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Abstract—Recent years have witnessed the rapid development of Finance Internet platforms, specifically, crowdfunding, which is for
creators designing campaigns (projects) to collect funds from the public. Usually, the limited budget of a creator is manually divided into
several perks (reward options), which should fit various market demand and further bring different monetary contributions for the
campaign. Therefore, it is very challenging for each creator to design an effective allocation of perks when launching a campaign.
Indeed, our aim is to enhance the funding performance of newly proposed campaigns, with a focus on optimizing the product supply of
perks. In this paper, given the expected budget and the perks of a campaign, we propose a novel solution to automatically recommend
the optimal product supply for balancing the expected return of this campaign against the risk. Along this line, we define it as a
constrained portfolio selection problem, where the investment volume is measured by a multi-task learning method, and we adopt two
kinds of methods for task splitting. Furthermore, we extend the investment volume prediction model with inner competition for capturing
the competitive relationship between the perks in one campaign. Finally, extensive experiments on real-world crowdfunding data clearly
prove the performance significantly.

Index Terms—multi-task learning (MTL), modern portfolio theory, competition mining, product supply, crowdfunding.
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1 INTRODUCTION

W ITH the rapid development of the Internet, crowd-
funding, a relatively new practice of marketing

which provides a revolutionary way for a large group of
individuals (the ‘crowd’) to support ideas and campaigns
across a wide range of domains (e.g. technology, film, art),
has rapidly risen in popularity [1]. According to the offi-
cial website data of two biggest American crowdfunding
platforms (Kickstarter and Indiegogo), until April 2018,
investors in Kickstarter has exceeded 14 million1, and funds
raised on Indiegogo in the past two years increased 1000%.2

When launching a campaign (project) on crowdfunding
platforms, like Kickstarter and Indiegogo, the creators (indi-
viduals or startups) want to solicit as many funds as possible
or expand their awareness from investors (i.e., backers, con-
tributors, buyers) by carefully showing their stories, goals
(funding amount), reward options (often vowing future
products) and so on. Even though, statistics show that only
around 40% of the campaigns succeed in reaching their
pledged goals [2]. Therefore, improving the success rate of a
campaign and inferring the impacts of specific factors (e.g.,
the campaign design, the campaign descriptions, the social
networks of creators) on investor decision have become
research hotspots.
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Fig. 1: An example of the campaign (Indiegogo.com).

Since the investors in crowdfunding are sufficiently het-
erogeneous in product valuations, a campaign usually offers
a variety of rewards in the form of perks [3] for soliciting
more funds. For instance, as shown in Figure 1, the creator
of this campaign divided her budget and offered a line
of perks with different levels of prices (e.g. $39), product
rewards (e.g. one Plux) and the claimed product supply
(e.g. 200 for Perk 1) to maximize the expected funding or
awareness of products. The setting of perks is a kind of
marketing strategy, for example, the more diversified perks
are provided, the more backers will be covered. However,
the number of different perks is limited, and all of them
should be under the budget of a creator.

Therefore, the problem of how to automatically help cre-
ators optimally divide their budgets according to the market
states, i.e. by optimizing the product supply of each perk,
remains pretty much open. Indeed, it is very challenging to
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recommend an appropriate product supply to each perk in
a campaign. First, it is difficult to estimate the return and
risk before the campaign is launched, since the investments
are potentially affected by many static and temporal factors,
such as the perk or campaign descriptions and the funding
dynamics. Thus, how to reasonably estimate the return and
risk remains pretty much open. Second, before launching
a campaign, a creator will consider the budget, and the
choice of the product supply for each perk is limited due
to the entire budget of one campaign. How to design a
flexible model that can take the budget into consideration
becomes one challenge. Last but not least, in a competitive
crowdfunding platform, especially, the fierce competition
among different perks in one campaign is a significant
factor to shake bakers’ choices. How to mine the competitive
relationships among perks in one campaign to improve the
optimization of product supply of each perk? In summary,
the special return and risk estimation, the limited budget
and perks competition from one campaign compose three
main challenges of the problem we study.

To address the first two challenges, limited budget and
special estimation of return and risk, we provide a prelimi-
nary study [4] on the product supply optimization problem
in the crowdfunding platform. Specifically, we propose a
novel solution to automatically recommend the optimal
product supply to each pre-defined perk (including the
prices and the reward products are given) so as to maximize
the expected return and minimize the risk of the campaign,
simultaneously. Along this line, inspired by the modern
portfolio theory [5], [6], we first define it as a constrained
portfolio optimization problem, where the constraint is the
budget of the campaign. Then, considering the relevance
and heterogeneity among all perks in the platform when
attracting investments, we propose a trace-norm multi-task
learning method to estimate the future investment volume
for each campaign. In this way, the risk on the settings
of product supply to the perks/campaigns could also be
estimated. Next, by solving the optimization problem with
Alternating Optimization Method, the optimal product sup-
ply can be recommended to each perk in a new campaign.

Furthermore, we extend our previous work and study
the product supply optimization problem with multiple
competitive perks in one campaign. In our previous esti-
mation model, we adopt the multi-task learning method
with manual task partition (named PSO). Considering this
partition method is not general enough, we firstly extend
a task auto-splitting method in multi-task learning (MTL),
and combine it into our proposed frameworks (named
APSO). Secondly, although MTL method is able to capture
the relevance and heterogeneity among all perks in the plat-
form, and it expresses the competitive relationship between
one perk and all the other perks, including other campaigns’
perks, which is called the exterior competition. We think
it cannot focus on the competitive relationship between
perks in one campaign, which we called inner competition.
In one campaign, perks turn to compete with each other
to attract the attention of backers, as shown in Figure 1.
Therefore, we argue, in order to predict the investment vol-
ume more accurately, it is essential to take the competition
effect among perks in one campaign into consideration.
Specifically, given a campaign with competitive perks, we

study how to incorporate competition into APSO model,
and jointly learn investment volume and perk competition
in a unified framework.

In summary, the contributions of this paper are mainly
shown in three aspects. Firstly, we propose an automatic
task-splitting method for avoiding personal error. Secondly,
we define inner competition to measure the competitive re-
lationship between perks, and come up with a new product
supply optimization method (named APSO-C) by incorpo-
rating the competition into the APSO model. Besides, we
conduct extensive experiments on the real-world crowd-
funding data that was crawled from Indiegogo.com. The
results clearly prove that our multi-task learning method
could more precisely estimate the investment volume of
each perk, and meanwhile, the optimized product supply
can improve the future performance of campaigns signif-
icantly. To the best of our knowledge, this is the first
comprehensive attempt at assisting creators to enhance the
performance of newly proposed campaigns, with a focus on
optimizing the product supply from a data-driven way, and
this idea can also be applied on optimizing other features of
the campaign.

2 PRELIMINARIES

In this section, we first introduce the working mechanism
of crowdfunding platform from creators’ perspective. Then,
we introduce the collected dataset from an American fa-
mous crowdfunding platform (Indiegogo.com) and how we
construct features based on the data.

2.1 Creators’ Job
In crowdfunding platforms, a creator is who launch a cam-
paign or project in the platform for reaching her motiva-
tions, i.e., collect enough money or early advertise for their
products. Before launching campaigns, creators need to do
a lot of jobs for showing their creative ideas or fantastic
products in different ways, for example, they reveal through
photos view, video presentation, and textual description.
Besides, creators should design proper perks (rewards) since
they are an integral part of the crowdfunding process. Perks
or rewards are offered by creators in exchange for contri-
butions to their campaigns, and they are one of the best
ways to spread the word and make contributors feel valued.
Well-planned perks are the heart of any great campaign. Be-
fore launching campaigns, creators should design product
supplies and prices of perks. As fresh creators are short
of experience and they can not estimate the real demand,
sometimes, their designs are not so desirable. So our aim
is to optimize their designs on product supply for helping
them reach their expectation.

2.2 Dataset and Constructed Features
Indiegogo data includes the campaign information, perk
information, and some mutual records of creators and in-
vestors3. For instance, it contains 14,143 launched cam-
paigns for more than 18 billion funds (including 98,923

3. The data used in this article could be reached from:
https://drive.google.com/drive/folders/12bCdJm1IDcoGTJ8muRy-
AK8AcsbX2Kbi?usp=sharing
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TABLE 1: The information of features.

Feature
Level

Feature
Type

Feature
Source

Feature Description

Perk
Feature

Numerical

Perk
Profile

Price Unit price of the perk
Featured Whether the perk is recommended by the creator
Shipping Whether the perk is need to be shipping

Delivery Term How long will the investor get the reward
Preset Num Preset number of the product supply quantity

Perk
Summary

Perk Option Num Number of perk options
Avg Perk Price Average of all perks’ price of the campaign
Var Perk Price Variance of all perks’ price of the campaign

Textual Perk Profile Description Detailed description of the perk

Campaign
Feature

Numerical

Campaign
Profile

Duration Declared funding days of the campaign
Goal Declared funding amount of the campaign

Currency The currency for paying the perks, such as USD
Created time Created time of the campaign
Funding type The type of campaign, i.e. the funding amount is flexible or fixed
Owner type Purpose of the campaign, such as business, individual, non-profit

Category Category of the campaign, such as Technology, Art
Team Members Num Number of team members

Location Such as city, country of the creator

Social
Media

Display Form Whether the campaign use some form (such as video, image except text) to display
Social Exposure Whether the campaign use some social form (such as Facebook, Twitter) to exposure

Verification Whether the creator was verified in Facebook
Avg Verified Num Average number of team members verified in Facebook

Facebook Friends Num The Facebook friends number of the creator
Avg Facebook Friends Num Average Facebooks friends number of the team members

Mutual
Record

Created Num Number of the campaigns created by the creator before
Avg Goal Average claimed funding amount of the created campaigns by the creator

Avg Funded Amount Average funded amount of the created campaign by the creator
Baked Campaign Num Number of campaigns the creator/team members invested

Avg Comment Num Average number of campaigns the creator/team members commented
Avg Reply Num Average number of campaigns the creator replied

Textual Campaign
Profile

Title Title of the campaign
Description Detailed description of the campaign in text

perks, on average 7 perks in one campaign) and their fund-
ing information from July 2011 to May 2016 with 217,156
investors, 1,862,097 investment records. Here, we remove
the unfinished campaigns because their investment volume
still changes.

From this dataset, we extract 23 features from the cam-
paign level and 9 features from the perk level, the details of
them are illustrated in Table 1.

2.2.1 Campaign Features

The campaign features mainly include campaign profile,
social media, and mutual record. The features of campaign
profile and social media are extracted from campaign en-
tities, creator and team members. The features of mutual
records, e.g., Avg Funded Amount, Avg Comment Num, are
statistical result mainly extracted from historical campaign
entities funded or created by the creator or team member.

We can see the features are very heterogeneous, in-
cluding numerical ones (e.g., goal, facebook friends num),
categorical ones (e.g., category, location) and text (e.g.,
campaign description, title). For data preprocessing, we
construct the features as numerical vectors. Specifically, we
transform categorical data with less than 10 dimensions
into N binary-valued features (numerical ones) using one-
hot encoding [7] (i.e. dummy feature). For example, we
convert Owner Type into a 3-dimensional binary vector, in
which only the value in the corresponding category is set
to one and the other values are set to zeros. As for the
categorical data with more than 10 dimensions, such as
Category, Location including city and country, we adopt the
count encoding method which replaces the variables by the
respective count frequencies of the variables in the dataset.

Meanwhile, the doc2vec method [8] is adopted to convert
textual data into numerical vectors, e.g., campaign title and
campaign description are turned into 5 and 100 dimension
vectors, respectively.

2.2.2 Perk Features
The perk features contain perk profile and perk summary.
To know the relationships of different perks under one
campaign, we extract Avg Perk Price, Var Perk Price in perk
summary. We preprocess all the perk features in the same
way as introduced for campaign features, except the perk
description, which is represented by a 10 dimension vector.

3 PROBLEM AND METHOD OVERVIEW

In this section, we first detail the problem of product supply
optimization in competitive crowdfunding, then give an
outline of the way for solving this problem. For better illus-
tration, Table 2 lists some mathematical notations. The input
and output variables are distinguished by the transverse
line, where the upper variables are given (input variables),
and the rest variables need to be learned (output variables).

3.1 Problem Formulation
In crowdfunding, what the creators are concerned most is
the success of their campaigns. In this paper, we aim to assist
these creators to enhance the performance of their newly
proposed campaigns by optimizing the product supply of
each perk. Specifically, the problem can be defined as:

Given the entire budget Bi from the creator to cam-
paign i, the perk settings (including the class number of
perks ni in this campaign, the prices Pi = {pi1, pi2, ..., pini},
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TABLE 2: Several important mathematical notations.

Notations Type Description
M number the number of campaigns in the market
ni number the number of perks in campaign i
N number the number of all perks in the market
L number the number of learning tasks
Pi vector pij is the price of the j-th perk in campaign i
Si vector sij is the given product supply of the perk
Ei vector eij is the reward of the j-th perk in campaign i
Ci vector cij is the number of investments under the setting sij
hi vector hij is 1 or the price of the j-th perk in campaign i
Ct vector each entry is the label (e.g. cij ) of one perk
Xt matrix each row stores the feature vector of one perk
C′i vector c′ij is the number of investments under the setting s′ij
C′t vector the estimated number of investments (e.g. c′ij ) of one perk
S′i vector s′ij is the optimized product supply
Wt matrix contains the importance of each feature to every task
µt number the mean of t-th Gaussian Distribution
σ2
t number the variance of t-th Gaussian Distribution
Zj vector zjt is the cluster indicator variable of perk j belongs to task t

the claimed product numbers Si = {si1, si2, ..., sini} and
the rewards Ei = {ei1, ei2, ..., eini} of the perks), and some
other features (like campaign description), our goal is to
learn the optimal product supply S′i = {s′i1, s′i2, ..., s′ini

} of
the perks, which can bring the maximum expected return
for the target campaign.

max
S′i

Returni, s.t. B′i ≤ Bi, (1)

whereB′i is the cost of campaign i under the product supply
S′i, and it can be measured by B′i ≈

∑ni

j=1 s
′
ijeij . Similarly,

the claimed budget Bi is Bi ≈
∑ni

j=1 sijeij . The constraint
condition is that the cost B′i after optimizing could not
exceed the expect cost (i.e., Bi) of the creator. In this paper,
pij in Pi is the price for the investors to contribute on one
product in perk j (e.g. pi1 and pi2 for two perks in Figure 1
are $39 and $69, respectively), and eij in Ei is the reward
that the creator should provide to the investors (e.g. ei1 and
ei2 for the two perks in Figure 1 are 1x Plux and 2x Plux,
respectively) after the campaign success. For simplicity, we
assume that the creator has enough number of rewards eij
for each product supply s′ij , as long as the budget constraint
is satisfied.

Now let us use an example for depicting the research
problem intuitively. We suppose the campaign in Figure 1
contains only 2 (ni) perks whose price Pi = {$39, $69}
and the product numbers preseted by the creator are
Si = {200, 200}, respectively. A few days before the end
of funding, we observed the investment numbers were
{197, 57}. By tracing the campaign investments, we think
the investment number in perk 1 will exceed the preseted
number 200 in the future, and the preseted product number
in perk 2 is too much which causes the wasting of budgets.
According to our proposed model, it is believed that chang-
ing Si to a more suitable number setting S′i (e.g. {250,100})
is helpful, which helps to achieve a more potential return
(shown in Eq. (1)) under the limited budget.

3.2 Method Overview

To maximize the expected return for fresh campaigns in test
set by Eq. (1), we first need to use training data to learn
connection between the expected return and the features
including supply number S′, which also means to learn

connection between supply number S′ and investment vol-
ume C ′ (since return is determined by C ′) which shown in
Eq. (2). After above training, we can get optimal S′ for fresh
campaigns in test set based on this connection (e.g. Eq. (1)).
Meanwhile, because the real investment volume C in train
set is known, inspired by the Modern Portfolio Theory, we
adopt the difference between C ′ and C as a penalty factor
for balancing the Risk and Return of creators in training step,
which for campaign i is shown as:

max
π,S′i

ρiReturni −Riski, s.t. B′i ≤ Bi, (2)

where ρi is a heuristic parameter, π is the learned connection
between C ′ and S′, and we will use other specific notations
to replace π later. Here Returni and Riski functions will be
introduced detailedly in Section 4.

Based on above main idea, we propose a two-stage solu-
tion including offline (testing) stage and online (training)
stage. In the offline stage, we learn the deep connection
between C ′ and S′ based on historical campaigns, which
shown in Eq. (2). Considering the balance between return
and risk for each creator, we adopt modern portfolio theory
and use an alternative optimization algorithm to learn the
parameters.

In the online stage, we optimize the product supply for
fresh campaigns under a limited budget. Specifically, we
extract their features and maximize the expected return of
each campaign for recommending the optimized product
supply for each perk in the campaign, which has been
shown in Eq. (1).

Depending on the two-stage solution, we firstly propose
two models based on two kinds of splitting task methods.
We call the product supply optimization based on the man-
ual task partition method as PSO model, and the method
based on automatic task partition as APSO model, which
will be introduced detailedly in Section 4.

What’s more, we study the investment prediction prob-
lem with multiple competitive perks in a campaign, and the
model is termed as APSO with Competition (APSO-C) which
will be introduced detailedly in Section 5.

4 (A)PSO: (AUTOMATIC) PRODUCT SUPPLY OP-
TIMIZATION MODEL

In this section, we first illuminate our entire set of frame-
work about modern portfolio theory and multi-task learning
method with two ways of task splitting in Section 4.1 and
4.2, respectively, and then give a description of the two
stages which including the offline stage of investment vol-
ume prediction (in Section 4.3) and online stage of product
supply optimization (in Section 4.4).

4.1 General Framework

In the offline stage, we build the general modern portfolio
theory framework which includes return and risk functions
to satisfy creators’ motivations, and these two functions are
all based on the predicted investment volume. Specifically,
because of the relationships between perks, we adopt multi-
task learning method to estimate the unknown investment
volume of each perk. If we have already known the task
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each perk belonging to, then the estimated investment vol-
ume of j-th perk from campaign i is formulated as c′ij :

c′ij = xijW
>
tij , (3)

here xij is the features including campaign i’s features
and perk j’s, the weight parameter Wtij is the learned
connection like π in Eq. (2) from task t which perk j of
campaign i belongs to. How to construct xij and learn Wtij

will be introduced later.
Based on this, we will introduce the return and risk func-

tions detailedly, and explain how to predict the investment
volume by multi-task learning method in this subsection.

Return Function. According to the findings in previ-
ous studies, the motivations/goals for creators launching
campaigns are mainly classified into two categories: raising
enough money and expanding awareness of the products
(boosting their brands) [1], [9]. Thus, the expected return of
campaign i can be measured by:

Returni =
ni∑
j=1

c′ijhij , hij ∈ {pij , 1}, (4)

where c′ij in C ′i (C ′i = {c′i1, c′i2, ..., c′ini
}) is the number of

investments of j-th perk in campaign i under the product
supply setting S′i, which is shown in Eq. (3). hij measures
the motivation of the campaign, i.e., hij = 1 if the creator
mainly try to influence more people and hij = pij if she
aims to collect more money. We should also note that, there
may be more sophisticated choices of hij , e.g. by balancing
between pij and 1. However, this is not the major focus of
this paper, and we will leave it for future study.

Risk Function. Besides the budgets from creators, the
product supply of each perk is also constrained by the
number of potential investors in the market. For instance,
if the number of investments cij is much smaller than
the estimation c′ij , the product rewards are overstocked by
the creator, and vice versa. Indeed, since the number of
investors cannot be perfectly estimated, the future return
of a new campaign is actually unknown and Eq. (4) is
computed with uncertainty/risk. In finance, risk is usually
measured by (co)variance of the investments (e.g. stocks)
[5] [6]. Correspondingly, in crowdfunding, the risk of setting
product supply as Si for campaign i can be estimated by the
variance of the returns:

Riski ≈
ni∑
j=1

(c′ijhij − cijhij)2. (5)

Modern Portfolio Theory. Therefore, summarizing
Eq. (2) for all the campaigns in modern portfolio theory:

max
W,S

′
i

M∑
i=1

ρiReturni −
M∑
i=1

Riski,

s.t. B′i ≤ Bi, ∀i ∈ [1,M ],

(6)

where M is the number of campaigns, the learned param-
eter W is like π in Eq. (2). Obviously, as a portfolio of
investment choices in the platform, every campaign (perk) is
related to others. Thus, instead of computing independently,
the risk in Eq. (6) should be measured more precisely by
exploiting this kind of relevance.

Multi-task Learning (MTL). In this paper, considering
the number of investments of a perk is related to other perks
even other campaigns, we propose such a measurement
by the trace-norm multi-task learning method. Specifically,
instead of a formal definition on the correlation/relevance
among different campaigns, we automatically learn the risk
of the portfolio from a data-driven way to replace Eq. (5):

M∑
i=1

Riski =
L∑
t=1

||(XtW
>
t − Ct)× ht||2F + λ||W ||∗, (7)

where × denotes the cross product of two vectors. All perks
in the campaigns are now clustered into L learning tasks
based on their characteristics. For the t-th task, the input
comprises (Xt, Ct, ht), where Xt ∈ Rmt×d is the input
matrix for the t-th task with mt perks and d features, i.e. Xij

is the feature vector of the j-th perk in campaign i. While
label Ct ∈ Rmt×1 is the corresponding target vector (i.e.
entries from C , under the product supply setting S), and
similarly, vector ht contains the motivations of these perks.
W = [W1,W2, ...,WL] is a d × L weight matrix, contain-
ing the importance/coefficient of each feature to one task.
Obviously, the estimated value in t-th task is C ′t = XtW

>
t ,

and the estimated number of investments in j-th perk of
campaign i is shown in Eq. (3). Different choices of regu-
larization terms may reflect different task relationships [10].
Without loss of generality, in this study, we formulate our
model by trace norm, which is given by the sum of the
singular values: ||W ||∗ =

∑
t(σt(W )), for capturing the

task relationship by constraining the parameter vectors of
different tasks to share a low dimensional subspace.

4.2 Task Partition

Before using the MTL method, we should first put the perks
into L different learning tasks to get Xt and Ct. In this
subsection, we introduce two task splitting methods, one
is a manual way, and the other is an automatic way.

4.2.1 Manual Task Partition
Indeed, the price is the direct reflection of two different
products. Considering that, products with near prices are
more related than distant ones [11], we propose to split
perks into different tasks according to their prices, i.e. the
perks with the similar prices will be put into the same
task. Without loss of generality, on the basis of perks’
distribution on different prices, we generate 7 tasks (L =
7) whose price ranges (in $) (from task T1 to task T7)
are (0, 10], (10, 20], (20, 30], (30, 40], (40, 50], (50, 200], and
(200,+∞), respectively. In order to better illustrate, we call
the MTL with manual task partition method as PSO.

4.2.2 Automatic Task Partition
Up to now, we split the task by perk prices, which is a
manual way and maybe not so reasonable. Therefore, we
propose a strategy for splitting task automatically [12]. The
main idea of splitting task is equal to cluster perks whose
feature space are similar into the same task. To distinguish
this method and MTL with manual task partition method
(PSO), we named automatic one as APSO.
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Inspired by [13], [14], we propose to use EM-process
to split tasks. The main idea of EM-processes is dividing
objects with similar feature space into the same clusters.
Now, we introduce how we use it. Besides the observable
variables X , we also assume there are some unobservable
cluster indicator variables, such as Z ∈ RN×L, where N
is the number of all perks (here we put all perks from
campaigns together for splitting tasks), and each row of
Z represents a perk, for j-th perk, it can be abbreviated
as Zj = (zj1, zj2, ..., zjL), j = 1, 2, ..., N, t = 1, 2, ..., L.
Specifically, zjt ∈ {0, 1}, where zjt = 1 means the j-
th perk belongs to the t-th task, and vice versa. Due to
the complexity of splitting task, true Z value is unknown,
we assume that the error of estimated investment volumes
follows Gaussian Distribution in each task, which means
cj ∼ N (ĉj + µt, σ

2
t ), the formulation is given as:

Φ(cj |θt) =
1√

2πσt
exp[− (cj − xjW>t − µt)2

2σ2
t

], (8)

here θt = (Wt, µt, σt), ĉj = xjW
>
t and cj are the estimated

investment volume and true investment volume respec-
tively. Then, the probability density is the form of Gaussian
mixture model shown as:

P (cj |θ) =
L∑
t=1

αtΦ(cj |θt), (9)

where αt ∈ (0, 1) is the mixing weight (
∑L
t=1 αt =

1, t = 1, 2, ..., L), θ represents the collection of parameters
(α1, ..., αL, θ1, ..., θL).

By combining the cluster indicator parameters, we will
get the likelihood function:

P (c, Z|θ) =
N∏
j=1

P (cj , Z|θ)

=
L∏
t=1

N∏
j=1

[αtΦ(cj |θt)]zjt

=
L∏
t=1

α
∑N

j=1 zjt
t

N∏
j=1

Φ(cj |θt)zjt .

(10)

In our case, we use EM algorithm for task splitting (perk
clustering), so we add another step (C-step). Specifically, Z
is unobservable, so we estimate Z as a decimal between
0 and 1 in E-step. Then, in C-step, we cluster each perk
depends on their Z in different tasks. Finally, we minimize
the loss function to learn θ in M-step.

The first step in applying the EM algorithm to the
problem at hand is to initialize mean vectors µ, covariance
vectors σ and weight matrixes W to represent each of the L
tasks. Without loss of generality, we initialize each element
in the start mean as 0, variance and weight matrix as 1,
besides, we denote A = (A1,A2, ...,AL) as split tasks, and
Ai represents i-th task containing perks belong to it. Starting
from an initial partition A(0), the m-th iteration (m > 0) is
defined as follows:

E-step. The E-step computes the expected value of
the complete log-posterior which is usually called the Q-
function, we have:

Q(θ, θ
(m)

) = E[logP (c, Z|θ)|c, θ(m)
]

=

L∑
t=1

N∑
j=1

ẑ
(m)
jt logαt +

N∑
j=1

ẑ
(m)
jt [log(

1
√
2π

)

− log σt −
1

2σ2
t

(cj − ĉj − µt)
2
].

(11)

To complement this function, we need to compute the
current posterior probabilities ẑ(m)

jt for j = 1, 2, .., N and
t = 1, 2, ..., L given as follows, and the detailed derivation
is given in Appendix A.

ẑ
(m)
jt = E(z

(m)
jt |c, θ) =

α
(m)
t Φ(cj |θ(m)

t )∑L
t=1 α

(m)
t Φ(cj |θ(m)

t )
. (12)

Something should be noticed that the computation of ẑjt
is relevant to cj , so as for testing dataset, we treat the mean
of all perks’ cj which from task t as the value of cj here.

C-step. This step is for classifying, we assign each perk to
the task which provides the maximum posterior probability
ẑ
(m)
jt , t = 1, 2, ..., L, (if the maximum posterior probability is

not unique, we choose the task with the smallest index). Let
A(m) denote the resulting partition. For j-th perk:

t′ = arg
L

max
t=1

ẑ
(m)
jt ,A

(m)
t′ = A

(m)
t′ ∪ {j}. (13)

M-step. After splitting the tasks, the estimates of the
relevant parameters θ(m+1) are updated by maximizing the
Q-function. For t = 1, 2, ..., L, we update them as:

α
(m+1)
t =

∑N
j=1 ẑjt

N
,

µ
(m+1)
t =

∑N
j=1 ẑjt(cj − ĉj)∑N

j=1 ẑjt
,

σ2(m+1)

t =

∑N
j=1 ẑjt(cj − ĉj − µt)2∑N

j=1 ẑjt
,

w
(m+1)
t =

∑N
j=1 ẑjt(cj − µ

(m)
t ) ∗ xj∑N

j=1 ẑjt ∗ xjx>j
.

(14)

The above steps are repeated until a suitable stopping
criterion is reached. In our experiments, we stop if the
evaluation metrics (i.e., RMSE or nMSE) increases by less
than some small value (i.e., 1.0e−2 or 1.0e−6) from one
iteration to the next. We repeat the EM-process ten times,
then take the average of ten results as our final results, the
split task A is returned for subsequent computation.

4.3 The Investment Volume Prediction
So far, we already know the whole framework and task
partition way, so we can rewrite the Returni in Eq. (6)
and combine it with Riski in Eq. (7). Thus, the optimization
problem becomes:

max
W,S′

M∑
i=1

ni∑
j=1

ρij [s
′
ijw

s′

tij + x−s
′

ij (W−s
′

tij )>]hij

− (
L∑
t=1

||(XtW
>
t − Ct)× ht||2F + λ||W ||∗),

s.t. s′ij ≥ 0 and B′i ≤ Bi, ∀i ∈ [1,M ].

(15)



IEEE TRANSACTIONS ON BIG DATA 7

Here, xij is represented by xij =< s′ij , x
−s′
ij >, where

s′ij is the optimized product supply and x−s
′

ij stores other
features of this perk except s′ij . Similarly, matrix Wt is also
split into two parts, W s′

t and W−s
′

t . Note that index tij
indicates the j-th perk in campaign i belongs to the t-th
task.

In APSO, we adopt EM-process to split task, it is impor-
tant to note that we already got a matrix W in M-step, for
achieving a more accurate result quickly, we use theW come
from EM-process (Section 4.2) to initialize the W in Eq. (15).

4.4 Product Supply Optimization

In summary, given the campaigns/perks and their features
X , for solving the product supply optimization problem on
testing campaigns, we first put these perks into different
learning tasks, and then learn the W and S′ based on the
training ones by solving Eq. (15). Thus, the optimal S′i for
each testing campaign can be computed by only maximizing
the expected return:

max
S′i

ni∑
j=1

ρij [s
′
ijw

s′

tij + x−s
′

ij (W−s
′

tij )>]hij ,

s.t. s′ij ≥ 0, B′i ≤ Bi.
(16)

Please note the difference between Eq. (15) and (16),
i.e., for the new campaign in testing, the risk is unknown
without any investment records. Finally, S′i (i.e. the output
of Eq. (16)) is recommended to the creator when she is
publishing this campaign. Now, we show the way of solving
Eq. (15).

Algorithm 1 Alternating Optimization Method
Require: X , C, S, B, N , tolW , tolS′
Ensure: W , S′

1: set S′ = S,W0 = 0
2: for k = 1 to N do
3: Update W based on Eq. (17),
4: Update S′ based on Eq. (18),
5: Update X by replacing S′.
6: if stopping criteria is satisfied then
7: Break
8: end if
9: end for

10: return W , S′

4.5 Optimization Algorithm

Here, we propose to solve Eq. (15) by the Alternating
Optimization Method, which is similar to the Block Coordi-
nate Descent method [15], where the variable is optimized
alternatively with the other variables fixed. Because Eq. (15)
is continuous and separately convex, the alternating opti-
mization algorithm is convergent. Besides, the main reason
to choose this algorithm is that the investment volumes and
product supply number change in real time. Please refer
to Algorithm 1 for the holistic method, and the detailed
gradients of W and S′ are shown as (Here, we simply fix
hij = 1 for better illustration):

Of(Wt) = (WtX
>
t Xt − 2C>t Xt)−

M∑
i=1

ni∑
j=1

ρijxij , (17)

Of(s′ij) = 2W s′

tijs
′
ijW

s′

tij + 2(x−s
′

ij W−s
′

tij − Cij)W
s′

tij

− ρijW s′

tij .
(18)

In Algorithm 1, B is each campaign’s budget and S is
the product supply claimed by creators. Since each s′ij is
a part (an entry) of the feature matrix X , X should be
updated whenever s′ij changes. We should also note that
we update W for each task, and update S′ for each perk.
In each iteration step, we adopt Accelerated Gradient (AG)
method to update W and S′ for achieving the optimal rate
of convergence by specifying the step-size policy, and we
use projection method to satisfy the constraints.

During the implement, we first update W for each task.
For task t which contains nt perks, each perk has d dimen-
sional features, so the computational complexity is O(n2td

2).
Then we update S′ and X , their computational complexity
can be regarded as O(1) compared to the complexity in
updating W , so the overall computational complexity is
O(n2kd

2N), where k is the index of the task that has the
biggest n2k. That is, the algorithm should be stopped when
the changing of W or S′ is less than a threshold (i.e. tolW
or tolS′ ) or the iteration reaches a maximum number N . In
practice, we set tolW (tolS′ ) as 1.0e−5, and set N as 1.0e5,
which we think is of high-quality enough.

Recommend

Maximize
Expected
Return

xi1 xi2 xin...

OnlineOffline

Task 1

Task 2

Task L

..
.

W1

W2

WL

..
.

Task partition

Feature   vectors

Historical 
campaigns

pi1

Pi2

Pin

..
.

Perk i1

Perk i2

Perk in

..
.

 Portfolio 
selection

with 
competition

Coefficient 
matrix

Alternative 
optimization

U1

U2

UD2

..
.

&

W

S’ U

? s’i1

..
.

s’i2

s’in

xp
i1 xp

i2 xp
in...

Competition 
feature   vectors

Competition
vectors

Fig. 2: The flowchart of automatic product supply optimiza-
tion with competition (APSO-C).

5 APSO-C: AUTOMATIC PRODUCT SUPPLY OPTI-
MIZATION WITH COMPETITION

Actually, like e-commerce market, crowdfunding platform
is also a special competitive market, and the competition
exists among not only different campaigns but also different
perks in one campaign. It is natural for a backer vacillates
in different perks from one campaign. As we can see from
Figure 1, there exists funding competition between Perk 1
with price $39 to get one Plux and Perk 2 with price $69
to get double Plux. Because of the discount price in Perk 2,
many backers would waver between them.

In a competitive market with multiple products, no
matter is the PSO or APSO method, they both tackle the
product supply optimization problem by dividing it into a
set of single product supply optimization problem. How-
ever, it fails to consider the competition among different
perks which from the same campaign. In this section, we
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(b) Long-term competition

Fig. 3: Scaled normalized investment volume time-series
depicting competition between two similar perks, one is the
leading perk (solid blue), the other one is the competitor
(dashed orange).

address the problem of how to incorporate inner (perk)
competition process into the proposed APSO model, and
jointly learn coefficient matrix W , competition parameter U
and optimized product supply S′. The entire flowchart of
the APSO-C framework is illustrated in Figure 2.

5.1 Inner Competition in Crowdfunding
It is evident that competition is one of the most interesting
elements of online marketing, where are various products
competing to seize the market. Some researchers found that
similar products (same product type but different brands)
compete with each other in E-commerce marketing [16].
This phenomenon is consistent with our common sense.

Similarly, in the special market, competition is also com-
mon in crowdfunding platform. According to the survey of
crowdfunding platform, there are some competitive perks
with typical perk prices attract more contributors4. In our
opinion, the perk competition not just depends on their
prices, their rewards and other factors would also be con-
sidered from backers’ perspective.

Based on this assumption, we profile some similar perk
pairs where we see potential competition, and observe their
funding amount in the same absolute time (even though
one of them could have its funding started earlier than
the other). We normalize the investment number of two
competitive perks and show two representative types of
competition in Figure 3. The first type of competition is re-
ferred as short-term competition (Figure 3(a)) where one perk
(competitor) took over the other perk (leader) in investment
volumes during a certain period, and then the leader regain
the market share. The second type of competition is named
long-term competition (Figure 3(b)) where the leader leading
the market consistently, the competitor has no ability to
seize the market. In this paper, we focus on the competition
representation and do not distinguish their types, this figure
is just to prove there exists competition.

5.2 Inner Competition Expression
As mentioned before, we predict the number of investment
of j-th perk in campaign i shown in Eq. (3). Because of
the existing of inner competition, the competitive perk may

4. https://go.indiegogo.com/blog/2012/07/indiegogo-insight-
perk-pricing-practices.html

seize the market (investment volume) from the other one.
Intuitively, we adopt a transition matrix V ∈ Rni×ni to
model the competition for campaign i which contains ni
perks, with each element vjq denotes the transferred invest-
ment volume from perk j to perk q. As we discovered, the
more similar of two perks in the same campaign, the more
competition between them. Based on this, we formulate
their transferred investment volume under competition as:

vjq = U ∗ Sim(xPj , x
P
q ). (19)

Specifically, U ∈ R1×D2 is the weight parameter, here
we focus on the inner competition, so xPj is feature vector
of perk j only contains perk level features not include
campaign level features, and D2 is the dimension of perk
level features. Then, we define the similarity from perk j to
perk q with direction as:

Sim(xPj , x
P
q ) = K(xPj − xPq ) ∗ I(xPj − xPq ),

I(r) =

{
1, r ≥ 0;

− 1, r < 0.

(20)

Here, xPj − xPq is a directed distance from perk j to perk
q, for computing the similarity between them reasonably, we
use a kernel functionK(.) which is specified as Gaussian for
satisfying the similarity measurement.

K(xPj − xPq ) =
1√
2πσ

exp[−
(xPj − xPq − µ)2

2σ2
], (21)

where we set µ = 0, σ = 1 in our experiments. Since the
transfer quantity between two perks is opposite, we bring in
a index function I(.) for representing the distance direction
between each two perks, r in I(r) is each value in xPj − xPq .
Obviously, Sim(xPj , x

P
q ) = −Sim(xPq , x

P
j ) and vjq = −vqj .

For example, there are three perks in a campaign which
shown in bottom right corner of Figure 4, perk j is more
competitive than perk q, but less competitive than perk u .
In this case, the transfer quantity vjq from perk j to perk q is
negative, which means a part of investment volume transfer
from perk q to perk j. Similarly, the value vju is positive
because of perk u is more competitive than perk j. This
figure also shows that each value in matrix V is computed
by vector U and Sim function, as like Eq. (19).
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Fig. 4: An illustration of the APSO-C model, which incorpo-
rates the inner competition into the APSO model.
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5.3 The APSO-C Model

In this subsection, we give a description of new Return and
Risk function and the changes on the original two steps on
account of the inner competition factor. It should be noted
that, since the APSO-C model is an extension of APSO, the
task splitting part in APSO-C also adopts the automatic one
which based on EM-process.

5.3.1 The Investment Volume Prediction in APSO-C model

As shown in Figure 4, by combining the investment predic-
tion function (Eq. (3)) in APSO model (on the left) and inner
competition function (Eq. (19), on the right), we predict the
investment of a campaign with competition as (without loss
of generality, here we just focus on the motivation about the
number of investors which means hij = 1 for each perk of
any campaign):

C ′i =
ni∑
j=1

(c′ij − β
ni∑
q=1

vjq)

=
ni∑
j=1

(xij ∗W>tij − β
ni∑
q=1

U ∗ Sim(xPj , x
P
q )),

(22)

here we subtract the transferred volume from original pre-
dicted investment volume under the inner competition envi-
ronment, and then we have each perk’s investment volume,
so the investment volume of campaign i is the sum of its
perks’. Like we introduced in Section 4.1 (Eq. (4), Eq. (5)),
the new return and risk function become:

Returni = C ′i,

Riski = (C ′i − Ci)2.
(23)

Finally, the objective function is also to maximize the
return and minimize the risk, so we transfer Eq. (15) and
jointly learn the coefficient matrix W , competition parame-
ter U and optimized product supply S′ as:

max
W,S′,U

M∑
i=1

ni∑
j=1

ρij([s
′
ijw

s′
tij

+ x
−s′
ij (W

−s′
tij

)
>
]− β

ni∑
q=1

U ∗ Sim(x
P
j , x

P
q ))

−
M∑
i=1

(

ni∑
j=1

[s
′
ijw

s′
tij

+ x
−s′
ij (W

−s′
tij

)
>
]− β

ni∑
q=1

U ∗ Sim(x
P
j , x

P
q )

− Ci)
2 − ||W ||∗,

s.t. ∀i ∈ [1,M ], s
′
ij ≥ 0, B

′
i ≤ Bi.

(24)

Here, xij is represented by xij=< s′ij , x
−s′
ij >, where

s′ij is the optimized product supply and x−s
′

ij stores other
features of this perk except s′ij . Similarly, matrix Wt is also
split into two parts, W s′

t and W−s
′

t . Note that index tij
indicates the j-th perk in campaign i belongs to the t-th
task. The combination of W and U likes π in Eq. (2), which
learn the connection between return and risk.

5.3.2 Product Supply Optimization in APSO-C Model

Now we have learned the coefficient matrix W and com-
petition parameter U , so we transfer Eq. (16) and optimize

product supply for fresh campaign i in the inner competi-
tion relationship as:

max
S′i

ni∑
j=1

[s′ijw
s′
tij + x−s′

ij (W−s′

tij )>]− β

ni∑
q=1

U ∗ Sim(xPj , x
P
q )

s.t. s′ij ≥ 0, B′i ≤ Bi.
(25)

Generally speaking, in APSO-C model, we learn the W ,
U based on Eq. (24) and optimize the product supply for
fresh campaign based on Eq. (25). The whole process of
APSO-C model are summarized in Algorithm 2, and the
gradient of W , U and S′ are given in Appendix B.

During the implement, we first update W for each task.
For task t which contains nt perks from all campaigns,
each perk has d dimensional features, so the computational
complexity isO(n2td

2). Then we updateU and S′, their com-
putational complexity can be regarded as O(1) compared to
the complexity in updating W , so the overall computational
complexity is O(n2kd

2N), where k is the index of the task
that has the biggest n2k. That is, the algorithm should be
stopped when the changing of W , U or S′ is less than a
threshold (i.e. tolW , tolU , tolS′ ) or the iteration reaches a
maximum number N . In practice, we set tolW (tolS′ ) as
1.0e−5, set tolU as 1.0e−3 and set N as 1.0e5, which we
think is of high-quality enough.

Algorithm 2 The Procedure of APSO-C

Require: the split task with all features X , only perk features XP , real invest-
ment volume C, and budgets B

Ensure: The product supply S′i for each fresh campaign i
1: for k = 1 to N do
2: Fix U and S′, update the coefficient matrix W (Eq. (1) in Appendix B),
3: Fix W and S′, update the competition parameter U (Eq. (2) in Appendix

B),
4: update product supply in training data S′ (Eq. (3) in Appendix B).
5: if stopping criteria is satisfied then
6: Break
7: end if
8: end for
9: compute the product supply S′i in testing data according to Eq. (25).

10: return S′i

6 EXPERIMENTS

In this section, we construct comprehensive experiments
on a real-world dataset that we crawled from one famous
crowdfunding platform in America, i.e. Indiegogo.com,
please refer to Section 2.2 for the detailed information of
experimental data. Specifically, we will demonstrate that:

1) the performance of investment volume prediction, in-
cluding PSO, APSO and APSO-C models,

2) the understanding of different feature integrations,
3) the correlation between split tasks based on manual

method and automatic method, respectively,
4) the performance of product supply optimization.

6.1 Experimental Setup

To observe how each algorithm behaves at different sparsity
levels of a dataset, we construct different sizes of training
sets from 50% to 80% of the campaigns with the increasing
step at 10%, and we name the four pairs of training and
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TABLE 3: Investment volume prediction performance.

Methods/Metrics Ridge Lasso SVR SigmoidSVR MTL1 MTL2 PSO APSO APSO-C
nM

SE

D#1 1.0054 0.9991 1.0183 1.0204 0.9950 1.0042 1.0109 0.9775 0.9741
D#2 1.0274 1.0199 1.0123 1.0136 1.0032 0.9927 1.0085 0.9921 0.8788
D#3 1.0560 1.0533 1.0340 1.0366 1.0602 1.0602 1.0301 0.9817 0.8844
D#4 1.0846 1.0631 1.0628 1.0600 1.0557 1.0578 1.0580 1.0580 1.0022

R
M

SE

D#1 164.1025 163.5917 165.1502 165.3253 163.2748 164.0274 164.5794 161.8328 161.5491
D#2 176.2585 175.6107 174.9538 175.0723 174.2000 173.2835 174.6615 173.2345 160.5738
D#3 93.2948 93.1742 92.3154 92.4343 93.4996 93.4996 91.4995 89.9710 85.3976
D#4 73.6763 72.9428 72.7275 72.4496 72.7084 72.7816 72.3907 72.7907 70.8429

Fig. 5: Investment volume prediction performance on
APSO-C

testing sets as D#1, D#2, D#3 and D#4. The detailed
features have been introduced in Section 2.

Parameter Setting. Firstly, we show the way of comput-
ing budgets B′i and Bi. As we can see from Figure 1, the re-
ward eij in crowdfunding is usually the product or a thanks
card of the project, therefore, it is very hard to directly
compute B′i and Bi based on eij . Luckily, in the literature
of marketing, it is usually assumed that the price positively
influences the perception of product (reward) quality, that is
eij ∝ pij [17], and the unit cost of the product with a quality
eij is e2ij/2 [3], [18] which can be further represented as
γp2ij/2, where γ is a parameter. Therefore, in the following
experiments we possibly define B′i = 1

2γ
∑ni

j=1 s
′
ijp

2
ij and

Bi = 1
2γ

∑ni

j=1 sijp
2
ij .

Parameter ρij represents the risk preferences of each cre-
ator, here we simply define ρij as a uniform value since it is
hard to quantify risk preference for each creator with limited
data records. Parameter λ is learned by cross-validation.

In APSO-C model, β controls the effect of competition.
As the training records are much larger than the parameters,
we set β in a reasonable range (e.g., from 1 to 30) for better
knowing the effect of competition. Obviously, if β = 0 then
APSO-C model goes back to APSO model. For conveniently
comparing, we compare them in different β values.

6.2 Evaluations on Investment Volume Prediction

Before proving the effectiveness of the entire framework of
product supply optimization, we first show the performance
of PSO, APSO and APSO-C models on measuring the risk
(predicting the future investment volume) of each cam-
paign. As shown in Eq. (15) and Eq. (24), we get learned W
from training step, then we can use it to predict investment
volume in testing data. We adopt RMSE and nMSE as the
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Fig. 6: Correlation about two kinds of split task. (a) Corre-
lation between manual split tasks. (b) Correlation between
automatic split tasks.

metrics since they are widely used in MTL [10], [19]. For
the RMSE and nMSE, the smaller the value, the better the
performance. We choose several state-of-the-art regressions
and two MTL methods which using k-means [20] to task
splitting for comparison [10] :

• Ridge: Linear regression with L2-norm regularizer [21].
• Lasso: Linear regression with L1-norm regularizer [22].
• Support Vector Regression (SVR): training a Support

Vector Regression model [23], [24].
• SVR with sigmoid kernel (SigmoidSVR): Support Vector

Regression with sigmoid kernel [25].
• MTL with K-means for task splitting (MTL1,MTL2):

MTL1 uses all features for task splitting and MTL2 uses
partial features for task splitting.

The experimental results of our methods and the base-
lines on four data splits are shown in Table 3. Due to space
limitation, we only show the results with hij = 1. We
can see that the PSO method consistently performs better
than the single task models on all splits in terms of two
evaluation metrics, which clearly validates the effectiveness
of our multi-task learning method. Also, it is a fact that
MTL1 and MTL2 perform better than PSO upon most
occasions, which shows that using more features instead of
perk prices for task splitting is more reasonable. However, it
is obvious that these two automatic task splitting methods
perform worse than APSO method, it proves that using EM-
process (shown in Section 4.2.2) to split task is more effective
than k-means method and manual task partition metric, and
the reason behind good performance is that EM-process can
project the perk features into the same projection space.
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TABLE 4: Performance on different feature integrations.

Data Split Feature Integration nMSE RMSE

D#1
NP 0.9107 156.2047

NPC 0.8837 153.8720
NTPC 0.9741 161.5491

D#2
NP 0.8853 163.6396

NPC 0.8909 164.1568
NTPC 0.8788 160.5738

D#3
NP 0.9851 90.1279

NPC 0.9336 88.0607
NTPC 0.8844 85.3976

D#4
NP 1.1344 75.3700

NPC 1.0786 73.4946
NTPC 1.0022 70.8429

Feature Score
4 4.5 5 5.5 6 6.5 7

campaign description
delivery term

creator average funded amount
campaign description

perk description
team members number
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average comment number
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campaign numerical
perk textual
perk numerical

Fig. 7: An illustration of several important features.

Above all, our extended model APSO-C performs the best
on all data splits, what demonstrates the effectiveness and
shows there really exist inner competition which affects the
funding results.

According to Eq. (22), parameter β controls the effect of
competition, it is obviously that β = 0 means the model
without competition (i.e., APSO). Here we compare the
performance over different β values which is shown in
Figure 5. The blue line is the performance under nMSE
metric and the orange one is under RMSE over different
β values. As can be seen from this figure, our proposed
APSO-C model performs the best when β = 20 (marked
as green square) under two metrics. Specifically, among
all the range of β values, the result in β = 10 is also
better than APSO result (β = 0), but opposite in other
situations, this phenomenon states that there is a kind of
relatively reasonable competition degree in crowdfunding
market, and creator should carefully consider that when
posting campaigns. Besides, it also proves that backers’
choices are really influenced by the inner competition, and
our automatic splitting task method is effective.

Until now, we have already compared the results in two
splitting task methods (PSO and APSO), now, we analyze
the utilities of them. To intuitively illustrate the utilities of
PSO and APSO, we compute the Jaccard similarity5 among
the rows (tasks) in W . The results are shown in Figure 6(a)
and 6(b). From Figure 6(a) we can see that the tasks with
the similar price ranges are usually more similar, of course,
task T1 and task T7 are the most distinctive ones. On the

5. The similarity is computed by summarizing the number of fea-
tures, whose absolute value in two rows of W are both larger than the
mean value.

Fig. 8: Product supply performance on APSO-C.
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Fig. 9: The impact of inner competition.

other hand, we can see that the APSO automatically divides
all perks into 5 tasks in Figure 6(b), most tasks are similar
expect task T2 and T4 which are the most dissimilar ones.
It is clear that the tasks in PSO have weaker relation than
in APSO, it shows that the strong ties of tasks are helpful to
learn relationships among all perks.

6.3 Analysis on Different Feature Integrations

To explore how these features affect the investment volume
prediction, we group them into three integrations:
• NP mainly contains numerical perk features.
• NPC includes the numerical campaign features, besides

features in NP .
• NTPC includes campaign textual features and perk tex-

tual features, besides features in NPC.
Therefore, the relationship among the feature integra-

tions is NP ⊆ NPC ⊆ NTPC, and generally, the feature
matrix X of the following experiments is constructed based
on all of the features, i.e. NTPC. We should also note that
the proposed product supply optimization approach is a
general framework and it is open to some other features.

We show the performance of APSO-C in terms of differ-
ent feature integrations, and the results are given in Table 4.
We can have the following observations. First, NTPC feature
integration almost always has the best performance, which
indicates the effectiveness of our feature extraction. In our
opinion, the exception exists on D#1 because of the limited
training data. Second, in most feature integration except
D#2, adding numerical campaign features to NP features
will improve the performance, and further adding textual
features seems to have produced a noticeable improvement.
Therefore, we can argue that the features are internally
correlated, and our model can have the best performance
only when combining all kinds of contextual features.
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One step further, Figure 7 gives several important fea-
tures in W , where feature importance is measured based on
the summary of the absolute value of each feature at all the
tasks in APSO-C. Since we use vectors to express the textual
features, there are multiple dimensions belong to one fea-
ture. Indeed, the features about campaign/perk description
are generally more important than others for predicting the
investment volume of the campaign, as shown in Figure 7.

6.4 Evaluations on Product Supply Optimization

As shown in Eq. (16) (from PSO and APSO model) and
Eq. (25) (from APSO-C model), we optimize the product
supply for fresh campaigns in testing data. Indeed, there
are no related studies on product supply optimization in
crowdfunding, and we treat the investment volumes of the
campaigns (e.g.

∑ni

j=1 cijhij) under the manually claimed
numbers S as a baseline. Since the aim of our framework
is using S′ to improve these investment volumes (e.g.∑ni

j=1 c
′
ijhij), the gain between these two different kinds of

investment volumes can be adopted as metrics. For instance,
we define the metric “Growth Num” as

∑M
i=1(

∑ni

j=1 c
′
ijhij−∑ni

j=1 cijhij)/M , and define “Growth Rate” as the average
of (

∑ni

j=1 c
′
ijhij −

∑ni

j=1 cijhij)/(
∑ni

j=1 cijhij).

TABLE 5: Product supply results (ρ=0.05).

Metrics Growth Num Growth Rate

Num of Money $208.09 2.79%
(229370) (0.36)

Num of Investors 6.05 4.43%
(107.50) (0.11)

Without loss of generality, we only report the results
on the 60%-40% data split (D#2), and our optimization
algorithm converges quickly by only 26 iterations (on av-
erage). The PSO results with ρij = 0.05 are shown in
Table 5, where we take both the two motivations/goals
of the creators into consideration. The “Num of Money”
motivation measures the amount of raised money when
hij = pij and the “Num of Investors” motivation stands for
the number of investors when hij = 1. From this table, we
can see that the optimization of the product supply structure
does improve the return of the campaigns, given so many
other features fixed. For instance, after optimization, each
campaign is expected to attract an average of extra $208
(or 6 investors), which accounts for 2.79% (4.43%) of its
current return. The number in each bracket (.) in Table 5 is
the variance. After investigating the data carefully, we found
that (

∑ni

j=1 c
′
ijhij −

∑ni

j=1 cijhij) > 0 for more than 87.1%
of the campaigns, which means most of the product supply
of the campaigns should be optimized.

In the same way, we compare PSO and APSO-C model in
different β values, here PSO result is shown under β = 00.
Because of the huge variations on the raised money, here
we just choose the other motivation (hij = 1) for a fair
comparison, and the result is shown in Figure 8. In this
figure, the bar is the average of growth rate, and the blue
line is the variance of growth rate. We can see that, in
the beginning, when the degree of competition β becomes
larger, the number of investors increases greatly, but it will
start to decrease after reaching an upper boundary. The

Fig. 10: Return vs risk.

figure shows that APSO-C model performs better than PSO,
further, it also proves that the inner competition would
influence final investments, so it exposes the importance of
designing proper perks in one campaign.

Specifically, to know how a campaign’s inner competi-
tion influences the investment volumes under the same β,
we exhibit the growth rate on investment volumes of cam-
paigns and their inner competition degrees under β = 20
in Figure (9), and all of the values in x-axis and y-axis are
normalized by z-score for better exhibition. Here, we define
the inner competition degree of a campaign by the average
value of their own matrix V (e.g.

∑ni

j=1

∑ni

q=1 vjq/(2ni)).
From this fitting curve, we know that if perks in one
campaign have low correlation, their low inner competition
degree contribute little improvement of investments. On the
other side, the fierce competition among perks also decrease
the investments. The result shows that there is an appro-
priate inner competition degree for campaign designing,
neither the lower nor the higher inner competition degree
is better.

Finally, we also fix β = 20 in APSO-C model to explore
the relationship between return and risk. Actually, the ex-
pected return for each creator can be even more impressive
if we simply change the setting of ρij (in Eq. (24)) when
selecting portfolios. However, high return always associates
with high risk. As shown in Figure 10, when ρij becomes
larger, not only the expected return rate but also the risk
of the optimized product supply will go higher. In practice,
the creators can select this parameter manually based on
their risk preferences, or we can automatically make a
recommendation based on historical records.

7 RELATED WORK

The related studies can be grouped into four categories:
Crowdfunding. In a broad way, crowdfunding is a

specific practice of crowdsourcing [26] [27] in finance or
business. In crowdsourcing, the foundational research is
how to allocate micro-tasks to suitable crowd workers [28],
[29], [30], but not for crowdfunding. Since the vast major-
ity of crowdfunding platforms follow the “all or nothing”
rule [31], most of the studies in this category focus on
predicting the funding results and recommending [32], i.e.,
whether a campaign will succeed or not [2], what factors
influence the result [33], [34], and the contribution behav-
iors [35]. For instance, Li et al. formulated the campaign
success prediction as a survival analysis problem and ap-
plied the censored regression-based solution [2]. To explore
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the influenced features, T. Mitra et al. found that the de-
scription language used in the campaign also has surprising
predictive power, and even accounting for 58.56% of the
variance around successful funding [34]. Recently, Zhao et
al. used a sequential approach to model market state of
funding projects (e.g., hot and cold), and further predicted
the bidding behaviors [35]. With the success of crowdfunded
campaigns, it is important to understand what drives people
to either create or fund these campaigns. For instance, the
desire to raise funds and expand awareness of the products
are two major motivations of creators [1]. In [3], the authors
also claimed that the investors are sufficiently heteroge-
neous in their product valuations, and the creator should
offer a line of products in their campaign. These studies all
contribute some novel insights on campaign/perk design.
Though it is also possible for the creators to get help from
the manual instructions6, to the best of our knowledge, the
problem of how to automatically help creators design more
attractive campaigns according to current market status,
e.g., by optimizing the product supply of each perk, remains
pretty much open.

Portfolio Selection. Modern portfolio theory is a mathe-
matical framework for assembling a portfolio of assets such
that the expected return is maximized for a given risk,
and it is built upon the seminal work of Markowitz [5].
Indeed, researchers are very much interested in investigat-
ing new methods from diverse perspectives (e.g. develop-
ing novel approaches for quickly selecting portfolios) to
extend/improve this theory [36], and the portfolio analysis
has become an important method in finance and economics.
For instance, Luo et al. viewed each investee as a portfolio
of investors, and evaluated the risk of an investee based on
risk preferences of investors [37]. Similar ideas inspired by
portfolio selection have also been adopted in other domains,
e.g., solving hard computational problems [38], information
retrieval [6] and loan recommendation [39].

Multi-task Learning. Multi-task learning (MTL) per-
forms well in classification and regression by considering
the related tasks simultaneously and utilizing the cross-
task information [19], [40]. Among existing MTL methods,
the regularization-based MTL is one of the main research
directions. These methods share the similar framework but
choose different regularization terms (e.g. L1-norm) accord-
ing to the task relationships [41]. Since MTL usually results
in improved learning efficiency and prediction accuracy, it
has been used in various fields, i.e., stock selection [42], dy-
namic trajectory regression [43], real estate prediction [10],
biological image analysis [44], and natural language pro-
cessing [45]. Besides, there are some multi-task learning
works about task clustering. For example, Bakker et al. use
a mixture of Gaussians to cluster tasks based on Bayesian
Multi-task learning [46]. To the best of our knowledge, most
existing MTL method based on the split tasks, and there are
no works focus on splitting task automatically.

Competition Mining. With the availability of large on-
line data, some researchers are concerned with competitive
information mining problem [47], [48], In [48], the authors
design a data-driven system which mining competitors from
the general web automatically. Some other researchers focus

6. https://www.indiegogo.com/partners

on the competitive relationship identification problem, and
their competitors mainly come from web data sources, such
as online news [49], online reviews [50], [51], [52] and search
log analysis [48], [53]. Recently, Wu et al. designed factor-
based models to learn the competitive degree between dif-
ferent products based on users’ behaviors [54].

In crowdfunding platforms, a fraction of researches pay
attention to mining competition relationships, for exam-
ple, P. Ly et al. explore the effect of competition between
microfinance NGOs, and they find that competition has a
negative impact on projects’ funding speed [55]. J. Viotto
da Cruz uses a two-sided market approach to analysis the
competition in different crowdfunding platforms [56]. Kim
et al. are the first to investigate the competition among
projects within same categories [57]. In [58], the authors
propose a probabilistic generative model to capture the
competitiveness of projects. Different from the above com-
petition researches, we focus on exploring how inner com-
petition in products from one funding campaign influence
the campaign design and funding results.

8 CONCLUDING REMARKS

In this paper, we presented a focused study on enhancing
the funding performance of the newly proposed campaigns
in competitive crowdfunding by optimizing the product
supply of perks. Inspired by the modern portfolio theory,
we first defined it as a constrained portfolio optimization
problem. Under this definition, we then proposed a multi-
task learning way (PSO and APSO model) to estimate the
future return for each campaign and measure the risk of
the product supply settings, by considering the relevance
among the perks when attracting investments. Furthermore,
we presented how to leverage inner perk competition effect
into the APSO model. Meanwhile, we designed the APSO-
C model by simultaneously learning inner competition, the
coefficient matrix for investment volume prediction and
the optimized product supply. Finally, the solutions for the
optimization problem were recommended to creators as the
optimal product supply setting. The experimental results
on a real-world dataset showed that the optimized product
supply can help the campaign get more investments. We
hope this study could lead to more future work on op-
timizing other important features for campaign design in
crowdfunding.
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