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Abstract—Natural language inference (NLI) task requires an
agent to determine the semantic relation between a premise
sentence (p) and a hypothesis sentence (%), which demands
sufficient understanding about sentences semantic. Due to the
issues, such as polysemy, ambiguity, as well as fuzziness of sen-
tences, intense sentence understanding is very challenging. To
this end, in this article, we introduce the corresponding image
of sentences as reference information for enhancing sentence
semantic understanding and representing. Specifically, we first
propose an image-enhanced multilevel sentence representation
net (IEMLRN), that utilizes the image features from pretrained
models for enhancing the sentence semantic understanding at
different scales, i.e., lexical-level, phrase-level, and sentence-level.
The proposed model advances the performance on NLI tasks by
leveraging the pretrained global features of images. However, as
these pretrained image features are optimized on specific image
classification datasets, they may not show the best performance
on NLI tasks. Therefore, we further propose to design an adap-
tive image feature generator that extracts fine-grained image
labels from the corresponding sentences. After that, we extend the
IEMLRN to multilevel image-enhanced sentence representation
net (MIESR) by utilizing not only the coarse-grained pretrained
features of images, but also the fine-grained adaptive features
of images. Therefore, sentence semantic can be evaluated and
enhanced more comprehensively and precisely. Extensive exper-
iments on two benchmark datasets (SNLI, SICK) clearly show
our proposed IEMLRN significantly outperform the state-of-the-
art baselines, and our proposed MIESR model achieves the best
performance by considering not only the text but also images in
an adaptive multigranularities way.

Index Terms—Image-enhanced representation, multiple level,
natural language inference (NLI), sentence semantic.
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I. INTRODUCTION

ATURAL language inference (NLI) or recognizing tex-
N tual entailment (RTE) task requires an agent to determine
the semantic relation between two sentences among entail-
ment (if the semantic of hypothesis can be concluded from the
premise), contradiction (if the semantic of hypothesis cannot
be concluded from the premise) and neutral (neither entail-
ment nor contradiction). As depicted in the following example
from [1], where the semantic relation is entailment.

p: Several airlines polled saw costs grow more than

expected, even after adjusting for inflation.

h: Some of the companies in the poll reported cost

increases.

NLI is known as a fundamental and yet challenging task
for natural language understanding (NLU) [2]. It requires NLI
models to understand the sentence semantic as comprehen-
sive as possible and model the semantic relations between
two sentences, and it has broad applications, e.g., information
retrieval [3]-[7], question answering [8], as well as dia-
log system [9]. With respect to the granularity, NLI task
can be classified into two categories: 1) lexical-level infer-
ence [10]-[12] and 2) sentence-level inference [13]-[15].
Lexical-level inference focuses on representing word seman-
tic with different methods and identifying whether one word
can entail another [10]. Sentence-level inference concerns
more about the contents of entire texts and representations of
sentence semantic [16]. With the availability of large anno-
tated datasets, such as SNLI [16], multi-NLI [2], and the
advancement of semantic representation techniques [17]-[19],
researchers have proposed various end-to-end neural models
to understand sentence semantic and evaluate the inference
relations between sentences [20]-[22].

However, most of these models focus on the text itself and
do not take into consideration the reference information (or
context, such as images), which is essential for sentence
semantic understanding. Sentence semantic suffers from the
issues, such as polysemy, ambiguity, as well as fuzziness [23].
Moreover, sentence semantic is highly related to the context.
The information of the sentence itself may be insufficient for
precisely semantic understanding. As shown in Fig. 1, both the
premise and hypothesis describe that people are shopping at
the market, in which the weather information is different. The
weather in hypothesis sentence is sunny day. However, it is
fuzzy in premise sentence. Since the market is outside, we may
conclude that the weather is sunny, but we are not sure about it.
Thus, we may conclude the inference relation is neutral when
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p:People shopping at an outside market
h:People are enjoying the sunny day at the market.

) < o | (=
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Fig. 1. Example from SNLI dataset.

only texts are provided. On the contrary, when providing the
reference information, i.e., the image in Fig. 1(a), we can make
a confident decision. The image, which is corresponding to the
sentence pair in SNLI, provides the reference information for
us to verify the uncertain content. Moreover, when the refer-
ence information becomes the image in Fig. 1(b), there is no
doubt that the inference relation is contradiction. Therefore, it
is urgent to take into consideration the reference information
for sentence semantic understanding and inference relation
evaluation.

In fact, vision-to-language (V2L) work [24]-[28] has proven
that images convey important information of associated sen-
tences. However, the information that images contain may
relate to the sentence semantic at different scales, e.g., lex-
ical, phrase, or the entire sentence. Meanwhile, there is a
big difference between image information expression and
sentence semantic expression. Inappropriate use of images
may have a negative impact on sentence semantic under-
standing [29], [30], which will deteriorate the performance
of NLI models. Therefore, it is critical to find an effective
method to integrate the image reference information with text
information for better sentence semantic understanding and
representations.

In order to utilize the image reference information for NLI
task, the main challenge lies in how to properly enhancing
the sentence semantic understanding and representations by
leveraging the image information. Since the sentence rep-
resentations show a multigranularities manner with lexical
level, phase level or sentence level, it is natural to relate the
given context (image) with the sentence semantics from these
multiple levels. To this end, in our preliminary work [31], we
propose an image-enhanced multilevel sentence representation
net IEMLRN), a novel architecture that utilize the pretrained
image features of images to enhances the sentence semantic
understanding with different granularities. To be specific, we
first utilize the pretrained VGG19 [32] to extract the image fea-
tures. To capture the different granularities of the sentences,
we integrate the information among texts and images with
three different granularities, i.e., lexical-level, phrase-level, and
sentence-level. In each level, we utilize the attention mecha-
nism to allow the corresponding semantic level to focus on the
most relevant parts of the input image features. Thus, sentence
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semantic understanding can be enhanced with the help of the
image reference information, which is in favor of tackling NLI
task.

However, in the real world, human language is highly
abstract and designed specifically so as to communicate
information among humans. In contrast, even the most care-
fully composed image is the culmination of a complex set
of physical processes over which humans have little con-
trol [33]. Directly integrating the pretrained image features and
texts in our preliminary work may be too-coarse to leverage
the image information for semantic understanding. Therefore,
the problem of how to align the image semantics with sen-
tence semantics to narrow down the gap between the images
and texts for NLI remains pretty much open. To this end,
we focus on the multigranularities image features utilization
and design the multilevel image-enhanced sentence repre-
sentation net (MIESR), a novel architecture that takes both
coarse-grained pretrained features and fine-grained adaptive
features of images into consideration. Specifically, we pro-
pose to extract the fine-grained adaptive features of images,
which are represented by the words mined from the train-
ing captions. The fine-grained adaptive features can represent
images from a local perspective and narrow down the gap
between images and texts, which is very important for this
article. Meanwhile, the coarse-grained pretrained image fea-
tures, which are used in IEMLRN, can reveal the image
information from a global perspective. They together enhance
the sentence semantic representations more comprehensively
and precisely. Moreover, we proposed a newly designed multi-
granularities image-enhanced unit (MIEU) to integrate the
pretrained image features, adaptive image features, and word
semantic representations effectively, which is very helpful
for enhancing sentence semantic representations more com-
prehensively. Finally, we conduct systematic experiments on
two benchmark NLI datasets. The experimental results clearly
show that IEMLRN can effectively improve the performance
over state-of-the-art baselines, and MIESR achieves the best
performance by considering both the coarse-grained pretrained
features and fine-grained adaptive features of images.

The remainder of this article is organized as follows. In
Section II, we introduce the related work. Next, the struc-
ture and technical details of our proposed models are given
in Sections IV and V. Then, we make the experiments
and detailed analysis in Section VI. Finally, we discuss and
conclude this article in Section VII.

II. RELATED WORK

In general, the related work can be grouped into three cate-
gories: 1) NLI: focusing on the different methods for tackling
NLI task; 2) V2L: focusing on the recent researches on under-
standing language through vision; and 3) NLI Data: focusing
on the work that pays attention to NLI data generation and
analysis.

A. Natural Language Inference Methods

Due to data limitation, early works on NLI have been per-
formed on small datasets with conventional methods [1], [10].
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Turney and Mohammad [10] proposed the similarity differ-
ences hypothesis: The tendency of a to entail b is correlated
with some learnable function of the differences in their simi-
larities to a set of reference words. Based on this hypothesis,
they proposed the SimDiffs method, a second-order feature
vector representations of p and h, in which the features were
the differences in the similarities of p and & to a set of ref-
erence words. Among these differences, some were important
for entailment while others might tend to indicate a lack of
entailment. The reference words they utilized included 2086
basic English words [34]. Zhang et al. [35] introduced the
neural network into lexical-level inference and proposed a
method called CENN to represent words semantic with dif-
ferent contexts and integrated these representations with the
consideration of inference relations.

With the development of large annotated data, e.g.,
SNLI [16], multi-NLI [2], and various neural network archi-
tectures, such as LSTM [36], GRU [37], as well as attention
mechanism [18], [38], [39], a variety of methods have been
developed to represent and evaluate sentence semantic for NLI.

Among all these methods, sentence encoding-based methods
play an important role. They focus on the semantic repre-
sentation of each sentence, which is essential for plenty of
natural language tasks, e.g., information retrieval [3], ques-
tion answering [8], as well as dialog system [9]. For example,
Bowman et al. [16] encoded the sentences with different
LSTMs. Many related works followed this framework, using
different neural networks as encoders [14], [20]. Liu et al. [20]
proposed inner-attention to imitate the human’s behavior that
paid more attention to the important words when reading.
Then, they utilized mean pooling to generate the sentence rep-
resentations for NLI. Shen et al. [40] developed a directional
and multidimensional attention model without RNN/CNN
structure. They calculated the attention on each dimension of
word representations and utilized a multidimensional attention
to compress the sequence to generate the sentence representa-
tions, followed by a classification model to tackle the NLI task.
Im and Cho [21] adopted the masked multihead attention with
distance to explore the sentence semantic. Then, they utilized
densely connected operation to preserve all the information
for better sentence semantic representation. However, most of
these methods focus on the text itself and do not take into
consideration the reference information (or context, such as
images), which is capable of providing necessary information
for avoiding the sentence semantic issues, such as polysemy,
ambiguity, as well as fuzziness.

B. Vision-to-Language Methods

In recent years, integrating the language and vision modal-
ities has become a hot topic. Much progress has been
achieved in plenty of V2L problems, such as image cap-
tioning [26], [41], visual question answering [33], visual
dialog [42], as well as visual reasoning [43]-[45].

Among all these methods, utilizing an architecture which
connects a CNN and an RNN to mapping from images to sen-
tences directly has become a dominant trend. Mao et al. [24],
for instance, proposed a multimodal RNN (m-RNN) to

estimate the probability distribution of the next word given
previous words and the feature representations of an image at
each time step. Moreover, Ma et al. [46] used CNNs to both
extract image features, as well as sentence features. Then, they
fused the features together with a multimodal CNN to answer
the input questions. Furthermore, Wu et al. [33] suspected that
these CNN-RNN methods did not represent high-level seman-
tic concepts for better sentence semantic understanding. They
proposed to incorporate high-level concepts into these CNN-
RNN approaches and achieved a big improvement in both
image captioning and visual question answering. The above
work inspired us to take full advantage of image information
with different image utilization, i.e., coarse-grained pretrained
image features from global perspective and fine-grained adap-
tive image features from local perspective, to model sentence
semantic more comprehensively and precisely.

C. Works on NLI Data

With the development of large annotated NLI datasets, e.g.,
SNLI [16], multi-NLI [2], more and more neural networks
have been proposed to represent sentence semantic and tackle
the NLI task. However, these datasets were created by crowd
workers. Specific linguistic phenomena, such as negation and
vagueness would be highly correlated with certain inference
classes [47], making it possible to identify the label by look-
ing only at the hypothesis. Thus, based on SNLI dataset,
Gururangan et al. [47] proposed a challenging hard test set,
in which the examples that premise-oblivious model classified
accurately were removed. They intended to better evaluate the
performance of NLI models with this test set.

Besides, recent NLI models concerned more about the struc-
tures and global semantic of whole sentences, but less about
external lexical knowledge, which led them to fail to capture
many simple inferences that require lexical and world knowl-
edge [48]. In order to evaluate the generalization ability of NLI
models, Glockner et al. [48] proposed a simple but challenging
lexical test set. Since this test set was created based on SNLI
too, all the models trained on SNLI data could be tested for
better evaluation. Table I gives several examples from SNLI
test, hard test, as well as lexical text.

III. PROBLEM STATEMENT

In this section, we formulate the NLI task as a super-
vised classification problem. Given a premise sentence

s = {wﬁ’, wh, ,wf }, a hypothesis sentence sh =
P
{w}l’, wg, e, le } and the corresponding image I, our goal is

to learn a classifier £ which is able to precisely predict the
inference relation y = £(s”, s, I) between s” and s”. Here, wf’
and w]’f are one-hot vectors which represent the ith and the jth
word in the sentences, and /, and /; indicate the total number
of words in s” and s".

To achieve this goal, we propose IEMLRN and MIESR, and
show the details in the following sections.

IV. IEMLRN MODEL

The overall architecture is shown in Fig. 2. In order
to understand sentences with multiple granularities, we
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TABLE I
SOME EXAMPLES FROM DIFFERENT SNLI TEST SETS

Test set Premise Hypothesis Label
. . . The man is working on art. Entailment
SNLI Test A man looks intent while sculpting a gargoyle. The man s at the bank. Contradiction
Here is a picture of a man waiting for the bus to pick The man is driving himself somewhere Contradiction
Hard Test . c . - -
him up and he is hiding his face The man is going somewhere. Neutral
. . . . . . The man is wearing a yellow shirt and playing an instrument. Entailment
Lexical Test | The man is wearing a yellow shirt and playing a piano The man is wearing a yellow shirt and playing a french horn. | Contradiction
}47 Input Embedding } lmageifr?iltmnced } Label Prediction }
__________________________ |
IEU Bl :7[7 ;1: 1 r‘ﬁ} l I L ical
) | \ | Matching MLP | @) [ eXlCEll
IEU } —~ A" " (S 0! || Leve
L _—_—_ | v o) I
[T 7 '@ |
IEU }— p” | - ey | ® } | | Phrase
| Matching MLP 1O I
EU ) HIN ) ) = || Level
J = h 1O |
[ —— | v o
I
N I rY
IEU I
J [ 4 - [ Sentence
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e e} —io |1 Sy
J L L | v LQJ

Fig. 2.  Architecture of IEMLRN.

utilize three networks, i.e., lexical-level network, phrase-level
network, and sentence-level network, as shown in the dashed
boxes in Fig. 2.

Each network consists of three main components.

1) Input Embedding: Encoding the text inputs with dif-
ferent granularities, i.e., lexical-level, phrase-level, and
sentence-level.

Image-Enhanced Unit: Generating the comprehensive
and accurate sentence semantic representation with the
image reference information.

Label Prediction: Utilizing the sentence representations
from different granularities to predict the inference
relation between sentences robustly.

Next, we will introduce the technical details of each
component.

2)

3)

A. Input Embedding

The inputs of this article are two different types of data,
i.e., images and texts. The image inputs of IEMLRN are rep-
resented by pretrained image features. As shown in Fig. 4(a),
we select the pretrained VGG19 [32] to process the original
image and employ the result of the last convolutional layer
as the image feature representations. Then, we get the fea-
ture representation C = {c,¢2,...,¢1.},¢; € Rdc, where d,
represents the dimension of each feature.

The text inputs of IEMLRN are one-hot representation

sequences s = {wh wh ..., wfp } for premise sentence and
sh = {wﬁl,wg,...,wf‘h } for hypothesis sentence. In order

to better represent each word, we utilize the concatenation
of pretrained word embedding [49], character features [50],
and syntactical features [47], [51] to represent each word
in sentences. The character features are obtained by apply-
ing a convolutional neural network and a max-pooling to the
learned character embeddings, which can represent words in a
finer-granularity and help avoid the out-of-vocabulary (OOV)
problem that pretrained word vectors suffer from. The syntacti-
cal features consist of the embedding of part-of-speech tagging
feature, binary exact match feature, and binary antonym fea-
ture, which have been proved useful for sentence semantic
understanding [47], [51], [52]. Then, we get the extravagant
representations {pfx|i =1,2,...,1,} and {hjl»x[j =1,2,...,1;}
for words {wf } and {w]h} in premise and hypothesis sen-
tences at lexical-level. Details about word embedding will be
explained in Section VI-B.

However, these text representations only focus on lexical
knowledge. Sentence semantic depends on not only lexical
knowledge, but also other sentence features, such as word
sequence, phrase structure, and the dependency among sen-
tences. Thus, multilevel embedding methods are employed to
encode the necessary information from different granularities.

To be specific, after getting the lexical-level representa-
tions {pfx} and {th-x} for premise and hypothesis sentences,
we first concatenate these pﬁx and h;x by rows to form
embedding matrices P* € RF* and H* e R for
premise and hypothesis sentences. Then, one-dimensional
(1-D) convolutions with different filter sizes (unigram, bigram,
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Fig. 3. Architecture of IEU.

and trigram) [8] are applied to them, followed by a max-
pooling over different filters at each word. At last, we get
the phrase-level representations PP € R%»*? and HP" e R#*,
which extract the phrase structure information for sentence
semantics as follows:

PPt = Conle(Plx), H = COHV]D(HIX>. (1)

Furthermore, in order to take the dependency, the words
sequence, as well as the global semantic into considera-
tion, we also send these phrase-level representations to a
GRU [37] layer, resulting in the sentence-level representations
P ¢ Rr* and HY € R which can be formulated as
follows:

P =GRU(p,, ). b =GRU(KZ,, ). (@

Therefore, we get different semantic representations at
different granularities, i.e., lexical-level, phrase-level, and
sentence-level. Then, we pass each level of representations to
the following component to generate comprehensive and accu-
rate sentence semantic representations with the corresponding
image reference information.

B. Image-Enhanced Unit

As mentioned before, reference information is essential for
sentence semantic understanding and helpful for comprehen-
sive and accurate sentence semantic representations generat-
ing. However, how to make full use of reference information is
still challenging. Among the core representation learning tech-
niques, attention mechanism plays an important role. Attention
mechanism is known for its alignment between representa-
tions, focusing one part of representation over another, and
modeling the dependency regardless of sequence length [50].
Moreover, self-attention, which is a special case of attention
mechanism, relates elements at different positions from a sin-
gle sequence by computing the attention between each pair of
tokens of the sequence [18], [40]. It is very flexible to model
the long-range and local dependencies. Therefore, we intend
to utilize attention mechanism to fully utilize the reference
information for sentence semantics.

Fig. 3 shows the structure of image-enhanced unit (IEU).
The inputs are one embedding sequence P = {py,p,,...,p;},
one image feature sequence C = {c1,c2, ..., ¢}, as well as
an inference relation vector v which we will introduce next.

Please note that the embedding sequence P can be the premise
vectors P, PP" and P or the hypothesis vectors H™ HP",
and H* from different levels. Here, for simplicity, we take
the lexical-level representations P™ of the premise sentence as
an example. We first employ co-attention [50] to model the
relevance of each word in the premise sentence and the image
features, which can be formulated as follows:

ojj = tanh (pf"W"’”q)
; le exp())

poO_ZL—Cj’ i:l,z,...,lp 3)

25T explan)

where pc"f is actually a weight summation of the image con-

text ¢; for the ith word in the premise. W € Rd*d are
the trainable parameters. According to Similarity differences
hypothesis [10], the reference information can reveal some
useful contents to indicate the inference relation between two
sentences. Thus, we can utilize the most relevant information
of image features to enhance the semantic understanding of
each word in sentences.

After getting the representations {p?"f} from reference
information, it is natural to consider integrating this repre-
sentation and the original representation {pfx}. Inspired by
GRU architecture, we introduce the fusion gate to integrate
two types of representations [50], which can be formalized as
follows:

o= (W[5 4.)
et )
fi=o(Wi[plip] +8y)
Pl =riopl +fi0u @

where W, W,, Wy e R4*2d_ and b, b, bsre R4 are trainable
parameters. tanh and o are activation functions. © is element-
wise product. z; can be regarded as the candidate activation
of the inputs [pfx; pf"f]. r; is the update gate, which decides
how much input pﬁx will be retained. f; is also the update
gate, deciding how much candidate activation will be retained.
By utilizing this fusion gate operation, we can integrate tex-
tual information as well as reference information. Thus, the
semantics of each word can be represented in a more compre-
hensive way, which will be beneficial for sentence semantic
understanding.

However, sentence semantic understanding requires not only
lexical knowledge, but also the dependency and interaction of
words among the sentence. In order to capture the dependency
between words and significant properties in each sentence,
we perform a variation of self-attention, a max-pooling on
each fusion result, as well as max-pooling on the text input
sequence. Then, we concatenate them together

~N

Bi = wlo (Wﬁp};u +Upy + bﬂ)

self exp(B;) pfu .
i=1,2,...,1
Z _exp(Bi) P
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preP = [pself; maxé’ (pf“), ma)(é7 (plx)]. &)

Here, B; denotes the attention weight of ith word in premise
sentence before normalization. p*!f represents the outputs of
self-attention operation. v represents the inference relation vec-
tor of two sentences. Note that the input value of v depends on
which level of the network is. For the lexical-level network,
v will be zeros since it is the lowest level in our architec-
ture. For a phrase-level network, v will be set as the output of
the matching layer in lexical-level network, and so on. Details
about computing that in matching layer will be discussed later.

As mentioned before, self-attention can solve the long-range
dependency problem and choose the relevant information for
sentence semantic. Since the sentence representations learning
at each level aim at the same sentence, we try to inform the
current level of the classification reason of the previous level.
By utilizing self-attention operation, the model can grasp the
most relevant parts for inference relation precisely and make
the correct decision. Moreover, the max-pooling operation can
select the most significant properties in each sentence and
enhance the sentence representation. Therefore, self-attention
and max-pooling together can generate a sufficient sentence
representation, which is also the output of IEU.

As shown in the red box in Fig. 2, the sentence vector p
for the premise and k™P for hypothesis represent the sentence
semantics in a comprehensive way and guarantee the ability
of models in sentence semantic understanding and inference
relation classification.

rep

C. Label Prediction

This component consists of two operations: 1) matching
and 2) classification. In order to better evaluate the over-
all inference relation between two sentences, we employ the
matching layer to integrate the information among the premise
representation p™P and hypothesis representation h™P. To be
specific, we leverage heuristic matching methods to modify
these representations, which can be formulated as follows:

- relu([(prep; hrep); (hrep _prep); (hrep Oprep)]) (6)

where [.; .] represents the concatenation operation, ® means
element-wise product and relu is the nonlinear activation func-
tion. v is the inference relation vector of two sentences. In this
operation, concatenation can retain all the information [35].
The element-wise product is a certain measure of “similarity”
of premise and hypothesis [13]. Their differences can capture
the degree of distributional inclusion on each dimension [53].
The output v will be used as the input of the classification
layer. Besides, as mentioned in Section IV-B, it will also be
sent to the IEU layer of the next level, e.g., v from lexical-level
network is sent to phrase-level network.

After getting the inference relation vector v, we utilize a
multilayer perceptron (MLP) and one softmax output layer to
classify the inference relation of two sentences. The output of
this layer is the probability distribution of the inference rela-
tion between the sentence pair with the help of the reference
information. The formulation is as follows:

P(y|sP, s, 1) — softmax(MLP(»)). 7

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

—l Coarse-grained
I Features

s N
] It )
& 1 ! Single-label
{ "} ! Loss
|
[ A
\
—— =
e
1,0 | Multi-label
- 4 T e
S |
. !
uts

Training: ImageNet Fine-tune: Data

Fine-grained
Features

Fig. 4.  Architecture of different image feature generators. (a) Pre-trained
feature generator. (b) Adaptive feature generator.

We have to note that the input sentences are encoded at
multiple levels. Thus, the probability P(y|s”,s" I) also can
be calculated at multiple levels. As shown in Fig. 2, we
utilize P, PP" and P% to represent the outputs of lexical-
level network, phrase-level network, as well as sentence-level
network. However, the lexical-level network or phrase-level
network may misclassify the results due to the lack of global
information of sentences. Utilizing these results may harm
the performance of the models. Considering these results in
the final classification result may harm the performance of the
proposed model. Thus, the final classification result we use is
the output of sentence-level network.

V. MIESR MODEL

In our IEMLRN model, we utilize pretrained VGG19 [32] to
extract image features for enhancing sentence representations.
These pretrained image features are designed on the external
image classification datasets (e.g., ImageNet). Therefore, they
mainly focus on features that contribute to the image classifi-
cation and perform inferior to leverage the image information
for sentence semantic understanding. Therefore, how to adap-
tively align the image semantics with sentence semantics to
narrow down the gap between the images and texts for NLI
remains pretty much open.

To this end, in this section, we focus on the utiliza-
tion the image reference information and extend the current
IEMLRN model to a novel MIESR model, which utilize
both coarse-grained pretrained image features and fine-grained
adaptive image features to enhance the sentence semantic
representations more comprehensively and precisely. In the
proposed model, our key contribution lies in designing an
adaptive feature generator that extracts fine-grained image fea-
tures by constructing a text vocabulary from the corresponding
texts, and a multigranularities image enhanced unit that inte-
grates multilevel image and text features for sentence semantic
enhancement.

To be specific, our newly proposed MIESR also con-
tains three networks, i.e., lexical-level network, phrase-level
network, and sentence-level network. Each network also con-
sists of three components: 1) input embedding; 2) MIEU; and
3) label prediction. In the input embedding, we propose the
Adaptive Feature Generator, which is shown in Fig. 4(b),
to predict the fine-grained adaptive image features. Thus, we
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can represent image reference information not only with the
coarse-grained features from pretrained VGG19 [32] but also
with the fine-grained adaptive features. In MIEU component,
which is shown in Fig. 5, we propose a more effective structure
to integrate both the coarse-grained pretrained image features
and fine-grained adaptive image features for better sentence
representation enhancement. Since the text embedding and
label prediction parts in our newly proposed MIESR are the
same as the parts in our IEMLRN, we will only introduce
the Adaptive Feature generator and MIEU in the following
sections.

A. Adaptive Feature Generator

In order to explore the fine-grained image features and
narrow down the gap between image and text, we leverage
supervised learning to predict a set of adaptive features of
images. Our newly adaptive feature generator is shown in
Fig. 4(b). Since each image has several corresponding cap-
tioning sentences, we first build a text vocabulary with these
captioning sentences. Thus, the most adaptive and salient fea-
tures for each image can be extracted. To be specific, we first
do POS tagging [54] on each word in the captioning sen-
tences, including nouns, verbs, adjectives and so on. Then, we
extract ¢ most common words in each category and gather
them together to determine the final text vocabulary.

Wu et al. [33] have proven that the most common words
can reveal some semantics of images. However, the words
with different parts of speech have different effects on seman-
tic [35]. For example, nouns consider more about the objects
in images, while prepositions pay more attention to the spatial
relations among different objects. Moreover, the frequencies
of words with different POS tags in sentences have a tremen-
dous difference. Counting them with the same standard may
conceal some important semantic concepts. In order to bet-
ter extract adaptive features for images, we do POS tagging
on words before counting their numbers. Along this line, we
obtain a vocabulary with cpos = 465 attributes. Table II shows
some of the text features in parts of POS tagging categories.

With this text vocabulary, we can associate each image with
a set of fine-grained adaptive features according to its cap-
tions. Then, a multilabel image dataset based on Flick30K [55]
image captioning dataset and the attribute vocabulary is con-
structed. Next, we train an attribute extractor based on VGG19

TABLE II
ADAPTIVE FEATURE WORDS IN DIFFERENT POS TAGGING

POS Tagging Adaptive Feature Words
Determiner two, three, another, many, every, some, half, nine
Noun people, man, woman, child, dog, jean, tree, hat clothes
Verb stand, sit, walk, play, run, hold, smile, jump, take, shoot
Adjective small, young, large, old, high, dark, high, white, blue
Preposition in, on, from, over, behind, outside, across, above, indoor

model [32]. Fig. 4(b) shows the structure of the adaptive fea-
ture generator. We take advantage of the parameters in CNN
layers and change the outputs of last fully connected layer to
a cpos-way softmax outputs. Moreover, we utilize the element-
wise logistic loss function as the loss function of the attribute
extractor, which can be formulated as follows:

N Cpos

J = 11\72 2 log(l + exp(—yép{:»

i=1 j=

®)

where yﬁ is a binary value whether the ith image contains the
Jjth adaptive feature. pé is the probability of the jth feature in
the ith image that the adaptive feature generator predicts.
With the help of adaptive feature generator, we can predict
the adaptive feature probability distribution p*" for the given
image. However, this probability distribution can only describe
the most likely semantic concepts of images. How to rep-
resent these semantic concepts properly is still challenging.
Fortunately, each feature is represented by one word and
extracted from the training captions. Thus, we can make use of
the word embedding from the input embedding in IEMLRN to
represent each attribute, in which the sentence semantic rep-
resentation can be shared. Moreover, we multiply the word
embeddings with the probability distribution. Along this line,
the image is represented by adaptive features in sentence
semantic space. We formulate this process as follows:

p*" = Extractor(I)

Catt —E Qpatt (9)

where C*" represents the fine-grained adaptive feature repre-
sentations of the image. E denotes the word embeddings from
input embedding in IEMLRN.

B. Multigranularities Image-Enhanced Unit

In the input embedding, we have obtained the multilevel
text representations and multigranularities image feature rep-
resentations. How to integrate coarse-grained pretrained image
features and fine-grained adaptive image features with text
information at each level is still challenging. Thus, we propose
the MIEU for better sentence representation enhancement.

In our IEMLRN [31], we utilize attention mechanism and
fusion operation to process the image and text information, as
shown in Fig. 3. However, this architecture is redundant. We
have extracted the most relevant information with co-attention
and self-attention operations. The importance of fusion gate is
not so obvious. Therefore, we replace the fusion gate with con-
catenation operation in our newly proposed MIEU, which is
shown in Fig. 5. To be specific, we concatenate the pretrained
feature representations {pf‘)f}, adaptive feature representations
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{pi°®}, as well as the original embeddings {pfx}. Then, we
utilize the self-attention and max-pooling operations to cap-
ture the dependency between words and significant properties,
which is the same as we did in IEU. Meanwhile, (4) and (5)
will be modified as follows:

Pl = [Pf"; pf"f;P?”“]
Bi = wlo <Wﬂp§u +Ugv + bﬁ)
exp(Bi) i

pself — pf , l — 1
2 L1 exp(Bo)

i=1

prep — [pself; max? (pfu), maxf <plx>]
where p{°¢ is the weight summation of the adaptive fea-
ture representations C*"* for the ith word in the premise. By
utilizing MIEU, MIESR is capable of measuring not only
coarse-grained image features but also fine-grained image fea-
tures. Thus, it can narrow down the gap between images and
texts, and model the sentence semantic more comprehensively
and precisely, which is essential for NLI.

(10)

VI. EXPERIMENT

In this section, we will first introduce the datasets that we
evaluate the models on and the baselines that our proposed
models compared with. Then, we will give a detailed analysis
of the models and experimental results.

A. Data Description

In this section, we introduce two datasets, we evaluate the
models on. Different from our preliminary work [31], we
replace the DanMu dataset with SICK dataset, since the latter
has more reliable images and sentences matching relations.

1) Standford Natural Language Inference (SNLI):
SNLI [16] has 570k human-annotated sentence pairs. The
premise sentences were drawn from the captions of Flickr30k
corpus [55], and the hypothesis sentences were manually
composed. The labels we use are entailment, neutral, and con-
tradiction. Since each premise was drawn from the training
captions, we extract the corresponding image from Flickr30k
dataset as the reference information. In order to better evalu-
ate the performances of models, we also select the challenging
hard subset [47] and lexical subset [48] as our test sets. Table I
gives several examples from different SNLI test sets.

2) Sentences Involving Compositional Knowledge (SICK):
SICK dataset [56] consists of about 10000 English sentence
pairs, generated from two existing sets: 1) the 8K ImageFlickr
dataset [57] and 2) the STS MSR-video description dataset.!
It is a randomly selected subset of sentence pairs from each of
these sources. Each sentence pair is annotated for the seman-
tic inference relations (entailment, contradiction, and neutral)
by means of crowdsourcing techniques. In order to make
the results more reliable, we only extract the corresponding
reference information from the 8K ImageFlickr dataset.

lhttps://www.cs.york.ac.uk/semt;—:val—ZO12/
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TABLE III
STATISTICAL INFORMATION OF EACH TEST SET

Test set Data Size Average Token Count

E C N premise  hypothesis
SNLI Full Test 3,368 3,237 3,219 1391 7.48
SNLI Hard Test 1,058 1,135 1,068 13.81 7.71
SNLI Lexical Test 782 5,164 43 11.42 11.60
SICK Test 2,243 239 2,513 11.69 11.47

Since we introduce the image information into the original
dataset, a small part of the data that do not contain the corre-
sponding images will be removed. Therefore, we recount the
basic statistics and show them in Table III.

B. Model Learning

In this section, we will introduce the details about the model
learning, which consists of two parts: 1) loss function and
2) model initialization.

1) Loss Function: Since it is a classification problem, we
utilize cross-entropy as the loss function. The following is
the loss function of the lexical-level network, where n is the
number of training examples:

| — N
L= - Z;yilogP(yﬂsf, s; ,I,-)
=

(11)

y; is the one-hot representation for the true class of the ith
example, and P(yils‘;’ , s?, I)) is the probability distribution over
the classes that our proposed models output. As mentioned in
Section IV-C, each network in our model has an output. We
intend that each network in our models should make the cor-
rect classification. Therefore, we apply cross-entropy function
to each-level output. Considering the model complexity, we
also add the L2-norm of all parameters in /EU or MIEU to
the entire loss function. Then, we get the loss function for the
whole model as follows:

L=L" 417" 415 1 €)0]),. (12)

2) Model Initialization: In order to get the best
performance, we have tuned the hyper-parameters on the vali-
dation set. Specially, we utilized the validation set to monitor
the training process. If the loss on validation set did not
decrease in 1000 batches, we would stop the training process
and select the trained model that has the best performance
on the validation set as the final model, in which all the
parameters are determined.

For pretrained image feature generator, we utilize the
VGG19 [32] in Keras? to process the images and employ the
result of the last convolutional layer as the image feature rep-
resentations. For adaptive image feature generator, we modify
the output layer in VGG19 to change it from single-label clas-
sification to multilabel classification. Then, we fine-tune the
generator on the Flickr30k corpus [55].

For both IEMLRN and MIESR, we set the word embed-
ding dimension as 300, character-level embedding level as 100,
phrase-level embedding are also set as 100, the dropout as
0.6, and € as 0.01. The word embedding we use are obtained

2https ://keras.io/
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TABLE IV
PERFORMANCE (ACCURACY) OF MODELS ON SNLI AND SICK DATASETS

Model #Paras Full test Hard test Lexical test SICK test
(1) LSTM encoders [59] 3.0m 80.6% 58.5% 52.3% 81.8%
(2) Inner-Attention BiLSTM [20] 2.8m 84.5% 62.7% 58.6% 85.2%
(3) CENN [36] 700k 82.1% 60.4% 51.9% 82.5%
(4) Gated-Att BiLSTM [14] 12m 85.5% 65.5% 65.6% 85.7%
(5) CAFE [60] 3.7m 85.9% 66.1% 65.5% 86.1%
(6) Distance-based Self-Attention [21] 4.7m 86.3% 67.4% 68.5% 86.7%
(7) DRCN [22] 5.6m 86.5% 68.3% 69.4% 87.4%
(8) CENN with image [36] ~700k 83.1% 61.7% 66.8% 84.2%
(9) NIC [42] - 84.7% 63.6% 67.1% 85.5%
(10) m-RNN [24] - 85.1% 64.9% 69.4% 85.9%
(11) VQA-model [61] - 79.7% 56.2% 62.4% 84.9%
(12) IEMLRN 3.9m 87.5% 75.4% 78.1% 87.7%
(13) MIESR 3.7m 87.8%(+0.3) 76.8%(+1.4) 78.7%(+0.6)  88.3%(+0.6)

from a pretrained word vectors (840B GloVe) [49]. The hid-
den state size of GRU is 512. The hidden size in co-attention
and self-attention calculation is set as 200. The sizes of two-
layer MLP in label prediction layer are set as 512 and 256. To
initialize the model, we randomly initialize all weights such as
Wpg following the uniform distribution in the range between
—4/6/(nin + nout) and +/6/(nin + nout) as suggested by [61].
All biases such as bg are initialized as zeros. We use Adam
optimizer with learning rate 10~*. During implementation, we
utilize tensorflow? and Photinia® to build our entire model.

C. Baselines

In this part, we compare our model against the following
start-of-the-art sentence-encoding baselines.

1) LSTM Encoders [58]: Leveraging different LSTMs to

encode the premise and hypothesis sentences.

2) CENN [35]: Integrating different context for better
sentence semantic representations.

3) Inner-Attention BiLSTM [20]: Utilizing inner-attention
to extract the important parts for sentence representa-
tions.

4) Gated-Art BiLSTM [14]: Using intrasentence gated-
attention method to generate sentence representations.

5) CAFE [59]: Utilizing a compare, compress and propa-
gate architecture to generate sentence representations.

6) Distance-Based Self-Attention [21]: Utilizing self-
attention and distance mask to model the local and
global dependencies among sentences for NLI.

7) DRCN [22]: Using a densely connected co-attentive
recurrent neural network (RNN) to preserve all the
information for better sentence representations.

We also select three V2L models to better verify the per-
formances of IEMLRN and MIESR. Since these models aim
to generate image descriptions or predict the scores of candi-
date answers, we just leveraging their fusion representations
of images and sentences. Then, we employ the same label
prediction component as our proposed models did.

1) NIC [41]: A neural network consisting of a vision CNN

followed by a language RNN.

3 https://www.tensorflow.org/
4https:// github.com/XoriieInpottn/photinia

2) m-RNN [24]: Utilizing a deep RNN for sentences and a
deep CNN for images to generating the captioning.

3) VOA Model [60]: Adopting a combined bottom-up
and top-down attention mechanism to better model the
interaction between images and sentences.

D. Experimental Results

In this section, we utilize the accuracy on different test sets
to evaluate the performance of all models.

1) Overall Performance: The overall results are sum-
marized in Table IV. We can observe that IEMLRN and
MIESR achieve state-of-the-art performance on all test sets.
To be specific, the corresponding images are introduced
as reference information. Thus, the sentence semantic of
the premise and hypothesis can be evaluated more com-
prehensively and precisely. For example, the image can
be helpful for distinguishing the exact weather in premise
sentence, as shown in Fig. 1. Moreover, IEMLRN inte-
grates the reference information and evaluates the inference
relation between two sentences with different granularities,
which means IEMLRN can understand the sentence seman-
tic from lexical knowledge to global semantic. Furthermore,
MIESR utilizes coarse-grained pretrained features and fine-
grained adaptive features to represent the image from different
granularities. Thus, MIESR has the capability to narrow down
the gap between texts and images, and take full advantage of
image information for better sentence semantic representation
enhancement.

LSTM encoder [58] utilizes different LSTMs to encode sen-
tences and leads many related works, such as inner-attention
BiLSTM [20] and CENN [35]. However, they encode each
sentence separately. The interactions between two sentences,
which are essential for NLI, have not been utilized effectively.
Distance-based self-attention [21] and DRCN [22] are current
state-of-the-art sentence encoding-based models. The former
utilizes the masked multihead attention with distance to model
the sentence semantic. The latter adopts densely connected co-
attentive network to generate sentence representations. They
are capable of modeling sentences from multiple aspects com-
prehensively. However, they take only the text information
into consideration, which is insufficient for tackling the issues
that sentence semantic suffers from. Moreover, if the words in
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TABLE V
ACCURACY(%) OF IEMLRN AND MIESR WITH DIFFERENT IMAGE SETTINGS OVER EACH INFERENCE RELATION

Model Original images W/O Images Foil images
Full Hard Lexical Full Hard Lexical Full Hard Lexical
Entailment 883% 81.4% 723% | 88.1%(-0.2)  74.5%(-6.9) 76.2%(+3.9) | 87.0%(-1.3)  742%(-1.2)  58.3%(-14.0)
IEMLRN Contradiction | 89.2% 79.7%  79.4% | 85.0%(-4.2)  70.0%(-9.7)  68.4%(-11.0) | 84.9%(-4.3)  65.6%(-14.1)  60.8%(-18.6)
Neutral 849% 649%  272% | 82.0%(-2.9)  58.1%(-6.8) 23.3%(-3.9) | 77.1%(-1.8)  55.3%(-9.6) 23.3%(-3.9)
Overall 87.5% 754%  18.1% | 85.1%(-2.4)  67.4%(-8.0) 69.1%(-9.0) | 83.1%(-4.4)  65.0%(-10.4)  60.2%(-17.9)
Entailment 883% 823%  133% | 88.1%(-0.2)  74.5%(-7.8) 76.2%(+2.9) | 86.2%(-2.1)  69.1%(-13.2)  60.7%(-12.6)
MIESR Contradiction | 88.6% 81.5%  79.9% | 85.0%(-3.6) 69.8%(-11.7)  68.4%(-11.5) | 86.3%(-2.3) 69.1%(-12.4)  69.5%(-10.4)
Neutral 86.4% 663%  349% | 82.0%(-4.4)  582%(-8.1)  23.3%(-11.6) | 80.0%(-6.4)  58.0%(-8.3) 30.2%(-4.7)
Overall 87.8% 76.8%  18.7% | 85.1%(-2.7)  67.4%(-9.4) 69.1%(-9.6) | 84.2%(-3.6) 65.3%(-11.5)  68.1%(-10.6)

sentences have high overlap, they might be treated as the same
sentences, which has a bad influence on the final decision.

2) Performance on Hard and Lexical Test: As mentioned
in Section II-C, hard test and lexical test are capable of better
evaluating the performances of NLI models. We observe from
Table IV that IEMLRN outperforms all baselines by a large
margin, e.g., distance-based self-attention model (+8.0%) and
gated-Att BiILSTM model (49.9%). Meanwhile, with most
of the models perform worse on lexical test than their own
performances on hard test, IEMLRN and MIESR achieve the
accuracy 78.1% and 78.7% separately, which are 2.7% and
1.9% higher than their own performances on Hard test. These
phenomena suggest that our proposed models have better gen-
eralization ability and grasp the lexical knowledge indeed.
Moreover, MIESR achieves better performance over IEMLRN,
which indicates that utilizing both the coarse-grained pre-
trained features and fine-grained adaptive features of images
will be quite helpful for enhancing the sentence representation.

3) Comparison Between IEMLRN and MIESR: As illus-
trated in Tables IV and V, MIESR achieves better performance
than IEMLRN. We can obtain that MIESR has a more sta-
ble improvement on hard test (1.4%) and lexical test (0.6%),
which indicates its superiority. Moreover, we can observe that
MIESR not only achieve better performance on challenging
test sets (i.e., hard test and lexical test), but also on challenging
category (i.e., Neutral). As shown in Table V, MIESR achieves
the accuracy 86.4%, 66.3%, and 34.9% on the Neutral cate-
gory of different test sets, which are 1.5%, 1.4%, and 7.7%
higher than the performances of IEMLRN. These phenom-
ena indicate that by utilizing both the coarse-grained pre-
trained features and fine-grained adaptive features of images,
MIESR is capable of understanding sentence semantic more
precisely and comprehensively. Thus, it can better deal with
more complex situations.

E. Analysis of the Importance of Images

In this article and our previous work [31], we introduce
the images as reference information into NLI. There are
three important questions should be answered to validate the
importance of image reference information.

1) Since the premise sentences are drawn from the training
captions of images, whether the premise sentences can
be replaced by the corresponding images.

2) Our proposed models achieve the best performance.
How many of the improvements are achieved by the
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Fig. 6. Comparison between premise-hypothesis and hypothesis-only.

image reference information. Whether the corresponding
images are beneficial for all inference relations.

3) Since the image is invisible when annotating the data,
image introduction may change the inference relation
between sentences. How is the impact degree of the
image reference information. Does this change invali-
dates the model evaluation when still using the original
labels.

In order to answer these questions, we did extensive experi-
ments and detailed analysis in the following part.

1) Problem A: The focus of this problem is whether
the premise sentences can be replaced by the correspond-
ing images. If so, we can just evaluate the inference relation
with the corresponding images and hypothesis sentences, and
achieve comparable performance. Thus, we remove all the
premise data and evaluate the models on all test sets.

As shown in Fig. 6, there is a big gap between the per-
formances of complete data and the hypothesis-only data.
Moreover, the performances on the challenging hard test
and lexical test become a lot worse. This phenomenon indi-
cates that the images cannot replace the premise sentences.
Even though the premise sentences describe the content in
the images, there is still a big difference between them.
The images can be treated as reference information to enhance
the sentence semantic understanding and assist inference
relation classification, but they cannot be treated as the replace-
ment of the premise sentences. In other words, this article
still focuses on the inference relation between sentences
and has a big difference with image and sentence retrieval
alike work.

2) Problem B: The concentration of this problem is the
importance of images. Thus, we further explore the impact
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TABLE VI
ACCURACY ON IEMLRN AND MIESR WITH DIFFERENT
IMAGE SETTINGS

Model Test set | Images W/O Images Foil Images
Full 87.5% 85.1% 83.1%
IEMLRN Hard 75.4% 67.4% 65.0%
Lexical 78.1% 69.1% 60.2%
Full 87.8% 85.1% 84.2%
MIESR Hard 76.8% 67.4% 65.3%
Lexical 78.7% 69.1% 68.1%

of different image settings in IEMLRN and MIESR by com-
paring their performance on full test and hard test of SNLI.
Tables V and VI show the corresponding overall and detailed
results. W/O Images represents removing the inputs of image
features. Foil Images represents replacing the original image
with an unrelated random one from the whole image set.

Compared with the original images, the performances with-
out images or with foil images both have a big drop, in
which foil image setting leads to worse performance. It indi-
cates that images play an important role in sentence semantic
understanding, and foil images will introduce more irrele-
vant information that deteriorates the model performances.
Moreover, we can observe that MIESR has better performance
on neutral relation recognition, which is the hardest to clas-
sify among three relations. This phenomenon indicates that
multigranularities representations of images are really help-
ful for sentence representation enhancement. Furthermore, we
observe that IEMLRN has better performance over lexical
test on entailment relation without images than with original
images. Since this test set needs explicit lexical knowledge and
precise attention on the different words, only coarse-grained
pretrained image features may be insufficient for inference
relation classification. On the contrary, MIESR adopts both
coarse-grained pretrained features and fine-grained adaptive
features for images. Therefore, we can observe from Table V
that MIESR has very stable performance on lexical test too.

3) Problem C: The core of this problem is to figure out
whether the image introduction will invalidate the model eval-
uation when we still use the original labels. First of all, we
sampled 1000 instances (340 entailment, 330 contradiction,
and 330 neutral) from full test and hard test separately, and
invited ten NLP researchers to reannotate these instances.
Inspired by confusion matrix, we utilize Table VII to illus-
trate the statistic results in each category. Each column (row)
represents the count of gold labels (relabeled labels) in
each category. For example, the first column indicates that
313 entailment instances are relabeled Entailment, 11 entail-
ment instances are relabeled Contradiction, and 16 entailment
instances are relabeled Neutral. We utilize Cohen’s « to val-
idate the consistency of relabeled results and original results.
The inner-annotator agreement « is 0.749 for full test, 0.685
for hard test, and 0.717 for all of them, which indicate the
credibility of relabeled data. This phenomenon illustrates that
the image introduction will not invalidate the model evaluation
when the gold labels are still used.

Moreover, the biggest impact of image reference
information is that some of neutral instances are relabeled
entailment or contradiction. Since the image reference
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TABLE VII
LABEL CHANGING COLLECTION WITH IMAGES ON FULL AND HARD
TESTS. (E: ENTAILMENT, C: CONTRADICTION,
N: NEUTRAL, O: OVERALL)

Full Test Hard Test
Re-Labeled B C N o) B C N o)
Entailment 313 4 71 388 297 6 94 397
Contradiction 11 314 53 378 17 311 54 382
Neutral 16 12 206 | 234 26 13 182 | 221
Overall 340 330 330 | 1000 | 340 330 330 | 1000

information is invisible when annotating the data, it is natural
that the images provide necessary information to avoid the
ambiguity or fuzziness that sentence semantic suffers from.
As mentioned in [47], neutral hypothesis is often generated
by introducing the plausible information, e.g., talking on the
phone to talking to his wife on the phone, or replacing approx-
imates with exact descriptions, e.g., some people to four
adults. For the latter situation, image reference information
provides sufficient information, or grounded information [62]
to distinguish the inference relation. Thus, image reference
information will be helpful for avoiding this kind of annotation
artifacts. As for the former situation, though image reference
information cannot provide corresponding information, it
can help the model distinguish the plausible information and
classify these instances into neutral category. In other words,
though the image reference information may change the gold
labels, it does not invalidate the model evaluation, but helps
to avoid some annotation artifacts.

FE. Ablation Performance

In the previous section, we have proven that image
information has a big impact on the sentence semantic
understanding. However, the importance of multilevel sen-
tence semantic representations in our proposed models is still
unclear. Thus, we conduct an ablation study to examine the
effectiveness of each component. The results are shown in
Table VIII.

From the results, our proposed models perform bet-
ter when consider multigranularities text representations.
When considering multigranularities image representations,
MIESR performs better than IEMLRN. These phenomena
indicate that considering the semantics of sentences and
images from multiple granularities is important and neces-
sary for semantic understanding. In other words, fine-grained
representations consider more about the local information,
while coarse-grained representations concern more about
global information. They all should be considered for bet-
ter sentence representation enhancement and inference relation
classification.

Moreover, compared with /EU, we remove the fusion gate
from MIEU and declare that this operation is redundant in
Section V-A. However, whether this operation is redundant
is still unclear. Therefore, we also make experiments to vali-
date the performance of IEMLRN and MIESR by retaining or
removing the fusion gate. The results are shown in Table VIII
(7) and (8). As illustrated from the results, we can obtain
that the performance of fusion gate is not consistent, with
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T w P: Three guys in red uniforms celebrating a goal Gold Label N P: A big dog catches a ball on his Gold Label N
}'j £ in a soccer game . Changing Label | E nose. Changing Label | C
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23
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- E H: Bruce Springsteen is from Florida . H: A runner is working out on the
MIESR c sand . MIESR E
Fig. 7. Comparison of gold labels, changing labels, and predicted labels in some examples.
TABLE VIII
ABLATION PERFORMANCE (ACCURACY) OF MODELS ON SNLI AND SICK DATASETS
Model Full Test Hard Test Lexical Test SICK Test
IEMLRN  MIESR | I[EMLRN  MIESR | IEMLRN  MIESR | IEMLRN  MIESR
(1) Only Lexical Feature 34.3% 42.5% 42.1% 45.6% 67.5% 70.1% 51.7% 58.5%
(2) Only Phrase Feature 52.7% 58.4% 45.2% 48.5% 66.2% 69.4% 57.5% 63.8%
(3) Only Sentence Feature 76.2% 79.3% 57.9% 60.3% 65.0% 68.7% 62.3% 69.2%
(4) Lexical-Phrase Features 65.5% 69.7% 64.5% 68.5% 69.4% 72.2% 63.3% 68.7%
(5) Lexical-Sentence features 82.9% 83.1% 66.8% 67.2% 74.6% 75.6% 70.2% 71.8%
(6) Phrase-Sentence Features 83.2% 83.8% 65.7% 66.4% 73.2% 74.7% 71.5% 72.4%
(7) With Fusion Gate 87.5% 87.6% 75.4% 77.8% 78.1% 78.5% 87.7% 88.7%
(8) Without Fusion Gate 87.6% 87.8% 75.6% 76.8% 74.8% 78.7% 87.4% 88.3%
(9) Whole architecture 87.5% 87.8% 75.4% 76.8% 78.1% 78.7% 87.7% 88.3%

little improvement on some test sets. However, this part also
performs worse on other test sets. With the consideration of
the complexity of models, we remove the fusion gate from
MIESR.

G. Error Analysis

As discussed in Section VI-E, the image plays an impor-
tant role in precise sentence semantic understanding. However,
it would modify the gold labels and import some unre-
lated information to some degree. In order to better validate
the importance of images and the performance of proposed
models, we make error analysis on several misclassification
examples, which is shown in Fig. 7. Next, we will group these
examples into three categories and analyze them separately.

1) Wrong Classification: For the top left example, the
main differences between two sentences are clothing store and
restaurant. However, the image reference information makes
the model focus on the working worker and the outside place.
Thus, both the models are confused about the sentence seman-
tic and make the wrong classification neutral. For the top
right example, the models meet the same circumstance. The
image makes IEMLRN confused about the place that the bird
stands. Fortunately, attribute representations give necessary
information for MIESR to make the right decision.

2) Gold Label Changing: The image reference information
provides more information for the sentences. Thus, the gold
labels of some instances might be changed. The middle
left and middle right examples indicate that the images
provide sufficient information to distinguish the inference rela-
tions between two sentences. Thus, the inference relation
will become clearer. Both of our proposed models utilize

this information and do the correct classification. Moreover,
Section VI-E shows that most of the affected examples are
neutral examples. The image reference information can pro-
vide necessary information for this situation, which proves
that image does play an important role in sentence semantic
understanding.

3) External Knowledge: Though our proposed models
make full use of images to help to understand sentence, there
are still some weaknesses. From the bottom left example,
we find that both the sentences describe the same person.
However, the hypothesis presents some human prior knowl-
edge, which is difficult for the models. The image cannot
tackle this problem. Thus, both models make the wrong clas-
sification. The bottom right example demonstrates the same
phenomenon. In this example, both the sentences are highly
consistent with the image. Thus, the models classify this exam-
ple into entailment category. However, there are still some
differences between the words woman runs and runner, which
need more human prior knowledge to distinguish. Therefore,
the inference relation should be neutral.

H. Case Study

In order to better validate the proposed multilevel archi-
tecture, we visualize the self-attention at different levels in
IEMLRN since it focuses on understanding sentence semantic
with different granularities. Fig. 8 shows the attention distri-
bution and classification probability distribution of each level
over the example shown in Fig. 1.

Compared with the attention results at the three-level
structure, we can observe that IEMLRN pay more atten-
tion to the important words, i.e., shopping, outside market in
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People are enjoying the sunny day at the market .
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Level ‘
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Lexical-level 0.066 0.086 0.818 Sentence
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sentence-level 0. 675 0.028  0.297

Fig. 8. Visualization of self-attention with different text granularities.

premise and enjoy, sunny day, market in hypothesis. This indi-
cates that IEMLRN pays attention to not only the weather
information but also people’s activity. Therefore, sentence
semantic can be evaluated and represented more comprehen-
sively and precisely. Moreover, the classification probability
distributions at each level indicate that IEMLRN makes a
wrong classification at lexical level since the absence of global
semantic is missing. When taking more global semantic (i.e.,
phrase-level or sentence-level information) into consideration,
IEMLRN turns to the right classification result and becomes
more and more confident about the decision. In other words, by
evaluating sentence semantic and relations from lexical knowl-
edge to global semantic, our proposed models are capable of
achieving good performance in NLI task.

VII. CONCLUSION

In this article, we presented a study on NLI. Specifically,
we introduced the corresponding images of sentences as
reference information into NLI for sentence representation
enhancement. Moreover, we proposed an IEMLRN, a novel
architecture that allowed the model to utilize the image ref-
erence information to understand sentence semantic from
lexical knowledge to global semantics. By integrating vision
and language information from multilevel granularities, i.e.,
lexical-level, phrase-level, and sentence-level, IEMLRN can
model the sentence semantic comprehensively and accurately.
Furthermore, we explored the image utilization and extended
the IEMLRN to MIESR, which adopted coarse-grained pre-
trained features and fine-grained adaptive features of images.
This architecture was capable of narrowing down the gap
between images and texts, as well as enhancing the sen-
tence semantic representations more comprehensively. Finally,
experimental results on two benchmark NLI datasets demon-
strated that [IEMLRN and MIESR were able to understand sen-
tence semantic, generate sentence representation, and evaluate
the inference relation between sentences in a comprehensive
and precise way.

In the future, we will consider more different reference
information and more efficient processing methods (e.g.,
objection detection) for more precise sentence semantic under-
standing and representations. Since there has been relatively
little work on utilizing reference information directly for infer-
ence relation classification, we hope this article could inspire
the relative researches and lead to many future works.
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