the c-th codeword. For
concise, it is rewritten in a matrix form

L(uc) = uT
c

( ∑
i∈Ec

Q̃W iQ̃T + λI
)
uc

− 2uT
c

∑
i∈Ec

(
Q̃
(
wi ◦ ri

)
− Q̃W iT Tsi

)
. (14)

Computing the gradient of L(uc) with respect to uc and
setting it to zero, we can get the optimal solution of uc by
solving the following system of linear equations,( ∑

i∈Ec

Q̃W iQ̃T + λI
)
uc =

∑
i∈Ec

Q̃
(
wi ◦ ri

)
− Q̃W iT Tsi.

(15)
Based on similar analysis, making use of precomputing
user-independent terms, the time complexity of updating
the codeword uc isO(ΩI

cDK+D3), where ΩI
c =

∑
i∈Ec

Ωi.
Since

∑
c ΩI

c =
∑

i Ωi, the time complexity of updating all
codewords is O(ΩDK + CD3).

The overall algorithm is shown in Algorithm 1, where
the superscript f is put back for clear demonstration. In
practice, B and D are not stored as binary matrices but
index matrices, i.e., B ∈ CF×M and D ∈ CF×N , where
C = {1, · · · , C}. Then line 4-7 and line 14 can be effi-
ciently computed based on array access via assignments.

Algorithm 1 is based on block coordinate descent, where
subspaces correspond to blocks of coordinates, so that the
convergence can be theoretically guaranteed [55]. Based on
previous analysis, the overall time complexity of updating
codebooks and codeword assignments in each iteration is
O
(

ΩK2+(M+N)CKD
)

. Furthermore, since the updating
rules are independent between users, between items, and
between codewords, parallel update can be applied to speed
up the training procedure. Regarding memory cost for item
recommendation, only B and D as well as F lookup tables
of size C × C are needed. 4FC2 bytes are used for storing
lookup tables. Each one-hot vector in B and D is converted
into an integer of logC bits, and then each user or each
item has F integers in total. Then 1

8 (N + M)F logC will
be used to compactly encode B and D. Since F = K/D,
1
8 (M +N)K log C

D + 4FC2 bytes are needed.

5.3 Relations with Product Quantization

Although pQCF is only based on the inner product, the
subspace quantizer is still related to the k-mean quantizer.
For better discussion, we further denote Ai = Q̃W iQ̃T and
yi = Q̃(wi ◦ri)−Q̃W iT Tsi. Then Lic can be reformulated
as follows

Lic = uT
c Aiuc − 2uT

c yi

= (uc −A−1
i yi)

TAi(uc −A−1
i yi)− yT

i A
−1
i yi.

(16)

Since the last term is independent of uc and can be dis-
carded when choosing the assignment with the minimal
loss. If we substitute Ubi with p̃i in Eq (9), and optimize
Eq (9) by alternating least square, then p̃i = A−1

i yi. There-
fore, the assignment algorithm first learns user latent factor
and then assigns it to the nearest codeword in terms of
Mahalanobis distance. Therefore, pQCF unifies quantization
and the learning of latent factors in a seamless way.

Regarding codewords, pQCF defines a novel “average”
of group members,

uc =
( ∑

i∈Ec

Ai + λI
)−1( ∑

i∈Ec

yi

)
. (17)

This is different from uc = 1
|Ec|

∑
i∈Ec

A−1
i yi in the k-

means quantizer except the case Ai = Aj ,∀i, j ∈ Ec. Note
that the exception is impossible due to diversity of behavior
among users.

6 QUANTIZED COLLABORATIVE FILTERING

If user latent factors are not quantized, inner product can
be also fast computed by table lookup, as shown in Fig. 2.
Such an asymmetric pQCF is dubbed as QCF. If we directly
follow the asymmetric PQ [19], the rating is estimated as

r̂ij = 〈[p1
i , · · · ,pF

i ], [V 1d1
j , · · · ,V FdF

j ]〉.

To improve generalization ability of this model, we let
user latent factors share across different subspaces. This also
helps to dramatically reduce the parameters in this model.
The estimated rating is then formulated by

r̂ij = 〈pi,
∑
f

V fdf
j 〉. (18)
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Fig. 2. Framework of Quantized Collaborative Filtering.

Interestingly, QCF now turns to additive quantization [44],
[45], but it is based on the inner product instead of the
Euclidean distance. Moreover, different from these existing
works but similar to pQCF, codebooks are directly learned
from rating data via optimizing the following objective
function,

min
P ,V,D

∑
i,j

wij

(
rij − pT

i

∑
f

V fdf
j

)2

+ λ
(∑

i

‖pi‖2 +
∑
f

‖V f‖2F
)
. (19)

Given P fixed, the optimization with respect to V and D
is similarly achieved by iterating each codebook and its
codeword assignments. Regarding the f -th codebook, its
closed-form update equation is very similar to pQCF as
long as setting tj =

∑
f ′ 6=f V

f ′
df ′

j and si = pi. In other
words, vc is updated by solving the following system of
linear equations,( ∑

j∈Hc

PW jP T +λI
)
vc =

∑
j∈Hc

P
(
wj ◦ rj

)
−PW jP T tj ,

(20)
whereHc denotes the item set assigned to the c-th codeword
of the current codebook. The loss of assigning item j to the
c-th codeword is represented by

Ljc = vT
c PW jP Tvc − 2vT

c

(
P (wj ◦ rj)− PW jP T tj

)
.

(21)
The codebook with the minimal loss is then assigned to
the item j. Following similar analysis, the time complexity
of updating F codebooks and its codeword assignment is
O(ΩFK2 +NFCK2), after precomputing PP T .

Given V and D fixed, P is easily updated by cycling
through each user’s latent factor. In particular, denoting
qj =

∑
f V

fdf
j , the optimal pi is obtained by solving the

following system of linear equations,

(QW iQT + λI)pi = Q(wi ◦ ri), (22)

where Q is obtained by stacking qj by column. The time
complexity of updating P is O(ΩK2 +MK3).

The overall algorithm is shown in Algorithm 2, where
only PP T and QQT are cached. The time complexity
is O(ΩFK2 + NFCK2), being dominated by updating
codebooks and codeword assignments. This is around F

Algorithm 2: QCF
Input: Rating matrix R, code length K , confidence

of observations α.
Output: P ,V,D

1 Initialize P ,V,D ;
2 Q← zeros like(P );
3 for f ∈ {1, · · · , F} do
4 Q← Q + V fDf ; // O(NK)

5 repeat
6 Cache PP T ; // O(MK2)
7 for f ∈ {1, · · · , F} do
8 T ← Q− V fDf ; // O(NK)
9 for c ∈ C do // C = {1, · · · , C}

10 Update vf
c with Eq (20);

// O(ΩJ
cK

2 +K3)

11 for j ∈ {1, · · · , N} do
12 Compute Ljc,∀c ∈ C;

// O(ΩjK
2 + CK2)

13 c? ← arg minc∈C Ljc ;
14 Update df

j such that dfjc? = 1;

15 Q← T + V fDf ;

16 Cache QQT ; // O(NK2)
17 for i ∈ {1, · · · ,M} do
18 Update pi with Eq(20); // O(ΩiK

2 +K3)

19 until Convergent;

times higher than pQCF. Regarding memory cost for item
recommendation, only P , V and D are required to store so
that 1

8NF logC + 4FCK + 4MK bytes will be allocated.
Note that it may be not worth storing user preference
scores of codewords in each codebook, particularly when
FC � K , so it will consume slightly more time than pQCF
for item recommendation.

7 EXPERIMENTS

We evaluate the proposed algorithms (pQCF) from the
aspects of recommendation accuracy, sensitivity of parame-
ters, efficiency of item recommendation and visualization of
item latent factors.

7.1 Datasets

Since pQCF is suitable for both explicit feedback and im-
plicit feedback, we use 4 explicit datasets and 2 implicit
datasets for evaluation. The 4 explicit datasets are also
converted into implicit datasets when evaluating pQCF
against implicit feedback according to suggestions of prior
works [4], [22]. Table 1 summarizes statistics of these
datasets. The datasets vary in the numbers of items and
ratings, the density and concentration. The Yelp dataset
includes users’ ratings for points of interest. The Ama-
zon dataset is a subset of customers’ ratings for Amazon
books [56]. The Netflix dataset is from the well-known
Netflix Prize. The rating scores of these three datasets are
integers from 1 to 5. The MovieLens dataset is from the
classic MovieLens10M dataset. The rating scores are from
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0.5 to 5 with 0.5 granularity. Following convention of evalu-
ating CF algorithms, we filter these four datasets such that
users rated at least 20 items that were rated by at least 20
users. The implicit datasets include Gowalla and LastFM.
The Gowalla dataset includes users’ check-ins at locations.
Because of low density, it is less strictly filtered such that
users check-in at least 10 locations, which were checked in
at least by 10 users. The LastFM dataset is based on users’
play count of songs. Following [1], we include songs a user
listened to at least 5 times as positive feedback.

TABLE 1
Data Statistics. Concentration (Concn.) indicates rating percentage on

the top 5% most popular items [1].

Datasets Yelp Amazon Netflix MovieLens Gowalla LastFM

#users 18,454 35,736 429,584 69,838 29,858 357,847
#items 14,670 38,121 17,764 8,939 40,988 156,122

#ratings 869,126 1,960,674 99,884,887 9,983,739 1,027,464 16,893,651
Density 3.21e-03 1.44e-03 1.31e-02 1.60e-02 8.40e-04 3.02e-04
Concn. 23.25% 22.56% 59.43% 47.54% 29.15% 81.47%

7.2 Settings
For each user, we randomly sample his 80% ratings as
training set and the rest 20% as testing test. We fit a model
to the training set and evaluate it in the test set. In case
of explicit feedback, the model is fit to the explicit training
set, but evaluated against a converted implicit test set from
the explicit test set, which enables better computation of
ranking-based metrics. We repeat 5 random splits and report
averaged accuracy metrics. The hyperparameters of pQCF
and baselines are tuned on a validation set, which consists of
5% ratings of the training set. QCF shares the hyperparam-
eters with pQCF. Note that pQCF and QCF can handle both
explicit and implicit feedback without any modification
except that the hyperparameters may be different.

7.2.1 Metrics
The accuracy of recommendation is based on how well
positively preferred items in the test set are ranked2. We use
three widely-used metrics of ranking evaluation: Area un-
der ROC curve (AUC), Recall and Normalized Discounted
Cumulative Gain (NDCG). The cutoff k in Recall and NDCG
is set 50 by default.

7.2.2 Baselines
Regarding baselines, we mainly focus on hashing-based
collaborative filtering and quantization-based methods. The
baselines of hashing-based collaborative filtering include:
• DMF [18], the state-of-the-art discrete hashing for item

recommendation, which can take both explicit feed-
back and implicit feedback as inputs. The parame-
ter ρ for interaction regularization is tuned within
{10−6, 10−5, · · · , 10−1, 1}, both α and β for the decor-
related and balanced constraints are tuned within
{10−4, 10−3, · · · , 101, 102}.

• DCF [17], the first discrete hashing for collaborative filter-
ing, which directly tackles a discrete optimization prob-
lem, subject to the decorrelated and balanced constraints.

2. In explicit datasets, items with ratings greater than or equal to 4
are considered positively preferred

The parameters α and β for the decorrelated and balanced
constraints are tuned within {10−4, 10−3, · · · , 101, 102}.

• BCCF [15], is a two-stage hashing-based collaborative
filtering. It first solves matrix factorization with a bal-
anced regularization. It then uses ITQ [57] to derive
the binary codes. Following their suggestions, the coef-
ficient for the balanced regularization is tuned within
{0.01, 0.03, 0.05, 0.07, 0.09}.

• PPH [16], is a preference preserving hashing for collabo-
rative filtering. PPH first solves matrix factorization with
constant feature norm, where preferences can be well ap-
proximated by similarities. It then binarizes latent factor
into K-bit phrase codes and quantizes 2-bit magnitude
codes. The coefficient for the constant feature norm is
tuned within {0.01, 0.5, 1, 2, 4, 8, 16}.

• Collaborative Hashing, dubbed as CH, is a two-stage
method for learning binary codes [49]. CH first solves ma-
trix factorization on the full-matrix, by treating all unrated
items as zero-rated. Following [17], we implement CH as
arg minU ,V ‖R − UV T ‖2F , s.t. UTU = mIk,V

TV =
nIk. CH then binarizes U and V based on the sign
function.

The quantization-based methods include:
• PQ [19], directly quantizes latent factors of both users

and items which are learned from matrix factorization
according to Eq (1).

• OPQ CF, is the proposed variant of OPQ [20] for collab-
orative filtering, introduced in Section 4.1.

• OPQ CF+, is an asymmetric OPQ CF, which only quan-
tizes item latent factors, but rotates user latent factors with
the optimal rotation matrix returned by OPQ.

The source code of the proposed algorithm and baselines
are released in the Github repository3. The code length of
the baselines together with the proposed pQCF is set to
64 by default. Each subspace of these quantization-based
methods is of 8 dimensions, and clustered into 256 clusters
following Jegou’s suggestion [19]. The confidence parameter
α of ratings is only tuned for matrix factorization in the
validation set within {5, 10, 25, 50, 100, 250, 500}. Although
the prior work [21] also studied quantization-based MIPS,
it is unfair to compare it with ours since their settings
are different, as discussed in related work. Hence, it is not
considered as one of quantization-based baselines.

7.3 Comparison with Baselines
Table 2 shows recommendation accuracy in terms of Re-
call@50, NDCG@50 and AUC for the 4 explicit datasets,
where SL-Prior [52] bounds QCF and pQCF from the above.
We have the following observations.

First, pQCF significantly outperforms the best hashing-
based collaborative filtering by up to 78.7% in NDCG, 86.2%
in Recall and 11.8% in AUC in the four explicit datasets.
This implies large quantization errors of binarized latent
factor models. Though directly learning hash codes from
rating data could reduce quantization errors of binarization,
this task is very challenging due to involving combinational
optimization. Quantization-like algorithms can lead to sig-
nificant reduction of quantization errors and substantial
improvements of recommendation accuracy.

3. https://github.com/DefuLian/recsys
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Second, pQCF shows up to 12.3%, 9.8% and 2% improve-
ments of NDCG, Recall and AUC over PQ. This indicates
direct application of product quantization is suboptimal,
since PQ is based on the Euclidean distance while the
preference score is estimated by the inner product. It is
also observed that pQCF is superior to OPQ CF and that
pQCF can bring larger improvements in the denser datasets.
Therefore, unifying quantization and the learning of latent
factors benefits further reduction of quantization errors.

Third, OPQ CF is consistently better than PQ. The im-
provements are up to 6.4% in NDCG, 5.5% in Recall and
1.45% in AUC. This shows that rotating joint latent space in-
deed helps reduce quantization errors, as concluded in [20].

Forth, QCF outperforms pQCF by up to 13.4% in NDCG,
10.9% in Recall and 0.92% in AUC, and OPQ CF+ outper-
forms OPQ CF by up to 13.9% in NDCG, 11.9% in Recall
and 1.28% in AUC. This indicates only quantizing item
latent factors further reduces the quantization errors and
improves recommendation performance.

Finally, when re-ranking not applied, performance
degradation due to quantizing item latent factors is 2.6%
in NDCG, 2.2% in Recall and 0.23% in AUC on average.
Such performance degradation is indeed negligible.

Table 3 shows recommendation accuracy for the 6 im-
plicit datasets, 4 of which are converted from explicit
datasets. Note that these results can not be compared against
that of explicit feedback, since the data set is not of the same
size. According to this table, we have similar observations,
even in the 2 real implicit feedback datasets. Note that
implicit feedback datasets are much sparser than explicit
feedback, so recommendation based on implicit feedback is
more challenging. Moreover, the LastFM dataset shows high
concentration, indicating more than 81% plays concentrate
on the top-5% most popular songs. The recommendation in
the LastFM dataset is much more difficult. However, pQCF
still works well, showing 60.9% improvements relative to
the best hashing-based collaborative filtering and 15.6% im-
provements relative to PQ in terms of NDCG. Performance
degradation of recommendation is 3.1% in NDCG and 2.5%
in Recall on average. This demonstrates the power of the
proposed algorithms.

7.4 Convergence
Given any initialization of codeword assignments, both
pQCF and QCF can be convergent in theory according
to [55]. However, similar to k-means, they are sensitive to
initialization. The empirical results of convergence in the
MovieLens dataset are shown in Fig. 3. It is clear that even
with a random initialization, they can be convergent, but to
a higher loss and lower accuracy of recommendation than a
good initialization. Moreover, initialized by OPQ CF, both
algorithms further reduce loss and improve recommenda-
tion accuracy. This implies effectiveness of the proposed
optimization algorithms.

7.5 Sensitivity Analysis
The confidence parameter α mainly depends on the density
of datasets, and has been well studied in prior works [24],
[52]. Here, we focus on the sensitivity to code length. The
results of study in the Amazon dataset and the Yelp dataset
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Fig. 3. Illustration of convergence. opq init indicates the algorithms are
initialized via OPQ CF, and rand init means random initialization.

are shown in Fig. 4. The accuracy of recommendation grows
with the increase of code length in the Amazon dataset
while it may show over-fitting in the Yelp dataset when the
code length is larger than 128. The may be because far more
factors are required to determine users’ purchase of books
than users’ choice of restaurants, hotels and other points of
interest. This is evidenced by larger singular values in the
amazon dataset than the Yelp dataset at the same positions.
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Fig. 4. Sensitivity Analysis of Code Length.

7.6 Top-k Recommendation

Although pQCF is significantly superior to the best hash-
ing based collaborative filtering, it is unknown how much
efficiency should be traded off. As discussed before, the
preference score using quantized vectors can be efficiently
computed by a few additions given precomputed lookup
tables. The preference score using binarized vectors is also
efficiently computed via hamming distance. We record their
speedup and relative recall of top-k recommendation to
real-valued vectors learned from MF. Following [19], [58],
we re-rank the top-k items with accurate preference scores.
The results in the LastMF dataset with the largest number
of items are shown in Fig. 5, where k is varied from
200 to 2000. It is easy to observe that pQCF significantly
outperforms DMF with comparable retrieval time. With re-
ranking, pQCF achieves negligible accuracy degradation in
both Recall@100 and Recall@50 with 30+x speedup.

We also report the results of ANNOY4 in Fig. 5. ANNOY
is one of the best industrial ANN libraries [39]. ANNOY
performs better when using the Euclidean distance. MIPS
is transformed into NNS according to [37]. The number of
trees is fixed to 50 and the number of nodes to inspect is
varied from 7% to 15% of items. The results show that pQCF
is much better than ANNOY given the approximately same

4. https://github.com/spotify/annoy



10

TABLE 2
Comparison with the state-of-the-art on 4 explicit feedback datasets in terms of NDCG@50, Recall@50 and AUC (×100).

Dataset PPH BCCF DCF CH DMF PQ OPQ CF pQCF OPQ CF+ QCF SL-Prior

NDCG@50

Yelp 0.80±0.04 1.78±0.04 1.46±0.03 3.43±0.07 6.03±0.07 9.75±0.06 10.37±0.11 10.77±0.12 11.09±0.07 11.65±0.11 11.81±0.11
Amazon 0.62±0.02 3.60±0.03 1.56±0.03 5.00±0.05 7.36±0.05 8.94±0.06 9.42±0.05 10.05±0.11 10.73±0.08 11.38±0.06 12.45±0.06

MovieLens 2.75±0.03 5.67±0.02 7.54±0.12 7.23±0.12 26.41±0.11 34.42±0.11 36.11±0.09 38.52±0.06 39.79±0.15 42.41±0.05 42.57±0.08
Netflix 1.81±0.01 4.57±0.01 5.24±0.06 6.50±0.12 19.59±0.05 28.77±0.06 29.99±0.06 32.28±0.02 34.11±0.11 36.59±0.02 36.63±0.01

Recall@50

Yelp 1.84±0.07 4.17±0.11 3.44±0.08 7.71±0.07 11.64±0.15 19.99±0.18 21.10±0.20 21.67±0.27 22.26±0.20 23.02±0.21 23.24±0.23
Amazon 1.24±0.03 6.50±0.03 3.07±0.10 9.21±0.09 13.62±0.10 17.08±0.13 17.85±0.15 18.63±0.16 19.94±0.17 20.61±0.12 22.24±0.12

MovieLens 4.38±0.05 7.33±0.03 11.74±0.13 10.46±0.16 38.51±0.06 48.02±0.07 50.03±0.05 52.43±0.08 54.06±0.11 56.39±0.07 56.67±0.05
Netflix 2.33±0.02 4.63±0.01 6.88±0.06 7.37±0.15 23.58±0.07 34.89±0.05 36.01±0.04 38.29±0.02 40.30±0.07 42.47±0.01 42.50±0.02

AUC

Yelp 67.51±0.23 85.41±0.08 77.25±0.46 77.37±0.15 73.75±0.11 90.84±0.04 91.51±0.03 91.75±0.08 92.47±0.08 92.45±0.09 92.58±0.09
Amazon 69.49±0.11 81.39±0.07 82.48±0.20 83.39±0.10 88.50±0.04 93.27±0.02 93.98±0.04 94.31±0.05 95.01±0.04 95.14±0.02 95.46±0.03

MovieLens 74.09±0.19 74.76±0.03 82.37±0.05 68.36±0.13 90.25±0.05 93.97±0.05 95.33±0.03 95.85±0.02 96.05±0.03 96.35±0.02 96.55±0.02
Netflix 71.90±0.11 70.03±0.02 82.25±0.05 67.24±0.17 85.62±0.03 94.23±0.01 94.43±0.01 95.20±0.01 95.64±0.05 96.07±0.01 96.31±0.01

TABLE 3
Comparison with the state-of-the-art on 6 implicit feedback datasets in terms of NDCG@50, Recall@50 and AUC (×100).

Dataset PPH BCCF DCF CH DMF PQ OPQ CF pQCF OPQ CF+ QCF WRMF

NDCG@50

Yelp 1.34±0.11 2.02±0.02 3.72±0.05 2.42±0.03 6.77±0.09 8.67±0.11 9.23±0.13 9.42±0.08 9.83±0.13 10.26±0.15 10.53±0.17
Amazon 0.89±0.06 3.49±0.08 4.40±0.03 4.16±0.05 7.96±0.07 8.68±0.03 9.17±0.06 9.49±0.09 10.33±0.08 10.74±0.02 11.68±0.05

MovieLens 3.27±0.57 3.77±0.03 4.14±0.07 5.36±0.08 24.08±0.11 29.45±0.14 30.91±0.11 32.29±0.06 33.61±0.05 35.82±0.04 35.54±0.01
Netflix 3.02±1.08 2.24±0.01 0.25±0.01 5.45±0.10 18.55±0.15 24.51±0.07 26.11±0.03 27.87±0.02 29.73±0.03 31.46±0.02 31.50±0.01

Gowalla 1.45±0.10 6.45±0.07 6.77±0.12 4.18±0.07 11.36±0.14 11.96±0.09 12.67±0.08 13.63±0.08 13.49±0.08 14.77±0.06 15.58±0.07
LastFM 1.08±0.10 3.54±0.01 3.03±0.22 1.91±0.02 14.69±0.06 20.44±0.10 21.89±0.24 23.63±0.04 24.64±0.07 26.35±0.02 27.28±0.02

Recall@50

Yelp 3.15±0.21 4.62±0.04 8.64±0.09 5.45±0.08 14.98±0.16 17.82±0.20 18.87±0.13 19.03±0.12 19.87±0.19 20.40±0.19 20.87±0.23
Amazon 1.86±0.14 6.43±0.12 8.60±0.06 7.63±0.08 15.13±0.13 16.43±0.07 17.24±0.12 17.53±0.15 19.04±0.09 19.41±0.08 20.83±0.10

MovieLens 6.29±0.86 4.95±0.03 6.93±0.03 7.92±0.17 38.83±0.14 43.75±0.09 45.58±0.08 47.26±0.05 48.84±0.09 51.05±0.04 50.81±0.04
Netflix 4.03±1.56 2.12±0.00 0.34±0.01 6.19±0.12 24.47±0.24 30.46±0.05 32.17±0.02 34.05±0.04 36.03±0.04 37.75±0.02 37.69±0.02

Gowalla 3.20±0.22 12.83±0.09 14.14±0.20 8.37±0.14 21.17±0.22 22.24±0.21 22.91±0.09 23.69±0.17 24.15±0.10 24.92±0.13 25.92±0.14
LastFM 1.92±0.20 5.53±0.02 5.19±0.37 3.13±0.02 22.04±0.08 28.37±0.07 30.09±0.07 32.01±0.04 33.35±0.05 34.86±0.01 35.89±0.02

AUC

Yelp 84.45±0.74 88.92±0.07 92.37±0.05 74.88±0.38 92.66±0.05 89.16±0.06 90.07±0.12 89.96±0.07 90.88±0.10 90.46±0.06 90.76±0.08
Amazon 79.66±1.17 81.96±0.05 92.25±0.03 81.14±0.20 91.83±0.05 91.80±0.04 92.69±0.08 92.78±0.08 93.67±0.05 93.70±0.02 94.15±0.03

MovieLens 57.35±6.13 68.16±0.01 88.53±0.42 66.60±0.15 94.24±0.02 93.26±0.04 94.28±0.03 94.97±0.05 95.01±0.02 95.42±0.02 95.55±0.04
Netflix 57.58±2.50 63.55±0.02 72.30±0.42 65.76±0.43 92.93±0.06 91.08±0.01 92.44±0.03 93.50±0.01 93.70±0.01 94.43±0.01 94.59±0.01

Gowalla 85.39±1.42 89.75±0.06 95.74±0.03 84.43±0.06 95.38±0.05 95.62±0.02 95.89±0.05 96.16±0.03 96.76±0.02 96.76±0.01 96.80±0.02
LastFM 88.01±0.07 87.68±0.01 96.60±0.04 77.66±0.03 96.49±0.01 94.97±0.01 95.84±0.01 96.48±0.01 96.46±0.01 96.90±0.02 97.44±0.00

speedup ratio. Due to highly accurate recommendation,
pQCF can be further integrated into ANNOY for reducing
index size of ANNOY and further accelerating top-k item
retrieval in this library.
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Fig. 5. Trade-off between Efficiency and Accuracy of Top-k Recommen-
dation.

7.7 Visualization of Item Latent Factors

For better understanding why pQCF performs well, we
visualize the learned item factors by MF, pQCF, QCF and
DMF with the popular visualization tool t-SNE [59]. t-
SNE converts latent factors into two-dimensional vectors
by preserving cosine similarity between items. Then each
item is plotted in a two-dimensional space and labeled as
a unique color. The color of each item represents one of its
genres, which is selected as the least frequent genre of the
item. We finally choose 4 genres with a very small number
of overlap movies, and visualize them in Fig. 6. Obviously,
in DMF, the points of different genres are mixed with each
other. In contrast, in pQCF and QCF, the points are better
separated and clusters are formed to some extent. This
validates the superiority of the quantized methods to the
binarized methods. MF gives the best visualization result,
indicating quantization reduces representation capacity.
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Fig. 6. t-SNE embedding of movies of four genres on the MovieLens dataset based on cosine similarity. Each point indicates embedding of a movie,
and its color indicate one of movie genres.

8 CONCLUSIONS AND FUTURE WORK

We proposed product quantized collaborative filtering and
its variant to learn semi-structured latent factors for items
(or users) from rating data. They were efficiently optimized
based on block coordinate descent, whose time complex-
ity is linearly proportional to the number of ratings. The
algorithms were evaluated against 6 real-world explicit or
implicit datasets. The results showed that the proposed
algorithms significantly outperformed the state-of-the-art
hashing-based collaborative filtering with comparable re-
trieval time and just a few extra memories. pQCF also
showed higher recommendation accuracy than one of the
best ANN libraries with comparable retrieval time, indi-
cating that the proposed algorithms lead to better trade-off
between efficiency and accuracy of top-k recommendation.

A wide range of future work can be explored. For exam-
ple, since we observed that ANNOY using the inner product
metric performed poor, it is very interesting to design new
index structures, such as inverted index and hierarchical 2-
means tree, for maximum inner product search. It is also
interesting to investigate deep quantized collaborative fil-
tering and the application of quantization for graph embed-
ding. Finally, in most cases, item recommendation should
be quickly adaptive to users’ interest evolving, so it is also
worth studying online quantized collaborative filtering.

ACKNOWLEDGMENTS

The work was partially supported by grants from the
National Natural Science Foundation of China (Grant No.
61976198, U1605251, 61832017 and 61631005).

REFERENCES

[1] C.-K. Hsieh, L. Yang, Y. Cui, T.-Y. Lin, S. Belongie, and D. Estrin,
“Collaborative metric learning,” in Proceedings of WWW’17. Inter-
national World Wide Web Conferences Steering Committee, 2017,
pp. 193–201.

[2] M. Kula, “Metadata embeddings for user and item cold-start
recommendations,” arXiv preprint arXiv:1507.08439, 2015.

[3] P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck,
“Learning deep structured semantic models for web search using
clickthrough data,” in Proceedings of CIKM’13. ACM, 2013, pp.
2333–2338.

[4] H. Wang, N. Wang, and D.-Y. Yeung, “Collaborative deep learning
for recommender systems,” in Proceedings of KDD’15. ACM, 2015,
pp. 1235–1244.

[5] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma, “Collabora-
tive knowledge base embedding for recommender systems,” in
Proceedings of KDD’16. ACM, 2016, pp. 353–362.

[6] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, “Deepfm: a factorization-
machine based neural network for ctr prediction,” in Proceedings
of IJCAI’17. AAAI Press, 2017, pp. 1725–1731.

[7] J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, and G. Sun, “xdeepfm:
Combining explicit and implicit feature interactions for recom-
mender systems,” in Proceedings of KDD’18. ACM, 2018, pp.
1754–1763.

[8] A. S. Das, M. Datar, A. Garg, and S. Rajaram, “Google news per-
sonalization: scalable online collaborative filtering,” in Proceedings
of WWW’07. ACM, 2007, pp. 271–280.

[9] M. Khoshneshin and W. N. Street, “Collaborative filtering via
euclidean embedding,” in Proceedings of RecSys’10. ACM, 2010,
pp. 87–94.

[10] A. Shrivastava and P. Li, “Asymmetric lsh (alsh) for sublinear time
maximum inner product search (mips),” in Proceedings of NIPS’14,
2014, pp. 2321–2329.

[11] Y. Bachrach, Y. Finkelstein, R. Gilad-Bachrach, L. Katzir,
N. Koenigstein, N. Nice, and U. Paquet, “Speeding up the xbox
recommender system using a euclidean transformation for inner-
product spaces,” in Proceedings of RecSys’14. ACM, 2014, pp. 257–
264.

[12] Q. Huang, G. Ma, J. Feng, Q. Fang, and A. K. Tung, “Accurate and
fast asymmetric locality-sensitive hashing scheme for maximum
inner product search,” in Proceedings of KDD’18. ACM, 2018, pp.
1561–1570.

[13] N. Koenigstein, P. Ram, and Y. Shavitt, “Efficient retrieval of
recommendations in a matrix factorization framework,” in Pro-
ceedings of CIKM’12. ACM, 2012, pp. 535–544.

[14] A. Karatzoglou, A. J. Smola, and M. Weimer, “Collaborative filter-
ing on a budget,” in Proceedings of AISTATS’10, 2010, pp. 389–396.

[15] K. Zhou and H. Zha, “Learning binary codes for collaborative
filtering,” in Proceedings of KDD’12. ACM, 2012, pp. 498–506.

[16] Z. Zhang, Q. Wang, L. Ruan, and L. Si, “Preference preserving
hashing for efficient recommendation,” in Proceedings of SIGIR’14.
ACM, 2014, pp. 183–192.

[17] H. Zhang, F. Shen, W. Liu, X. He, H. Luan, and T.-S. Chua,
“Discrete collaborative filtering,” in Proceedings of SIGIR’16. ACM,
2016, pp. 325–334.

[18] D. Lian, R. Liu, Y. Ge, K. Zheng, X. Xie, and L. Cao, “Discrete
content-aware matrix factorization,” in Proceedings of KDD’17,
2017, pp. 325–334.

[19] H. Jegou, M. Douze, and C. Schmid, “Product quantization for
nearest neighbor search,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 33, no. 1, pp. 117–128, 2011.

[20] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product quantiza-
tion for approximate nearest neighbor search,” in Proceedings of
CVPR’13, 2013, pp. 2946–2953.

[21] R. Guo, S. Kumar, K. Choromanski, and D. Simcha, “Quantiza-
tion based fast inner product search,” in Artificial Intelligence and
Statistics, 2016, pp. 482–490.

[22] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme,
“Bpr: Bayesian personalized ranking from implicit feedback,” in
Proceedings of UAI’09. AUAI Press, 2009, pp. 452–461.

[23] S. Rendle and C. Freudenthaler, “Improving pairwise learning for
item recommendation from implicit feedback,” in Proceedings of
WSDM’14. ACM, 2014, pp. 273–282.

[24] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for



12

implicit feedback datasets,” in Proceedings of ICDM’08. IEEE, 2008,
pp. 263–272.

[25] I. Bayer, X. He, B. Kanagal, and S. Rendle, “A generic coordinate
descent framework for learning from implicit feedback,” in Pro-
ceedings of WWW’17, 2017, pp. 1341–1350.

[26] W. Krichene, N. Mayoraz, S. Rendle, L. Zhang, X. Yi, L. Hong,
E. Chi, and J. Anderson, “Efficient training on very large corpora
via gramian estimation,” arXiv preprint arXiv:1807.07187, 2018.

[27] J. Weston, S. Bengio, and N. Usunier, “Large scale image an-
notation: learning to rank with joint word-image embeddings,”
Machine learning, vol. 81, no. 1, pp. 21–35, 2010.

[28] J. Chen, D. Lian, and K. Zheng, “Improving one-class collaborative
filtering via ranking-based implicit regularizer,” in Proceedings of
AAAI’19, vol. 33, 2019, pp. 37–44.

[29] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, N. Oliver, and
A. Hanjalic, “Climf: collaborative less-is-more filtering,” in Pro-
ceedings of IJCAI’13, 2013.

[30] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
collaborative filtering,” in Proceedings of WWW’17, 2017, pp. 173–
182.

[31] Y. Qu, H. Cai, K. Ren, W. Zhang, Y. Yu, Y. Wen, and J. Wang,
“Product-based neural networks for user response prediction,” in
Proceedings of ICDM’16. IEEE, 2016, pp. 1149–1154.

[32] R. Wang, B. Fu, G. Fu, and M. Wang, “Deep & cross network for
ad click predictions,” in Proceedings of the ADKDD’17. ACM, 2017,
p. 12.

[33] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Arad-
hye, G. Anderson, G. Corrado, W. Chai, M. Ispir et al., “Wide &
deep learning for recommender systems,” in Proceedings of the 1st
workshop on deep learning for recommender systems. ACM, 2016, pp.
7–10.

[34] P. Sun, L. Wu, and M. Wang, “Attentive recurrent social recom-
mendation,” in Proceedings of SIGIR’18. ACM, 2018, pp. 185–194.

[35] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale
recommender systems,” in Proceedings of KDD’18. ACM, 2018,
pp. 974–983.

[36] A. Shrivastava and P. Li, “Improved asymmetric locality sensitive
hashing (alsh) for maximum inner product search (mips),” arXiv
preprint arXiv:1410.5410, 2014.

[37] B. Neyshabur and N. Srebro, “On symmetric and asymmetric lshs
for inner product search,” in Proceedings of ICML’15, 2015, pp.
1926–1934.

[38] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-
sensitive hashing scheme based on p-stable distributions,” in
Proceedings of the Twentieth Annual Symposium on Computational
Geometry. ACM, 2004, pp. 253–262.

[39] W. Li, Y. Zhang, Y. Sun, W. Wang, W. Zhang, and X. Lin, “Ap-
proximate nearest neighbor search on high dimensional data—
experiments, analyses, and improvement (v1. 0),” arXiv preprint
arXiv:1610.02455, 2016.

[40] M. Wang, W. Fu, S. Hao, H. Liu, and X. Wu, “Learning on big
graph: Label inference and regularization with anchor hierarchy,”
IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 5,
pp. 1101–1114, 2017.

[41] H. Yin, B. Cui, X. Zhou, W. Wang, Z. Huang, and S. Sadiq,
“Joint modeling of user check-in behaviors for real-time point-of-
interest recommendation,” ACM Transactions on Information Sys-
tems (TOIS), 2016.

[42] H. Yin, B. Cui, Y. Sun, Z. Hu, and L. Chen, “Lcars: A spatial item
recommender system,” ACM Transactions on Information Systems
(TOIS), vol. 32, no. 3, p. 11, 2014.

[43] H. Yin, X. Zhou, B. Cui, H. Wang, K. Zheng, and Q. V. H. Nguyen,
“Adapting to user interest drift for poi recommendation,” IEEE
Transactions on Knowledge and Data Engineering, vol. 28, no. 10, pp.
2566–2581, 2016.

[44] A. Babenko and V. Lempitsky, “Additive quantization for extreme
vector compression,” in Proceedings of CVPR’14, 2014, pp. 931–938.

[45] T. Zhang, C. Du, and J. Wang, “Composite quantization for
approximate nearest neighbor search,” in Proceedings of ICML’14,
2014, pp. 838–846.

[46] Y. Chen, T. Guan, and C. Wang, “Approximate nearest neighbor
search by residual vector quantization,” Sensors, vol. 10, no. 12,
pp. 11 259–11 273, 2010.

[47] W. Wu, B. Li, L. Chen, and C. Zhang, “Consistent weighted
sampling made more practical,” in Proceedings of WWW’17, 2017,
pp. 1035–1043.

[48] W. Wu, B. Li, L. Chen, J. Gao, and C. Zhang, “A review for
weighted minhash algorithms,” arXiv preprint arXiv:1811.04633,
2018.

[49] X. Liu, J. He, C. Deng, and B. Lang, “Collaborative hashing,” in
Proceedings of CVPR’14, 2014, pp. 2139–2146.

[50] Y. Zhang, D. Lian, and G. Yang, “Discrete personalized ranking for
fast collaborative filtering from implicit feedback,” in Proceedings
of AAAI’17, 2017, pp. 1669–1675.

[51] D. Lian, X. Xie, and E. Chen, “Discrete matrix factorization and
extension for fast item recommendation,” IEEE Transactions on
Knowledge and Data Engineering, pp. 1–1, 2019.

[52] R. Devooght, N. Kourtellis, and A. Mantrach, “Dynamic matrix
factorization with priors on unknown values,” in Proceedings of
KDD’15. ACM, 2015, pp. 189–198.

[53] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product quantiza-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 36, no. 4, pp. 744–755, 2014.

[54] L. Eldén and H. Park, “A procrustes problem on the stiefel
manifold,” Numerische Mathematik, vol. 82, no. 4, pp. 599–619, 1999.

[55] A. Beck and L. Tetruashvili, “On the convergence of block coordi-
nate descent type methods,” SIAM journal on Optimization, vol. 23,
no. 4, pp. 2037–2060, 2013.

[56] J. McAuley, R. Pandey, and J. Leskovec, “Inferring networks
of substitutable and complementary products,” in Proceedings of
KDD’15. ACM, 2015, pp. 785–794.

[57] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative
quantization: A procrustean approach to learning binary codes for
large-scale image retrieval,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 12, 2013.

[58] M. Wang, H. Li, D. Tao, K. Lu, and X. Wu, “Multimodal graph-
based reranking for web image search,” IEEE Transactions on Image
Processing, vol. 21, no. 11, pp. 4649–4661, 2012.

[59] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of machine learning research, vol. 9, no. Nov, pp. 2579–2605,
2008.

Defu Lian is a research professor in the School
of Computer Science and Technology, University
of Science and Technology of China (USTC),
Hefei. He received the B.E. and Ph.D. degrees
in computer science from University of Sci-
ence and Technology of China (USTC) in 2009
and 2014, respectively. His research interest in-
cludes spatial data mining, recommender sys-
tems, and learning to hash.

Xing Xie (SM’09) is currently a principle re-
searcher in Microsoft Research Asia, and a
guest PhD advisor with USTC. His research
interest include spatial data mining, location-
based services, social networks, and ubiquitous
computing. He was recently involved in the pro-
gram or organizing committees of more than 70
conferences and works.

Enhong Chen (SM’07) received the PhD de-
gree from USTC. He is a professor and vice dean
of the School of Computer Science, USTC. His
general area of research includes data mining
and machine learning, social network analysis,
and recommender systems. He has published
more than 100 papers in refereed conferences
and journals, including TKDE, KDD, and NIPS.

Hui Xiong (SM’07) is currently a Full Professor
and Vice Chair of the Management Science and
Information Systems Department at the Rutgers,
the State University of New Jersey. He received
the B.E. degree from the University of Science
and Technology of China (USTC), and the Ph.D.
degree from the University of Minnesota (UMN).
His general area of research is data and knowl-
edge engineering.


