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ABSTRACT
Cognitive diagnosis is the cornerstone of modern educational tech-
niques. One of the most classic cognitive diagnosis methods is Item
Response Theory (IRT), which provides interpretable parameters
for analyzing student performance. However, traditional IRT only
exploits student response results and has difficulties in fully utiliz-
ing the semantics of question texts, which significantly restricts
its application. To this end, in this paper, we propose a simple yet
surprisingly effective framework to enhance the semantic exploit-
ing process, which we termed Deep Item Response Theory (DIRT).
In DIRT, we first use a proficiency vector to represent student pro-
ficiency on knowledge concepts and represent question texts and
knowledge concepts by dense embedding. Then, we use deep learn-
ing to enhance the process of diagnosing parameters of student and
question by exploiting question texts and the relationship between
question texts and knowledge concepts. Finally, with the diagnosed
parameters, we adopt the item response function to predict student
performance. Extensive experimental results on real-world data
clearly demonstrate the effectiveness and the interpretability of
DIRT framework.
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1. In , = , = 108°. , and

intersect at point and E. And is divided into 

three equal parts, what is wrong?

Concepts: 1.Similar triangle properties  2.Similar 

triangle judgement  3.Proportional line segment

2. Calculate 4 60° + 45° - 2 3

Concepts: 1.Quadratic root operation 2.Special 

trigonometric function

3. What is the minimal positive period of function y = 

1 – cos(2x) ?

Concepts: 1.Period 2.Trigonometric

Figure 1: A toy example of student question records

1 INTRODUCTION
A large number of educational systems (e.g., massive open online
courses) provide a series of computer-aided applications for bet-
ter tutoring, such as computer adaptive test [7] and knowledge
tracing [9]. Among these applications, the cognitive diagnosis that
discovering the latent traits of students is becoming increasingly
important. To execute cognitive diagnosis more effectively, the
classic framework of Item Response Theory (IRT) [10] has been
proposed, which introduces interpretable parameters with item
response function to analyse students’ performance.

Though IRT has achieved great successes in cognitive diagnosis
area, there is still an important issue limits its usefulness. Specifi-
cally, it only considers student responses, right (e.g., 1) or wrong
(e.g., 0)—that is, it ignores the rich semantics in the other question
materials. As shown in Figure 1, the question texts and the knowl-
edge concepts on the underline with the same color are closely
related, which is helpful for modelling questions [5]. It motivates
us to integrate semantics to improve and enhance traditional IRT.

To this end, we propose a novel and general deep item response
theory (DIRT) framework to enhance item response theory. Specifi-
cally, we first create a proficiency vector to represent the student
proficiency on each knowledge concept and embed questions. Then,
to diagnose the latent trait θ of students, the discrimination a and
the difficulty b of questions [10], we introduce the deep learning
methods (e.g., DNN, LSTM) for parsing semantics from question
tests and the relationship between question texts and knowledge
concepts. Finally, with the parameters diagnosed by deep learning
methods, it can predict whether the student can answer the question
correctly by item response function. Extensive experimental results
present that DIRT surpasses traditional IRT by a large margin.
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2 PRELIMINARIES
2.1 Cognitive diagnosis Task
Suppose there are L students,M questions and total P knowledge
concepts. The history records that L students doM questions are
represented by R = {Ri j |1 ≤ i ≤ L, 1 ≤ j ≤ M}, where Ri j =
⟨Si ,Q j , ri j ⟩ denotes the student Si obtains score ri j on questionQ j .
Q j = ⟨QTj ,QKj ⟩ is composed of question textsQTj and knowledge
concepts QKj . Given students’ responses ri j , question texts QTj
and knowledge concepts QKj , our goal is to build a model M to
diagnose students’ proficiency on each knowledge concept. Since
there is no ground truth for diagnosis results, following previous
works [14], we adopt performance prediction task to validate the
effectiveness of cognitive diagnosis results.

2.2 Related Models
2.2.1 Item Response Theory. IRT is one of the most important

psychological and educational theories which roots in psycholog-
ical measurement [10]. With the student latent trait θ , question
discrimination a and difficulty b as parameters, IRT can predict the
probability that the student answers a specific question correctly
with item response function. The item response function is defined
as follow:

P(θ ) =
1

1 + e−Da(θ−b)
, (1)

where P(θ ) is the correct probability, D is a constant which often
set as 1.7.

2.2.2 Multidimensional Item Response Theory. MIRT is extended
from IRT to meet the demands of multidimensional data [13]. With
student latent traits θθθ = (θ1, ...,θm )T , knowledge concept discrim-
inations aaa = (a1, ...,am )T and intercept term d of the question as
parameters, MIRT can also predict the probability of the student
answers a specific question correctly with multidimensional item
response function. The multidimensional item response function is
defined as follow:

P(θθθ ) =
eaaa

Tθθθ+d

1 + eaaaTθθθ+d
, (2)

where P(θθθ ) is the probability same as IRT.

3 DIRT FRAMEWORK
To enhance item response theory for cognitive diagnosis, DIRT con-
tains three modules, i.e., input, deep diagnosis and prediction mod-
ule. Input module initializes a proficiency vector in each knowledge
concept for the student, and embeds question texts and knowledge
concepts to vectors. Deep diagnosis module diagnoses latent trait,
discrimination and difficulty with deep learning to enhance the
model. Prediction module predicts the probability that the student
answers the question correctly with item response function. In the
section bellow, we give a specific implementation of DIRT which is
shown in Figure 2.

3.1 A Specific Implementation of DIRT
3.1.1 Input Module. Given a student S , we initialize a profi-

ciency vector ααα = (α1,α2, ...,αP ) with randomly, it is not belong
to the training process, where αl ∈ [0, 1] represents the degree a
student masters the knowledge concept l .

Input Module

Texts

1

2

3

Knowledges

prediction Module

R

Att-based LSTM

DNN

DNN

Avg Pooling

Deep Diagnosis Module

QT

QK

Figure 2: The Specific Implementation of DIRT.

For a question Q , question texts are composed of a sequence
of words QT = {w1, ...,wu }, where u is the length of QT , wi ∈

Rd0 is a d0-dimensionalWord2Vec [8] vector, as for mathematical
formulas, we regard each symbols as a word. Knowledge concepts
are represented by one-hot vectorsQK = {K1, ...,Kv },Ki ∈ {0, 1}P ,
where v is the number of knowledge concepts. Then, we utilize a
d1-dimension dense layer to acquire the dense embedding for each
knowledge concept Ki for better training, the dense embedding of
Ki as ki , and ki ∈ Rd1 :

ki = KiWk , (3)
whereWk ∈ RP×d1 are the parameters of the dense layer.

3.1.2 Deep Diagnosis Module. Deep diagnosis module is mainly
achieved by deep learning techniques (e.g., DNN, LSTM) to diagnose
latent trait, discrimination and difficulty. The details are as follows.

Latent Trait. Latent trait θ has strong interpretability for stu-
dents’ performance on questions, it is closely related to the pro-
ficiency of knowledge concepts [13]. In order to learn high-order
features for latent trait diagnosing, we may use some nonlinear
models (e.g., DNN), here we adopt deep neural network [15]. Specif-
ically, given the proficiency vector ααα = (α1, ...,αP ) of the student
s and a question q, we multiply the corresponding proficiency in
ααα with the concepts dense embedding of the questions and get a
d1-dimension vector Θ ∈ Rd1 . Then we input Θ into DNN to learn
the latent trait, which is defined as follow:

θ = DNNθ (Θ), Θ = ααα ⊙ kkk =
∑

ki ∈Kq

αiki , (4)

where Kq is the set of the knowledge concepts of question q.

Discrimination. Discrimination a can be applied to analyse stu-
dent performance distribution on the question. Inspired by the rela-
tionship between Multidimensional Item Discrimination (MDISC)
and knowledge concepts [13], we learn question discrimination a
from knowledge concepts corresponded to the question. Also, since
deep neural network can learn high-order nonlinear features auto-
matically [15], we use another DNN to diagnose question discrimi-
nation a. Specifically, we sum the dense embedding of knowledge
concepts in Kq to get a d1-dimensional vector A ∈ Rd1 . Then, we
input A into the DNN to diagnosis question discrimination. We
normalize the discrimination to meet the requirements that the
range of a should be [−4, 4] [1] and the definition of a is as follow:

a = 8 × sigmoid(DNNa (A) − 0.5), A = kkk ⊕ kkk =
∑

ki ∈Kq

ki , (5)
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where the structure of DNNa is same as DNNθ , but the parameters
are not shared between them.

Difficulty. Difficulty b determines how difficult the question is.
The first perspective is to diagnose difficulty by exploiting seman-
tics of question texts [5]. Following previous works [11], LSTM can
handle and represent long time sequence texts from semantic per-
spective which have strong robustness, we adopt LSTM to model
difficulty b from question text perspective. As for the second per-
spective, the depth and width of knowledge concepts examined by
the question also have a great impact on difficulty. The deeper and
wider the knowledge concepts are examined, the more difficult the
question is. Obviously, the depth and width of the examined con-
cepts can be reflected by the relevance between question texts and
knowledge concepts. We adopt an attention mechanism to capture
the relationship between question texts and knowledge concepts.
Totally, we design an attention-based LSTM to integrate question
texts and knowledge concepts for diagnosing question difficulty b.
Specifically, the sequence input to this LSTM is xxx = (x1,x2, ...,xN ),
where N is the max step of the attention-based LSTM. The t-th
input step of attention-based LSTM is defined as follow:

xt =
∑

ki ∈Kq

softmax(
ξ j
√
d0

)ki +wt , ξ j = w
T
t ki , (6)

where
√
d0 is the scaling factor. ξ j is the relevance between wordwt

and the knowledge concepts in Kq . After that, an average-pooling
operation is utilized to obtain parameter b. Also, we normalize the
difficulty to meet the requirements that the range of b should be
[−4, 4] [1] and the definition of b is as follow:

b = 8 × (sigmoid(avдraдePoolinд(hN )) − 0.5), (7)
where avдraдePoolinд is an operation that calculates the mean of
all elements in the last step vector hN of LSTM.

3.1.3 Prediction Module. The prediction module is used to pre-
serve the ability of performance prediction and the interpretation
power of student latent trait, question discrimination and difficulty
in traditional item response theory. We input parameters diagnosed
by deep diagnosismodule into the item response function Eq.(1) [10]
to predict the student performance on the specific question.

3.1.4 DIRT Learning. The whole parameters to be updated in
DIRT mainly exist in two parts: input module and deep diagno-
sis module. In input module, the parameters need to be updated
contain proficiency vector α , question embedding weights and
knowledge concept dense embedding weights {WQ,WK}. In the
deep diagnosis module, the parameters need to be updated contain
the weights of three neural networks {WDNNa ,WDNNθ ,WLSTM}

which are used to learn the latent trait, discrimination and difficulty
respectively. The objective function of DIRT is the negative log
likelihood function. Formally, for student i and question j , let ri j be
the actual score, r̃i j be the score predicted by DIRT. Thus the loss
for student i on question j is defined as:

L = ri j logr̃i j + (1 − ri j )log(1 − r̃i j ), (8)
in this way, we can learn DIRT by directly minimizing the objective
function using Adam optimization [6].
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Figure 3: Distribution of words and knowledge concepts.

4 EXPERIMENTS
4.1 Dataset Description
Since DIRT needs to exploit question texts, only one private dataset
can be used, which is composed of the mathematical data supplied
by iFLYTEK Co., Ltd collected from Zhixue1. We filter out the
students with less than 15 records and the questions that have
not been answered by students. After pruning, the distribution of
knowledge concepts number and question texts length are shown
in Figure 3. Also, some statistics of the dataset are shown in Table 1.
We can observe that each student has done about 62.09 questions,
and each question requires about 1.49 knowledge concepts.

Table 1: The statistics of the dataset.

Statistics Original Pruned
# of history records 65,368,739 5,068,039

# of students 1,016,235 81,624
# of questions 1,735,635 13,635

# of knowledge concepts 1,412 621
Avg. questions per student / 62.09
Avg. concepts per question / 1.49

4.2 Baselines and Evaluation Metrics.
We compare the performance of DIRTwith severalmethods: IRT [10]
and DINA [3] are continuous and discrete cognitive diagnosis meth-
ods respectively, MIRT [13] is a multidimensional cognitive diagno-
sis method extend from IRT, (PMF) [4] and (NMF) [12] are matrix
factorization methods, DIRTNA is a variant of DIRT without atten-
tion mechanism.

We evaluate the performance of DIRT from two perspectives,
regression perspective [2]: Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), and classification perspective [14]: Area
Under Curve (AUC) and Prediction Accuracy (ACC).
4.3 Experimental Results

4.3.1 Performance Prediction Task. Here, we conduct extensive
experiments on performance prediction task at different data spar-
sity by splitting dataset into training and testing dataset with differ-
ent ratio: 60%, 70%, 80%, 90%. The results on all metrics are shown
in Figure 4. We can observe that compares with all the baselines,
especially IRT, MIRT. DIRT performs the best, it illustrates that
DIRT can make full use of question texts, benefiting the prediction.
Comparing with DIRTNA, DIRT performs better, it proves that
attention mechanism is effective for exploiting the relationship
between question texts and knowledge concepts and helpful for
prediction. We can also observe that DIRT and IRT perform bet-
ter than MIRT, which is mainly because MIRT is sensitive to the
concept on which student has high proficiency. Therefore, DIRT
1http://www.zhixue.com
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Figure 4: Overall results of student performance prediction on four metrics.

0 . 0 0
0 . 2 0
0 . 4 0
0 . 6 0
0 . 8 0
1 . 0 0

K 5 K 4

K 3

K 1

K 2

 D I R T
 I R T
 M I R T

K 6

K 7

1. In , = , =

108°. , and intersect at

point and E. And is divided into 

three parts,what is wrong?

Concepts: K1, K2, K3.  

2. Calculate 60° + 45° 2 3

Concepts: K4, K5 .  

3. What is the minimal positive period of 

function y = 1 – cos(2x) ?

Concepts: K6, K7

real
IRT DIRTMIRT

Discrimination Difficultyprediction

IRT DIRTMIRT IRT DIRTMIRT

1.3545

0.6358

0.5102

1.4437

0.362

0.3957

1.69

1.47

0.358

0.6352

-0.171

1.265

0.5439

0.1374

0.7352

0.51

0.18

0.6475

Q

1

2

3

Figure 5: Visualization of a student’s proficiency on knowledge concepts and the parameters of three questions.

framework is more reliable than MIRT to the concept on which
students have a high proficiency.

4.3.2 Case Study. Here, we give an example of cognitive diag-
nosis of student knowledge proficiency. As shown in Figure 5, the
radar chart shows a student’s concepts proficiency diagnosed by
IRT, MIRT and DIRT. Since IRT only diagnoses student latent trait
which has the same value on all questions, so the diagnosis result
of IRT is a regular polygon in Figure 5. Thus, DIRT can provide
more accurate diagnosis results on knowledge concepts than IRT.
We can also observe that DIRT predicts all three questions cor-
rectly, but IRT gets a wrong result on the second question, that
because IRT obtains a wrong value -0.171 of difficulty b compares
with DIRT and MIRT. Also, MIRT gets a wrong result on the third
question, which is because MIRT is sensitive to concepts on which
student has high proficiency [13] such as K7. Totally, DIRT can
enhance traditional IRT with deep learning for cognitive diagnosis
by exploiting question texts.

5 CONCLUSIONS
In this paper, we proposed a general DIRT framework to enhance
traditional IRT to exploit the rich semantics in the question texts,
as well as the relationship between question texts and knowledge
concepts for cognitive diagnosis. Extensive experiments on a large
scale real-world dataset clearly validated the effectiveness and the
interpretation power of DIRT.
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