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Abstract

One-class collaborative filtering (OCCF) problems are vital
in many applications of recommender systems, such as news
and music recommendation, but suffers from sparsity issues
and lacks negative examples. To address this problem, the
state-of-the-arts assigned smaller weights to unobserved sam-
ples and performed low-rank approximation. However, the
ground-truth ratings of unobserved samples are usually set to
zero but ill-defined. In this paper, we propose a ranking-based
implicit regularizer and provide a new general framework for
OCCF, to avert the ground-truth ratings of unobserved sam-
ples. We then exploit it to regularize a ranking-based loss
function and design efficient optimization algorithms to learn
model parameters. Finally, we evaluate them on three real-
world datasets. The results show that the proposed regularizer
significantly improves ranking-based algorithms and that the
proposed framework outperforms the state-of-the-art OCCF
algorithms.

Introduction
Recommender system has become more and more popular
to satisfy the user and increase the revenue for providers.
With the development of digital media, the form of informa-
tion is becoming various and lots of research has shifted at-
tention from explicit feedback to implicit feedback. Implicit
feedback is everywhere, such as click, purchase or brows-
ing history which covers the user’s interest and preference.
Recommender system aims to infer from the abundant im-
plicit feedback to provide the user a rank list of the items.
One-class collaborative filtering (OCCF) problem refers to
a strategy which relies on the implicit feedback and OCCF
problem is common and vital in many application scenarios.

However, learning from implicit feedback is expensive.
There is some hidden information behind the ratings both for
observed ratings and unobserved ratings. As a result, recom-
mender system should consider the interaction between each
user-item pair and the unobserved data, which is time con-
suming. Moreover, it is difficult to minimize the objective
function in linear time due to the sparsity of the data. Some
methods sacrifice the accuracy by sampling for efficiency
(Rendle et al. 2009).

∗Corresponding author
Copyright c⃝ 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The absence of negative feedback (Hu, Koren, and Volin-
sky 2008) is another problem for the case of implicit
feedback. In unobserved data, there are dislike items and
the items not exposed but potentially preferred. In most
cases, the unobserved data is treated as missing data. Some
other interpretations are put on the missing data (Devooght,
Kourtellis, and Mantrach 2015; Steck 2010). The state-of-
the-art algorithm(Devooght, Kourtellis, and Mantrach 2015)
sets a prior on the unobserved data, resulting to a smaller
weight of unobserved data. The WRMF method sets the ap-
proximate rating 0 for the missing data but in the real word
the ratings are not single.

In this paper, we focus on the unobserved data depending
on the real-world data. There is no doubt that the items with
1 ratings are more likely to be preferred than the items with
0 ratings. However, the difference between the unobserved
data is hard to formalize to help rank the items. In most
cases, the interaction between the unobserved data is omit-
ted. The 0 ratings are not unique and the unobserved items
contains both dislike items and potentially preferred items.
There are certain similarities between the unobserved data.
As a result, we aim to catch the link between these data to
improve the performance of ranking. We propose a ranking-
based implicit regularizer which penalizes the large differ-
ence between the unobserved data. In this way, we avert the
estimation for unobserved data of ground-truth dataset and
we can deal with the origin data without approximation.

Besides proposing the regularizer, we design a ranking-
based framework for one-class collaborative filtering prob-
lems based on matrix factorization. The framework captures
the comparison for two cases: the comparison between the
observed and the unobserved data, and the inner compari-
son between the unobserved data which corresponds with
the regular form of objective function.

Our main contributions are:

• We propose a ranking-based regularizer to penalize the
discrepancy of estimated preferences for different unob-
served items, and thus avert the use of ill-defined ground-
truth ratings of unobserved items.

• We propose a general ranking-based framework for one
class collaborative filtering, and design a highly effective
optimization algorithm to dramatically improve scalabil-
ity of the framework .
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Our paper is organized as follows: First, we briefly intro-
duce the recommendation problem for one-class collabora-
tive filtering and the notations we referred. Second, we intro-
duce our proposed ranking-based implicit regularizer with
its simplification forms and provide the general framework.
Next, we apply square loss function and introduce the opti-
mization of our method. At last, we experiment our method
on three datasets with large number and compare it with
other matrix factorization methods.

Related Work
Matrix factorization (MF) model is regarded as the most
effective recommendation system model (Koren and Bell
2015; Koren 2009). For OCCF problem, there are two
widely used methods to rank the items for the user. The
sampling method, such as BPR (Rendle et al. 2009) (Pan
et al. 2008), has an efficient updating strategy based on
the negative sampling. BPR using a stochastic gradient de-
scent (SGD) to make comparisons on the pairs of the pos-
itive and negative samples. However, negative sampling
for efficiency leaves out some information in the ranking-
based system. Another method is based on the entire data,
such as coordinate decent (CD), SGD (Shi et al. 2012;
Ning and Karypis 2011; Sedhain et al. 2016)and etc. These
methods take the whole data into consideration but suffer
from the inefficiency due to the huge number of unobserved
data. For our work, we try to utilize the full data and design
efficient algorithm.

Several methods have been proposed to optimize the MF
model. Such as coordinate descent (CD) (Bayer et al. 2017;
Hu, Koren, and Volinsky 2008) and stochastic gradient de-
scent (SGD). The method of alternating least square (ALS)
(Hu, Koren, and Volinsky 2008; Takács and Tikk 2012;
Pilászy, Zibriczky, and Tikk 2010) is an instance of coordi-
nate descent. Pan’s work(Pan and Scholz 2009) introduces
an approximation method for ALS to solve the problem
of inefficiency. Furthermore, Tikk’s work(Takács and Tikk
2012) describes another method for ALS by simplifying the
equations. In our work, we adopt this method to optimize
the objective function without sampling, which utilize all the
data.

Regardless of the optimization for matrix factorization,
the treating on unobserved data is another important prob-
lem in one-class collaborative filtering problem. The unob-
served data contains much noise(Hu, Koren, and Volinsky
2008) and the interpretation on the unobserved data varies
(Hu, Koren, and Volinsky 2008; Pan et al. 2008; Pan and
Scholz 2009). The state-of-the-art algorithm WRMF (De-
vooght, Kourtellis, and Mantrach 2015) sets small weights
on the unobserved data depending on the not missing at
random assumption for the ranking based recommendation
model and apply it into an online model because of the low
time complexity. However, the estimate on the unobserved
data means a deviation over the real data and the suggested
value 0 leaves out some significant information for ranking.
In our work, we consider the comparison between the un-
observed data in a new way. And we exploit it to regularize
the ranking-based loss function to satisfy a recommendation
model.

Table 1: Notations
Notation Representations

Eu Eu = {i ∈ E|rui > 0}
Ui Ui = {u ∈ U |rui > 0}
pu the latent vector for the u-th user
qi the latent vector for the i-th item
Qu Q[Eu], the submatrix of Q
Pl P[Ul], the submatrix of P
q̃

∑
i qi, the sum of the item latent vectors

q̃u

∑
i∈Eu

qi

rui the real rating for user u and item i
r̂ui pT

uqi, the estimate rating
Nu the number of the items the u-th user rated
N⃗u the vector of Nu

Q̃ each row of Q̃ is q̃u

|R| the number of the observed ratings(rui = 1)
T the number of iterations

Preliminaries
A recommendation model aims to a assign score to each
user-item pair to provide the user with a ranking list of
items. The rating rui denotes the rating of the u-th user
on the i-th item. The set U = {u1, u2, ..., uM} is the set
of all users and E = {e1, e2, ..., eN} of all items. The set
Eu = {i ∈ E|rui > 0} denotes the items the u-th user
rated. Similarly the set Ui = {u ∈ U |rui > 0} denotes the
users who rated the i-th item. The matrix R denotes the rat-
ing matrix. For a one-class collaborative filtering problem,
rui ∈ {0, 1} where rui is an element of R.

Matrix factorization methods produce a latent feature vec-
tor of k dimensions for each user and each item. Vector pu

denotes the latent feature vector for the u-th user and vec-
tor qi for i-th item. Matrices P ∈ RM×K and Q ∈ RN×K

denote the latent factor matrix for users and items. The pre-
dicted rating r̂ui is the inner product of pu and qi. Matrix
factorization is described as an optimization problem, whose
regular form is:

min
P,Q

L(rui, r̂ui) + λR(P,Q)

The objective function has two parts: the loss function and
the regularizer. The loss function L measures the error the
model makes on the observed data. The loss function can be
square loss, logit loss, hinge loss, etc. R is the regulariza-
tion term. λ is the parameter of the regularizer. For the sake
of convenience and simplicity, we summarize the notations
referred in Table(1).

Learning From Implicit Feedback
Depending on the matrix factorization model, we introduce
our proposed implicit regularizer and a general framework
for one-class collaborative filtering. Then we exploit it to the
square loss function and design the optimization algorithm.
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Ranking-based Implicit Regularizer
For the one-class collaborative filtering (OCCF) problem,
the lack of the negative samples prevents the delicate classi-
fication for the items. In the implicit feedback data set, the
ratings are only marked as 0 and 1. However, the items with
the rating 0 can be either disliked or not exposed but poten-
tially preferred.

According to Robin Devooght’s work(Devooght, Kourtel-
lis, and Mantrach 2015), a prior is set on the unknown val-
ues. The form of the regularizer on the unobserved ratings
is:

R0(P,Q) =
∑
u

∑
i/∈Eu

(r0 − r̂ui)
2

where r̂ui = pT
uqi. A rating r0 = 0 is suggested as a prior

estimate for the unobserved data. The regularizer becomes:

R0(P,Q) =
∑
u

∑
i/∈Eu

(r̂ui)
2 =

∑
u

∑
i/∈Eu

(pT
uqi)

2 (1)

Although the method has a good performance in matrix
factorization models and a prior estimate is set on the unob-
served samples, the value of the prior is hard to explain and
lack of verification. The suggested value 0 for the prior tends
to treat all the unobserved data as negative samples which
leads to a deviation from common awareness. In addition, it
is hard to estimate a unique rating for the unobserved items.

According to Steffen Rendle’s recent work in WWW
2017 (Bayer et al. 2017), an implicit regularizer is actu-
ally introduced in WRMF, to penalize the deviation of each
user’s estimated preference for all unobserved item from
zero. This means each user’s estimated preference for unob-
served items should be close to zero, implying some “simi-
larity” among unobserved items. However, the zero-ratings
for unobserved items should be uncertain. From this per-
spective, we propose a ranking based regularizer defined as:

Rr =
1

2

∑
u

∑
i<j /∈Eu

(r̂ui − r̂uj)
2

=
1

4

∑
u

∑
i,j /∈Eu

(pT
uqi − pT

uqj)
2

(2)

From the formula, we can measure the difference between
the unobserved data and intend to smooth it. The regularizer
averts the usage of the rating zeros of unobserved items but
utilizes the ground-truth data.

Compared with the regularizer Eq(1), the computation of
our regularizer is more complicated. We expand Eq(2) into
three parts according to the principle of inclusion and exclu-
sion and we obtain a form of Rr as:

Rr =
1

4
(R0 − 2R1 +R2)

where
R0 =

∑
u

∑
i,j

(pT
uqi − pT

uqj)
2

R1 =
∑
u

∑
i∈Eu

∑
j

(pT
uqi − pT

uqj)
2

R2 =
∑
u

∑
i,j∈Eu

(pT
uqi − pT

uqj)
2

The regularizer includes the computation of set E and the
subset Eu for each user. To some extent, the avoidance of
computing of non-set improves the efficiency of computa-
tion and solves the some problems caused by data sparsity.
Besides, the derivative of Ri is similar. Let us briefly derive
R1 with respect to ql as:

∂R1

∂ql
= 2

∑
u∈Ul

∑
j ̸=l

pup
T
u (ql − qj) + 2

∑
i̸=l

∑
u∈Ui

pup
T
u (ql − qi)

= 2
∑
u∈Ul

pup
T
u (Nql − q̃) + 2

∑
u

pup
T
u (Nuql − q̃u)

where q̃ =
∑

i qi and q̃u =
∑

j∈Eu
qj which is the sum

over the item latent vector corresponding to the u-th user.
Nu is the number of the items the u-th user rated.

Similarly, we derive R1 with respect to pu as:

∂R1

∂pu
= 2

∑
i∈Eu

∑
j

(qi − qj)(qi − qj)
Tpu

=
(
2NQT

uQu + 2NuQ
TQ− 2q̃q̃T

u − 2q̃uq̃
T
)
pu

Matrix Qu ∈ RNu×K is the submatrix of Q composed of
the latent vectors of the items which the u-th user rated. Ex-
tracting Qu from Q can be quickly operated. We transform
the accumulation into the matrix multiplication to avert the
time-consuming loops. Finally, the derivative of ql is as:

∂Rr

∂ql
=

∑
u/∈Ul

(N −Nu)pup
T
uql−

∑
u/∈Ul

pup
T
u (q̃− q̃u) (3)

Similarly, the derivative of pu is as:

∂Rr

∂pu
=(N −Nu)(QQT −QuQ

T
u )pu

− (q̃− q̃u)(q̃− q̃u)
Tpu

(4)

Form Eq.(3) and Eq.(4), the hessian matrix can be ob-
tained both for the user and the item which contributes to
efficient update depending on Newton’s method. Moreover,
there’s no external parameter or estimate in the regularizer
but the computation based on the actual data. We can change
the value of λ to control the influence of the ranking based
regularizer.

A General Framework for One-Class Collaborative
Filtering
The objective function of a matrix factorization model of
ranking based system can be defined as:

ŷ =
∑
u

∑
i/∈Eu

∑
j

L((rui − ruj)− (r̂ui − r̂uj)) (5)

This function was introduced by Jahrer (Jahrer and
Töscher 2011) in the recommender system literature. The
methods BPR (Rendle et al. 2009), WRMF(Hu, Koren, and
Volinsky 2008) also provide similar frameworks for ranking-
based system. There are two circumstances in this objective
function: (1)The comparison between the observed and un-
observed data which implies that the items with 1 ratings are
preferred than zero rating items. (2)The comparison between
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the unobserved data which corresponds with our proposed
regularizer. We integrate our ranking-based regularizer into
the function and obtain the objective function as:

ŷ =
∑
u

∑
i∈Eu

∑
j /∈Eu

L(1, r̂uij) + λRr (6)

where r̂uij = r̂ui − r̂uj , and L is the loss function, such
as square loss L(y, x) = (y − x)2, logit loss L(y, x) =
log(1+ e−yx), or hinge loss L(y, x) = max(0, y(1−x)). λ
is the coefficient of the regularizer. For the one-class collab-
orative filtering system, our objective function is consistent
with Eq.(5).

Applications and Optimizations
We apply square loss function as the loss function in our
framework. Square loss function is widely used in ranking-
based system. Square loss is differentiable which helps ef-
ficient calculation during the optimization. We can obtain
a simple form depending on the alternating least square
method. Furthermore, analytic solution can be applied un-
der the square loss for optimization. However, a new diffi-
culty raised is the increase of time complexity due to the in-
creasing number of comparison between unobserved items
for each user. To improve efficiency, we design optimization
algorithms to learn model parameters.

By considering L as the squared loss function, the objec-
tive function becomes:

ŷs =
1

2

∑
u

∑
i∈Eu

∑
j /∈Eu

(1− (r̂ui − r̂uj))
2

+ λ
∑
u

∑
i,j /∈Eu

(r̂ui − r̂uj)
2

(7)

The objective function contains M × N × N terms. In
addition to the large numbers of the dataset, the sparsity of
the data set prevents the quick calculation. For the sake of
efficiency, we will simplify the loss function in a similar way
of simplifying the regularizer. The derivative of loss function
with respect to user latent vector pu is as:

∂L

∂pu
=
∂L0

∂pu
− ∂L1

∂pu

=−
∑
i∈Eu

∑
j

(1− (pT
uqi − pT

uqj))(qi − qj)

+
∑
i∈Eu

∑
j∈Eu

(1− (pT
uqi − pT

uqj))(qi − qj)

where

L0 =
1

2

∑
u

∑
i∈Eu

∑
j

(1− (r̂ui − r̂uj))
2

L1 =
1

2

∑
u

∑
i∈Eu

∑
j∈Eu

(1− (r̂ui − r̂uj))
2

We expand the loss function into two parts to avert the
computation over the unobserved data which consumes an

enormous amount of time due to the huge sparse matrix. Af-
ter simplification, we obtain the derivative of the loss func-
tion as:

∂L

∂pu
=Nu(Q

TQ−QT
uQu)pu − q̃u(q̃− q̃u)

Tpu

+ (N −Nu)Q
T
uQupu − (q̃− q̃u)q̃

T
upu

− (N q̃u −Nuq̃)

(8)

QTQ and q̃ can be computed before the loop of updating
each user to save time.

The derivative of item latent vector ql is as:
∂L

∂ql
=(

∑
u/∈Ul

Nupup
T
u +

∑
u∈Ul

(N −Nu)pup
T
u )ql

−
∑
u/∈Ul

pup
T
u q̃u −

∑
u∈Ul

pup
T
u (q̃− q̃u)

+
∑
u

Nupu −
∑
u∈Ul

Npu

=(
∑
u

Nupup
T
u +

∑
u∈Ul

(N − 2Nu)pup
T
u )ql

−
∑
u

pup
T
u q̃u −

∑
u∈Ul

pup
T
u (q̃− 2q̃u)

+
∑
u

Nupu −
∑
u∈Ul

Npu

(9)

The form of the derivative for the item latent vector is
more complicated. To speed up the update, apart from restor-
ing some variables, we cache some values and update a part
of them after each updating.

We denote
∑

u Nupup
T
u as Sl,

∑
u Nupu as Np and

these variables can be calculated before the loops of updat-
ing the latent vector. To compute Pq =

∑
u pup

T
u q̃u and up-

date Pq , we first calculate the sum of the ratings over the re-
lated items

∑
i∈Eu

r̂ui for each user and restore these sums
into matrix Q̃. We define an operation tr(A,B) as comput-
ing the sum of each row of the matrix AB where AB is the
dot product of A and B. After computing PT tr(P, Q̃), We
obtain the value of Pq . After each update for the item latent
vector, we compute the values of

∑
i∈Eu

r̂ui of the related
users and change the related multiplier while keeping other
fixed. As there are similar components in Eq(3) , we can in-
tegrate the two parts.

Setting ∂L
∂pu

+ λ∂Rr

∂pu
= 0 and ∂L

∂ql
+ λ∂Rr

∂ql
= 0, we

can update the user latent vector pu and item latent vector
ql with the form of x = A−1b. The Algorithm(1) shows
the procedure of the optimization with ALS. After the
optimization, we learn the parameter of the latent matrix
P ∈ RM×K and Q ∈ RN×K which can predict the ratings
for each user-item pair.

TIME COMPLEXITY
From the formula(7), the trivial method takes O(MN2K2+
(M + N)K3) time in each iteration. In one-class collabo-
rative filter problem, the dimension of the latent vector K

40



is much smaller than the number of the users M and the
number of the items N . And the number of the observed
ratings |R| is also smaller than the whole number of the
ratings. Taking some methods, our learning algorithm takes
only O(|R|K2 + (M +N)K3). The calculations of QT

uQu

and the inversion of matrix occupy most time.

Algorithm 1: Square Loss for Ranking based implicit
Regularizer

Input: The rating matrix R ∈ RM×N

Output: Latent matrix P ∈ RM×K , Q ∈ RN×K

Randomly initialize P, Q ;
for t← 1, 2, ..., T do

// the update of P ;
QtQ← QTQ q̃← QT 1 ;
for u = 1 : M do

Calculate A−1 and b based on Eq(4)(8) ;
pu ← A−1b ;

end
// the update of Q ;
q̃← QT 1;
for u = 1 : M do

Q̃[u] ← QT
[Eu]

1 ;
end
r− ← tr(P, Q̃);
for l = 1 : N do

Calculate A−1 and b based on Eq(3)(9);
ql ← A−1b;
// update the relevant variable;
q̃← q̃− q+ ql;
Q̃

′

[Ul]
← Q̃[Ul] − q+ ql;

r
′

− ← r− + tr(P[Ul], Q̃
′

[Ul]
− Q̃[Ul]);

S
′

l ← Sl +PT
[Ul]

(r
′

− − r−) ;
end

end
return P, Q

To sum up, our method provides a simpler and faster way
depending on the alternating least square (ALS) method to
minimize the objective function and design effective strategy
to accelerate the update.

Experiments
In this part, we perform several experiments to demonstrate
the following key points:

• The general framework based on the square loss function
has a better performance than the state-of-the-art algo-
rithm.

• Our proposed method still has a better performance as the
dimension of the latent vector increases.

• Using the ranking-based implicit regularizer leads to sig-
nificant improvement of ranking.

Table 2: Statistics of Datasets
Datasets Ratings Users Items Sparsity

MovieLens 9,983,739 69,838 8,939 83.669%
Amazon 4,701,968 158,650 128,939 99.978%
Netflix 100,396,329 463,770 17,764 98.781%

Experimental Setup
Datasets and Preprocessing We perform experiments on
three real-world datasets: MovieLens, AmazonMovies and
Netflix. We convert the datasets into implicit data, where
each entry is marked as 0/1 indicating whether the user re-
viewed the item. Table (2) summarizes the characteristics of
the data.

• MovieLens: The MovieLens dataset is the famous movie
ratings dataset. We use the dataset from of Movie-
Lens10M dataset, including 10,000,054 ratings from
71,567 users for 10,681 items. We filter out users and
items with less than 20 ratings.

• Amazon: This is a larger collection of ratings for Ama-
zon books, including 8,898,041 ratings. This datasets is
sparser than MovieLens. The number of items is larger
than the other datasets. We filter out users and items with
less than 10 ratings.

• Netflix: The Netflix dataset contains 463,770 users and
17,764 items, which is larger than MovieLens and Ama-
zon dataset. We filter out the users and items with less
than 10 rating interactions.

Baseline We compare our proposed method with the fol-
lowing methods:

• WRMF(Hu, Koren, and Volinsky 2008) :WRMF sets a
prior on unobserved values. It learns parameters by alter-
nating least square method in the case of square loss. We
choose the square loss as the loss function and experiment
on static datasets. We tuned the parameter ρ of the regu-
larizer on the unobserved data.

• BPR(Rendle et al. 2009):BPR optimizes the pair-wise
ranking loss between positive samples and negative sam-
ples based on bootstrap sampling. It learns parameters by
Stochastic Gradient Descent (SGD). We tuned the param-
eter of regularizer βu, βi for users and items and the learn-
ing rate ϵ.

• SQL RANK(Wu, Hsieh, and Sharpnack 2018):
SQL RANK is a listwise approach in ranking-based
system. It accommodates ties and missing data and can
run in linear time. It cast listwise collaborative ranking as
maximum likelihood under a permutation model which
applies probability mass to permutations. We keep the
parameter λ of the regularizer fixed and tune the initial
learning rate ϵ.

• WARP (Kula 2015): WARP treats user’s rating as a bi-
nary value and fits the ratings on the observed and unob-
served items with different confidential values.
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Table 3: The Tuning Parameters Sets
Method Key Tested Values

SRRMF K 8, 16, 32, 64, 128
λ 1e-5, 1e-4, 0.001, 0.01, 0.1, 0.5

WRMF ρ 1e-4, 1e-3, 0.01, 0.1, 1.0

BPR
βu 0.001, 0.01, 0.05, 0.1, 0.5, 1.0
βi 0.001, 0.01, 0.05, 0.1, 0.5, 1
ϵ 0.001, 0.01, 0.1, 0.5

SQL RANK ϵ 0.2,0.1

• HPF(Gopalan, Hofman, and Blei 2013): HPF is a hier-
archical poisson matrix factorization for recommendation
system. It handles explicit data and implicit data. We tune
the parameter of the number in the hierarchical system.

Evaluation Metrics We use two standard metrics of rank-
ing evaluation: Normalized Discounted Cumulative Gain
(NDCG) and recall.

NDCG is widely used in the recommendation system. It
considers both the prediction of the rankings and the posi-
tion of ratings. We return the top-200 items for all users and
compute the average NDCG as our final metric.

The metric recall is another evaluating indicator we used.
It shows the performance of the correct prediction over the
observed samples in the testing set. We also return the top-
200 items for all users.

Parameter Tuning Table (3) shows the parameters for
different methods during tuning. After 10 iterations of train-
ing, we choose the parameter depending on the best perfor-
mance of NDCG for our method.

Results and Analysis
(1) The general framework. We do cross validation ex-
periment of 5 times on each dataset for our method and base-
lines. Table (4) shows the comparison among the algorithms.
Our square loss with ranking based regularizer matrix fac-
torization (SRRMF)1 shows a better performance over all
baseline methods. We can conclude that averting the zero-
ratings for the unobserved items contributes to the ranking
of the items compared with WRMF. As for BPR, the neg-
ative sample based method, our algorithm shows a signifi-
cant improvement probably due to the utilization of full data.
However, for the SQL rank method, it takes us more than
two days to run on the dataset MovieLens10M and Netflix
in one iteration and so we don’t report the result for the two
datasets. Furthermore, our method SRRMF has an edge over
the stability because of the avoidance of negative sampling
and the linear form of the gradient for both the user and the
item latent vector.

As a result, we choose the methods which have supe-
rior performances in Table (4) to figure out the change over

1https://github.com/HERECJ/recsys/tree/master/alg/discrete/
SRRMF

Table 4: Comparison of our general framework. The dimen-
sion of the latent factor K is 32.

MovieLens
NDCG@200 Recall

SRRMF 0.5177± 0.0003 0.7165± 0.0006
WRMF 0.4974± 0.0005 0.6915± 0.0007

BPR 0.4710± 0.0009 0.6991± 0.0003
WARP 0.2809± 0.0015 0.4613± 0.0007
HPF 0.4673± 0.0015 0.6885± 0.0017

SQL rank / /

Amazon
NDCG@200 Recall

SRRMF 0.0977± 0.0003 0.2748± 0.0006
WRMF 0.0914± 0.0002 0.2452± 0.0006

BPR 0.0634± 0.0009 0.1859± 0.0007
WARP 0.0002± 0.0000 0.0008± 0.0001
HPF 0.0609± 0.0007 0.1768± 0.0022

SQL rank 0.0004± 0.0000 0.0014± 0.0000

Netflix
NDCG@200 Recall

SRRMF 0.4397± 0.0001 0.5991± 0.0003
WRMF 0.4224± 0.0001 0.5765± 0.0003

BPR 0.3292± 0.0012 0.5179± 0.0006
WARP 0.2257± 0.0083 0.3794± 0.0079
HPF 0.3946± 0.0008 0.5728± 0.0010

SQL rank / /

the values of K which is the dimension of the latent vec-
tor. Fig.(1) shows the comparison between our method and
the state-of-the-art algorithms. Our proposed general frame-
work outperforms on the all three datasets. Compared with
WRMF, on the MovieLens and Netflix datasets, our method
performs better as the dimension increases. The sparsity of
the Amazon dataset leads to a slightly worse performance
when the dimension of features increases. As the Amazon
dataset has the biggest number of items, the best parameter
of the regularizer is smaller than the other dataset.

According to the comparisons, our method still has
an improvement over the larger value of K, while the
performance BPR and HPF have worse performances due
to overfitting. That is to say, our method can capture more
features to improve the performance for ranking which is
particularly important for big dataset such as Netflix. In
general, our method takes into account all the data and fully
explore the implied information under the unobserved data
which leads to a better performance over the state-of-the-art
algorithm.

(2) The Influence of the Regularizer. In this section, we
analyze the impact of our proposed ranking-based implica-
tion regularizer. Setting λ = 0, we obtain the prediction
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Figure 1: NDCG@200 and Recall@200 on the dataset (a):MovieLens10M (b):Amazon (c):Netflix

Table 5: The Comparison between With/Without Regularizer (K = 64).

DataSets Regularizer NDCG@200 Improvement RECALL@200 Improvement

MovieLens
√

0.5330 21.33% 0.7530 4.08%× 0.4393 0.7268

Amazon
√

0.1134 38.46% 0.2940 19.90%× 0.0819 0.2452

Netflix
√

0.4504 31.73% 0.6067 3.60%× 0.3419 0.5829

ratings without the regularizer after minimizing the objec-
tive function. After tuning the parameter of the regularizer,
we obtain the final result of optimization. We compared the
cases for the best parameter and 0 to witness the effect of
regularization. Table (5) shows the change of exploiting our
regularizer depending on the square loss function. For the
all three data sets, our proposed regularizer leads to huge
improvement. Especially for Amazon data set, the regular-
izer results in the most significant improvement both on
NDCG@200 and recall, which is 38.46% and 19.90% re-
spectively. As Amazon dataset is sparser than the other two
datasets, the proposed regularizer still shows good perfor-
mance in spite of the data sparsity. We can infer that the
inner interaction between the unobserved samples has some-
thing in common and contains plenty of useful information
for ranking.

In addition, depending on the same ranking-based loss
function, the metric NDCG@200 grows more than recall,

which indicates our regularizer brings a more appropriate
recommendation ranking for the users. To summarize, our
proposed ranking-based implicit regularizer utilizes more
information and has a much better performance on the
sparser dataset.

Conclusion
In this work, we propose a new ranking-based regularizer
which depends on the real-world data. And we apply it into a
general framework for recommendation system. According
to our experiments on the three datasets with large number,
we can conclude that our proposed ranking-based implicit
regularizer can efficiently capture the comparison between
the unobserved samples with which we can have a better
recommendation for the user.

Considering the comparison with other methods, our
framework with square loss has a better performance over
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the large ground-truth dataset. Furthermore, our framework
outperforms the state-of-the-art algorithm.

In the future, we will apply more loss functions such as
logit loss, hinge loss, to our framework to solve the nonlin-
ear problems. Secondly, we will normalize the loss and the
regularizer to obtain a standard form for computing which
can balance the influence of the loss and the regularizer.
Next, we will consider the case of explicit feedback to build
a more general framework for both implicit feedback and
explicit feedback.
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