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Abstract—Information source detection is to identify nodes
initiating the diffusion process in a network, which has a wide
range of applications including epidemic outbreak prevention,
Internet virus source identification, and rumor source tracing in
social networks. Although it has attracted ever-increasing atten-
tion from research community in recent years, existing solutions
still suffer from high time complexity and inadequate effective-
ness, due to high dynamics of information diffusion and observing
just a snapshot of the whole process. To this end, we present
a comprehensive study for single information source detection
in weighted graphs. Specifically, we first propose a maximum
a posteriori (MAP) estimator to detect the information source
with other methods as the prior, which ensures our method
can be integrated with others naturally. Different from many
related works, we exploit both infected nodes and their unin-
fected neighbors to calculate the effective propagation probability,
and then derive the exact formation of likelihood for general
weighted graphs. To further improve the efficiency, we design
two approximate MAP estimators, namely brute force search
approximation (BFSA) and greedy search bound approximation
(GSBA), from the perspective of likelihood approximation. BFSA
tries to traverse the permitted permutations to directly compute
the likelihood, but GSBA exploits a strategy of greedy search to
find a surrogate upper bound of the likelihood, and thus avoids
the enumeration of permitted permutations. Therefore, detect-
ing with partial nodes and likelihood approximation reduces the
computational complexity drastically for large graphs. Extensive
experiments on several data sets also clearly demonstrate the
effectiveness of our methods on detecting the single information
source with different settings in weighted graphs.

Index Terms—Greedy search, information source detection,
likelihood approximation, maximum a posteriori (MAP).
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I. INTRODUCTION

THE BOOM of research on social network analy-
sis [1]–[5] has brought ever-increasing attention to the

topics of information source detection [6]–[8], influence
maximization [9]–[12], and so on [13]–[16] in recent years.
Information source detection aims to identify the nodes ini-
tiating the diffusion process based on a single snapshot of
the infected network (e.g., diffusion of opinion, rumor, and
epidemic). Its wide range of applications include epidemic
outbreak prevention, Internet virus source identification, and
rumor source tracing in social networks [7], [17]–[20].

The research challenges of this problem come from a num-
ber of aspects. First, information diffusion is characteristic of
high dynamics and displays a great variety of patterns when
initiating from different sources [21]. For example, in social
networks, a photograph will be shared more times if it is
posted by a celebrity. Second, the actual information diffusion
laws are unknown. Although many models have been proposed
such as the susceptible-infected-recovered (SIR) model [22]
and independent cascade (IC) model [23], they cannot describe
information diffusion comprehensively. Third, we only observe
a snapshot of the infected network, which is just a part
of the whole diffusion process. Nevertheless, various meth-
ods have been introduced along the years to overcome these
challenges and detect the source of a diffusion for different
situations, including methods based on centrality [8], [24],
spectral [17], [19], belief propagation (BP) [25]–[27], and so
on. However, existing methods are still deemed inadequate due
to their high computational complexity and yet-to-be-improved
effectiveness. For example, rumor center (RC) [8] only con-
siders the utility of infected nodes to detect the source in
homogeneous graphs, and Jordan center (JC) [6] just aims
to minimize the maximum distance from the source to others
and neglects the dynamicity of information diffusion. Dynamic
message passing (DMP) [27], one of the state-of-the-arts,
exploits all nodes in the network to estimate the marginal
probability of a given node to be in a given state and how
long the information has already propagated, which is too
time-consuming.

Therefore, in this paper we extend our preliminary
work [28] which focused on unweighted graphs, and present
a comprehensive study for single information source detection
in weighted graphs. The intuition behind our method is that
uninfected (or susceptible) nodes provide important negative
signals for detecting the source. We illustrate this point with
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Fig. 1. Snapshot of the information diffusion under the SI model on a toy
graph, where black nodes are infected and others are susceptible. Numbers
on edges are the information propagation probability between two adjacent
nodes.

Fig. 1 which shows a snapshot of the diffusion example on an
undirected graph. The susceptible-infected (SI) model [8], [19]
which is a variant of SIR, is used to describe the process
of information diffusion. It assumes that every node has two
potential states, namely susceptible and infected. If node 2 is
indeed the source, its two uninfected neighbors nodes 3 and 5
would be more likely to be infected. That means the presence
of these two uninfected neighbors reduces the probability of
node 2 being the source. Additionally, nodes 3 and 5 should
have different importance for node 2, due to their different
propagation probabilities between node 2. Although this has
been noticed by some work [19], [27], we exploit this intuition
along the following different direction.

Specifically, we first derive a maximum a posteriori (MAP)
estimator to detect the single information source in undirected
and weighted graphs, which selects a node with the maxi-
mal posterior probability as the detected source. It applies
other simple but effective methods such as rumor central-
ity (RC) [8] and Jordan centrality [24] as the prior because
Comin and da Fontoura Costa [29] have shown that the source
node tends to have higher centrality measurement values. This
ensures our method can be integrated with others naturally.
Then we infer the exact likelihood formation of the observed
infected subgraph, based on the hypothesis that the likelihood
equals to the sum of probabilities of all permitted permuta-
tions starting with a node. A permitted permutation [8] is
corresponding to the node infection sequence which is gen-
erated by information diffusion and can span the observed
infected subgraph. To compute the probability of a permitted
permutation, we exploit both infected and their uninfected
neighbors to get an effective propagation probability in this
paper. It generalizes the probability of propagating informa-
tion from a set of nodes to a single node, and thus makes
it also suitable for weighted graphs with loops. For example,
in Fig. 1, {1, 2, 4} is a permitted permutation but {1, 4, 2} is
not if node 1 is the source. When nodes 1 and 2 are infected,
the effective propagation probability from nodes 1 and 2 to
node 3 is 1 − (1 − 0.6) · (1 − 0.5) = 0.8. Additionally, unlike
DMP [27], our method only exploits a part of nodes to detect,
which reduces the computational complexity drastically for
large graphs. Combining the above prior and likelihood, we
obtain the MAP estimator.

For better efficiency, we design two approximate MAP
estimators, namely brute force search approximation (BFSA)

and greedy search bound approximation (GSBA), from
the perspective of likelihood approximation. Inspired by
Shah and Zaman [8], BFSA uses a breadth-first search tree to
estimate the latent spanning tree generated by the diffusion,
and then enumerates the corresponding permitted permuta-
tions to derive the approximate likelihood. However, BFSA
is still time-consuming as Shah and Zaman’s [8] research
results have shown the factorial complexity of the number of
permitted permutations for general trees. Therefore, we further
propose GSBA which uses an upper bound to approximate the
probabilities of permitted permutations starting with a given
node. To find this upper bound, GSBA exploits a strategy of
greedy search to find a surrogate bound, which selects the
node maximizing the increment of its likelihood when gener-
ating a permitted permutation. GSBA effectively avoids the
enumeration of permitted permutations and further reduces
the computational complexity. Experimental results on several
data sets also clearly validate the effectiveness of our meth-
ods on detecting the single information source with different
settings in weighted graphs.

To sum up, our contributions are listed as follows.
1) We present a comprehensive study for single information

source detection in weighted graphs and derive an MAP
estimator. It can integrate with other methods naturally
and exploit the effective propagation probability to infer
the exact formation of likelihood for general graphs.

2) To improve the efficiency, we develop two approx-
imation variants of the MAP estimator, namely
BFSA and GSBA, from the perspective of likelihood
approximation.

3) We conduct comprehensive experiments on several
networks to validate our methods. The experimen-
tal results clearly demonstrate the effectiveness of
our proposed approaches for single information source
detection with different settings in weighted graphs.

Roadmap: The remainder of this paper is organized as fol-
lows. Section II provides a brief review of related works. Then
we introduce some preliminaries of information source detec-
tion in Section III. Sections IV and V give the details of our
methods. In Section VI, we report the experimental results.
Finally, we conclude this paper and discuss some future works
in Section VII.

II. RELATED WORK

In general, research work related to our problem can be
discussed by two categories: 1) information diffusion modeling
and 2) information source detection.

A. Information Diffusion Modeling

It is a fundamental problem to model information diffu-
sion process, which has attracted research efforts from various
communities including epidemiology, ethnography, and soci-
ology [1]. Kermack and McKendrick [22] introduced the SIR
model to describe epidemic spreading. The model assumes
that every node has three possible states, i.e., susceptible,
infected, and recovered. Once a susceptible node is infected, it
can further infect its susceptible neighbors, but it may recover
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and never get infected again. Note that the SI model used in
this paper supposes that infected nodes would never recover,
which is a special case of SIR. In social network analysis,
IC model [23] and linear threshold model [30] are widely
used to describe the information diffusion in social networks.
Other models such as SI-susceptible model and diffusion of
innovations can be found in [1].

Intuitively, information source detection can be viewed
as the reverse process of information diffusion [9].
Lappas et al. [31] defined a similar problem, k-effectors,
which selects a set of k active nodes that can best explain the
observed activation states in social networks. They proved that
the k-effectors(0) problem is NP-complete under the IC model,
and gave two approximate solutions. Nguyen et al. [32] studied
the k-suspector problem which aims to find the top k most sus-
pected sources of misinformation, and claimed NP-hardness of
the problem under the IC model. Gundecha et al. [18] tried to
seek the provenance of information for a few known recipi-
ents by recovering the information propagation paths in social
media. Feng et al. [33] studied the problem of recovering other
unknown recipients and seeking the provenance of information
based on a few known recipients. They exploited frequent pat-
tern propensity and node centrality measures to find important
nodes.

B. Information Source Detection

Various methods (e.g., those based on centrality, spectral,
BP, and so on) have been proposed to identify the sin-
gle diffusion source for different situations. For example,
Shah and Zaman [7], [8] are among the first to consider this
problem. They proposed RC to implement the maximum like-
lihood estimation (MLE) for single rumor source detection
under the homogeneous SI model. For a node, its RC is the
number of infection sequences which can span the observed
infected subgraph. We can see RC only considers the utility
of infected nodes to detect the source for unweighted graphs.
Dong et al. [34] explored the MAP estimation with different
settings of the prior. For instance, the suspects may be all the
infected nodes, or at most k infected nodes. However, the like-
lihood is computed based on RC, which also has the above
drawbacks. Besides, Wang et al. [35] addressed the problem
of rumor source detection with multiple independent observa-
tions, under the SI model. For trees, they found that multiple
independent observations can dramatically increase the detec-
tion probability. Jain et al. [36] assumed the infected subgraph
is observed at some known time instant, and proposed a ran-
dom walk-based method to approximate the MLE of the rumor
source.

Zhu and Ying [6] developed a sample-path-based approach
to detect the source under the SIR model. The source is sup-
posed to be the root of a sample path which is the node
most likely resulting in the infected subgraph. They proved
that for a tree graph, the output of their method is a JC [24],
which minimizes the maximum distance from a node to oth-
ers. Recently, Lokhov et al. [27] made use of the infected
and uninfected nodes to detect the source and introduced a
time-consuming yet effective inference algorithm based on

DMP equations. It first uses DMP to estimate the marginal
probability of a given node to be in a given state, and then
exploits a mean-field-type approach to approximate the likeli-
hood. Altarelli et al. [26] conducted Bayesian inference for this
problem on a factor graph under the SIR model. They derived
BP equations for the probability distribution of system states
conditioned on some observations, which is more accurate
than DMP. They further considered this problem with noisy
observations [25].

Sometimes, we can observe the infection time of spe-
cific sensor nodes, not only their states. Under a specific
continuous-time epidemic process, Pinto et al. [37] studied the
problem when only a small fraction of nodes, instead of the
whole graph, can be observed. After that, Agaskar and Lu [38]
described an alternate representation for the SI model, which
allows us to estimate the marginal distributions for each
observer and compute a pseudo-likelihood function that is
maximized to find the source and Shen et al. [39] developed
a time-reversal backward spreading algorithm to locate the
source of a diffusion-like process efficiently, which detects
the node with the minimum variance of reversed arrival time
from sensors. Kumar et al. [40] inferred the source of a rumor
on the network with relative information about the infection
times of a fraction of node pairs, and proposed Markov chain
Monte Carlo-based schemes.

In addition, many researchers focused on detecting multiple
information sources. Prakash et al. [19] started to explore the
detection of multiple information sources under the homo-
geneous SI model. They applied the minimum description
length principle to automatically decide the number of source
nodes, and then identified the best source nodes according to
exoneration of infected nodes with many uninfected neigh-
bors. Subsequently, Fioriti and Chinnici [17] proposed to use
the node dynamical importance to estimate nodes’ age, and
designed a spectral technique to predict the sources of an
outbreak. Dynamical importance of a node is the reduction
of the largest eigenvalue of the adjacent matrix after it is
removed from the network [41]. Luo et al. [42] extended RC
for multiple sources detection, and they also tried to estimate
the infection regions (i.e., nodes infected by each source).
Nguyen et al. [43] proposed an approximation algorithm for
multiple infection sources identification with provable guar-
antees under the homogeneous SI model. It minimizes the
symmetric difference between observed infected nodes and
the cascade from source nodes, and then identify infection
sources without the prior knowledge on the number of source
nodes.

In spite of all these existing work, we approach the
problem of information source detection under the het-
erogeneous SI model by maximizing a posteriori. Our
solution makes full use of both infected nodes and their
uninfected neighbors, like [19]. We assume that every
infected node could be the source and use the output
of other methods as the prior. Then we infer the exact
formation of the likelihood for general weighted graphs.
Additionally, we also design two approximate MAP estima-
tors from the perspective of likelihood approximation for better
efficiency.
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TABLE I
TERMS AND NOTATIONS

III. PRELIMINARIES

In this section, we will first give the problem definition,
revisit RC for explaining some basic concepts, and then
introduce the framework of our solution. Important terms and
notations are listed in Table I for easy reference.

A. Problem Definition

Let G(V, E, A) denote the undirected and weighted network,
where V is the node set and E is the edge set. A = [aij], and
aij ∈ [0, 1] is the information propagation probability from
nodes i to j. In real-world scenarios, A can be learned from
historical interactions by partial credits [44]. The information
(such as opinion, rumor, and epidemic) will spread on this
network under a contagious information diffusion model. In
this paper, we assume the source consists of a single node, and
apply the heterogeneous SI model to describe this diffusion
process.

Heterogeneous SI is a variant of the popular SIR model [22].
It assumes that every node has two possible states: 1) suscep-
tible and 2) infected. Once a node i is infected (or receives
the information), it will remain infected and never recover
any more. Meanwhile, node i will spread the information
to its susceptible neighboring node j with probability aij in
the next. The diffusions along edges are supposed to be
independent [19], [45].

After the information has spread on the network for some
time, there are N infected nodes, denoted by VI , including
the source node. These nodes and their interedges EI can
span an infected subgraph GI(VI, EI) of G(V, E), which are
referred to as GI and G, respectively. GI is connected because
the information diffusion model is contagious, and thus every
susceptible node can only be infected by its neighbors. For
example, recall the snapshot of information diffusion on the
toy graph in Fig. 1, nodes 1, 2, and 4 are infected, and oth-
ers are susceptible. Here the observed data only includes the
graph structure and a snapshot of the diffusion indicating who
are infected, but we do not know when each infection occurs
in many scenarios, such as computer virus spread over the

Internet and epidemic outbreak among the crowd. How can
we find the real source node initiating the diffusion based on
this snapshot? Therefore, the problem of single information
source detection is defined as follows [8].

Problem 1 (Single Information Source Detection): Given
an undirected and weighted graph G(V, E, A) and a snapshot
of the infected subgraph GI(VI, EI) at some unknown time
stamp, the problem of single information source detection is
to find the source v∗ among those infected nodes, which can
infect others and span GI .

B. Rumor Centrality

This problem was first studied by Shah and Zaman [7], [8].
They showed that it is one of the #P-complete problems,
and proposed the following RC to detect the source with
MLE under the homogeneous SI model which assumes all
the propagation probabilities along edges are equal.

After the information diffusion starts from the source, it
generates an infection node sequence σ = {v1, . . . , vN} (1 ≤
i ≤ N), where vi ∈ VI is the ith infected node (i.e.,
σ(i) = vi). This sequence is sorted in chronological order
by when the nodes were infected and corresponds to a per-
mutation of these infected nodes, which is also referred to as
permitted permutation by Shah and Zaman [8]. Additionally,
a permitted permutation corresponds one to one with an infec-
tion sequence. This means that a permutation is permitted only
if it exactly matches the topological constrain specified by GI .
For example, if node 4 is the information source in Fig. 1,
{4,2,1} is a permitted permutation, but {4,1,2} is not because
node 2 must be infected before node 1. Note that we also
use σ to denote the nodes appearing in the sequence without
ambiguity.

If GI is a general tree, Shah and Zaman [8] have shown that
the number of permitted permutations starting with v, namely
RC of node v, is defined as

R(v, GI) =
∏

u∈GI

N!

Tv
u

(1)

where u is a node of GI and Tv
u is the number of nodes in the

subtree rooted at u with v as the source. They assumed that
each node is equally likely to be the source, and exploited RC
to estimate the likelihood probability P(GI |v∗ = v) given that
node v is the information source. The detected source is an
RC maximizing the RC, i.e., MLE.

Although RC is effective in many cases, it has three lim-
itations. First, it only considers the infected subgraph and
neglects other uninfected nodes which are also important
for detecting the information source. As mentioned in the
introduction, those uninfected neighbors may indicate lower
probability to be the source for infected nodes. Second, it
assumes that the propagation probabilities along all edges
are equal, and detects the source only based on the topolog-
ical structure, which is obviously found from (1). But this
assumption is invalid under many scenarios where the graph
is weighted. Third, RC assumes that the probabilities of all
permitted permutation are equal for general graphs. It is easy
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to show that this assumption is not valid when the degrees of
nodes are different, especially for weighted graphs with loops.

C. Framework of Our Solution

To overcome the above limitations and improve the accu-
racy, we design a solution based on MAP estimation. Let
P(v∗ = v) denote the prior probability that node v is the
source, and P(GI |v∗ = v) denote the likelihood probability
that GI will be observed if the information propagates from v.
Based on Bayes theorem, we can derive the posterior proba-
bility P(v∗ = v|GI) of node v being the real source given the
infected subgraph GI as follows:

P
(
v∗ = v|GI

) = P(v∗ = v)P(GI |v∗ = v)

P(GI)

= P(v∗ = v)P(GI |v∗ = v)∑
u∈GI

P(GI |v∗ = u)

∝ P(v∗ = v)P
(
GI |v∗ = v

)
(2)

because the denominator P(GI) is the sum of values appearing
in the numerator and can be regarded as the normalization
constant to be removed [46]. We can see that the posterior is
proportional to the product of the prior probability P(v∗ = v)
and likelihood P(GI |v∗ = v).

Given GI , we can select the node maximizing the above
posterior as the detected source v̂. This is the following MAP
estimator.

v̂ = arg max
v∈GI

P
(
v∗ = v|GI

)

= arg max
v∈GI

P
(
GI |v∗ = v

)
P(v∗ = v). (3)

We will introduce the above prior probability P(v∗ = v) and
likelihood P(GI |v∗ = v) in the next section.

IV. DETAILS OF MAXIMUM a Posteriori ESTIMATION

In this section, we will give the details about how to
determine the prior and likelihood for MAP estimation.

A. Choosing the Prior

Although many works assume every node has the
same prior probability to be the source [8], [27], [35],
Comin and da Fontoura Costa [29] have shown that the source
node tends to have higher centrality measurement values.
Therefore, we choose some effective centralities as the prior
knowledge, which can ensemble other methods with ours nat-
urally. Let us take the RC as an example to show how to
achieve this idea

P(v∗ = v) = R(v, GI)∑
u∈VI

R(u, GI)
∝ R(v, GI). (4)

That means the prior P(v∗ = v) is proportional to the RC.
For general graphs, we apply the following method used by
Shah and Zaman [8] to compute R(v, GI),

R(v, GI) ≈ R
(
v, Tbfs(v)

)
(5)

where Tbfs(v) is a breadth-first search spanning tree of GI start-
ing with v. It uses the RC in Tbfs(v) to approximate R(v, GI),
and R(v, Tbfs(v)) can be computed by (1).

B. Deriving the Likelihood

Formally, let Gs(U), N(U), and d(U) be the spanning graph,
neighbors, and degree of a node set U, respectively. A span-
ning graph of a node set consists of these nodes and interedges
among them. Note that Gs(σ ) is the spanning graph of nodes
appearing in the permitted permutation σ . Let

�(v, GI) = {σ |σ(1) = v, Gs(σ ) = GI} (6)

denote the set of permitted permutations each of which starts
with v and could span the observed infected subgraph GI . Let

E(v, U) = {(v, u)|(v, u) ∈ E, u ∈ U} (7)

be the set of bridging edges between v and the node
set U in G. For example, in Fig. 1, d({1, 2}) = 4
because there are four edges linked to nodes 1 and 2,
N({1, 2}) = {3, 4, 5}, Gs({1, 2, 4}) = GI, �(2, GI) =
{{2, 1, 4}, {2, 4, 1}}, and E(3, {1, 2}) = {(3, 1), (3, 2)}.

Recall that if node v is selected to be the source v∗, the
likelihood P(GI |v∗ = v) is the probability to get the observed
subgraph graph GI . On the other hand, every permitted per-
mutation can span GI according to its definition. That means
the likelihood P(GI |v∗ = v) is the sum of probabilities of
all permitted permutations which begin with v [8]. Therefore,
P(GI |v∗ = v) can be decomposed as follows,

P
(
GI |v∗ = v

) =
∑

σ∈�(v,GI)

P
(
σ |v∗ = v

)
(8)

where P(σ |v∗ = v) is the probability to observe a permitted
permutation σ give v∗ = v. In the following, we will show
how to derive P(σ |v∗ = v) in detail.

According to the chain rule in probability theory, P(σ |v∗ =
v) can also be decomposed into the product of many condi-
tional probabilities as follows:

P
(
σ |v∗ = v

) = P(σ (2)|σ(1) = v)P(σ (3)|σ(1, 2)) · · ·
P(σ (N)|σ(1, . . . , N − 1)) (9)

where P(σ (i)|σ(1, . . . , i − 1)) (2 ≤ i ≤ N) is the probability
that σ(i) is the ith node to be infected after σ(1, . . . , i − 1)

are infected.
Recall that the information diffusion along edges are inde-

pendent under SI. Thus, when all nodes in σ(1, . . . , i − 1)

are infected, the probability wu|σ(1,...,i−1) that node u ∈
N(σ (1, . . . , i − 1)) can receive the information in the next
round, is determined by

wu|σ(1,...,i−1) = 1 −
∏

e∈E(σ (i),σ (1,...,i−1))

(1 − ae) (10)

where ae is the information propagation probability along
the corresponding edge e. The second term in the right side
corresponds to the probability that node u is not infected
by all of its active in-neighbors during the next round.
We call wu|σ(1,...,i−1) as the effective propagation probability
from σ(1, . . . , i − 1) to u, which generalizes the propaga-
tion probability from a set of nodes to a single node, and
thus makes our method also suitable for weighted graphs
with loops. When there is only one edge between σ(i) and
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σ(1, . . . , i − 1), i.e., E(σ (i), σ (1, . . . , i − 1)) = {e}, (10)
changes into wu|σ(1,...,i−1) = ae.

Intuitively, the more probable a susceptible node receives
information from σ(1, . . . , i − 1), the more likely it will be
the next to be infected. Therefore, for an infection sequence or
permitted permutation σ ∈ �(v, GI), the probability P(σ (i) =
u|σ(1, . . . , i−1)) (2 ≤ i ≤ N) that node u ∈ N(σ (1, . . . , i−1))

is selected to be the ith infected node, can be defined by

P(σ (i) = u|σ(1, . . . , i − 1))

= wu|σ(1,...,i−1)∑
v∈N(σ (1,...,i−1)) wv|σ(1,...,i−1)

. (11)

The denominator is a normalization constant, which ensures
that the conditional probability on the left-hand side is valid
and adds up to one over all values of u. We can see that
P(σ (i) = u|σ(1, . . . , i − 1)) is proportional to the effec-
tive propagation probability wu|σ(1,...,i−1). It means that all
the adjacent nodes of σ(1, . . . , i − 1) (not only including the
infected) should be processed by (10) to get the effective prop-
agation probability, due to the existence of circles in general
graphs.

Therefore, if substituting (11) into (9), we have the follow-
ing probability for any permitted permutation σ :

P
(
σ |v∗ = v

) = P(σ (2)|σ(1)) · · · P(σ (N)|σ(1, . . . , N − 1))

=
N∏

i=2

wσ(i)|σ(1,...,i−1)∑
v∈N(σ (1,...,i−1)) wv|σ(1,...,i−1)

. (12)

Accordingly, we can expand P(GI |v∗ = v) with the aforemen-
tioned results as follows:

P
(
GI |v∗ = v

) =
∑

σ∈�(v,GI)

P
(
σ |v∗ = v

)

=
∑

σ∈�(v,GI)

N∏

i=2

wσ(i)|σ(1,...,i−1)∑
v∈N(σ (1,...,i−1)) wv|σ(1,...,i−1)

.

(13)

After substituting (4) and (13) into (2), we obtain the following
formation of the posterior probability:

P
(
v∗ = v|GI

) ∝ R(v, GI)

×
∑

σ∈�(v,GI)

N∏

i=2

wσ(i)|σ(1,...,i−1)∑
v∈N(σ (1,...,i−1)) wv|σ(1,...,i−1)

. (14)

It is clear that this method indeed considers the states of both
infected and susceptible nodes, and computes the probability
for every permitted permutation from the global perspective.
Note that, if choosing other priors, we should revise the above
equation correspondingly.

In fact, when all nodes are infected (i.e., GI = G), the MAP
estimator defined by the above equation degenerates into the
MLE in [8]. Because every infected node can try to infect its
neighbors in each time interval until successful under the SI
model. Thus if GI = G and v is the source, the information
must follow one permitted permutation in �(v, GI) to spread
such that the sum, P(GI |v∗ = v), in (8) equals to 1. In other
words, when GI = G, every node could be the source and
infect all the others as long as the information spreads for

a sufficiently long period of time. At this moment, we can
only use the prior knowledge depicted by other methods in
Section IV-A to distinguish these nodes.

C. Two Special Cases of Our Method

In the following part, we will describe two special cases of
the above method to show its relationship with our preliminary
work [28] and RC [7], [8].

1) Special Case 1: Let Ei
σ = E(σ (i), σ (1, . . . , i − 1)) for

the convenience of derivation. After expanding the second term
in the bottom line of (10), the effective propagation probability
wu|σ(1,...,i−1) changes into the following:

wu|σ(1,...,i−1) = 1 −
∏

e∈Ei
σ

(1 − ae)

= 1 −

⎡

⎢⎢⎣1 −
∑

e∈Ei
σ

ae +
∑ ∑

ej,ek∈Ei
σ

j<k

aej · aek + · · ·

+ (−1)|Ei
σ | ∏

e∈Ei
σ

ae

⎤

⎥⎥⎦

=
∑

e∈Ei
σ

ae −
∑∑

ej, ek∈Ei
σ

j<k

aej · aek + · · ·

+ (−1)|Ei
σ | ∏

e∈Ei
σ

ae. (15)

When
∑

e∈Ei
σ

ae �
∑ ∑

ej, ek∈Ei
σ

j<k

aej · aek + · · · + (−1)|Ei
σ | ∏

e∈Ei
σ

ae (16)

we can drop out the second term and get an approximation
for wu|σ(1,...,i−1)

wu|σ(1,...,i−1) ≈
∑

e∈E(σ (i), σ (1,...,i−1))

ae. (17)

This approximate result has been used in our preliminary
work [28].

Additionally, according to [47], the condition in (16) equals
to that

ae 	 1 ∀e ∈ E(σ (i), σ (1, . . . , i − 1)) (18)

and the size of E(σ (i), σ (1, . . . , i − 1) is small. On the other
hand, in real-world social networks, the propagation proba-
bilities among users are very small. For example, according
to [2], the probability that a Facebook user will share a URL
is less than 0.02 even when there are five of his friends who
have shared it before. Thus the approximation in (17) indeed
makes sense for real-world social networks.

This special case shows that our preliminary work is gen-
eralized by this paper. Their relationship can be established if
the condition in (16) or (18) is valid.
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Algorithm 1: BFSA
input : G - the undirected graph

GI - the infected subgrpah
output: v̂ - the detected source

1 for v ∈ VI do
2 P(GI |v∗ = v) = 0;
3 span the breadth first search spanning tree Tbfs(v);
4 calculate the prior P(v∗ = v) by Eq. (5);

5 σ = an array of VI ;
6 getLikelihoodByBFSA(σ ,1,N);
7 select v̂ by Eq. (3);
8 return v̂;

2) Special Case 2: When aij ≡ λ and the graph is a tree,
every node has only one path to connect with others. This
means |E(σ (j), σ (1, . . . , j − 1))| = 1. Thus (12) becomes the
following succinct form:

P(σ |v∗ = v) =
N∏

i=2

λ

λ · d(σ (1, . . . , i − 1))

=
N∏

i=2

1

d(σ (1, . . . , i − 1))
(19)

where d(σ (1, . . . , i − 1)) is the degree of σ(1, . . . , i − 1), and
can be determined by

(σ (1, . . . , i − 1)) =
j=i−1∑

j=1

(d(σ (j)) − 2)) (20)

because adding each node σ(j) will contribute d(σ (j))−2 new
edges. Equation (19) has been used for deriving the RC by
Shah and Zaman [7], [8]. They noted for regular trees where
every node has the same degree, (19) is identical for each
permitted permutation. Thus, we can figure out the result in
Section III-B.

V. APPROXIMATE MAP ESTIMATORS

If enumerating all the permitted permutations, (14) tells
that we can have the theoretically optimal MAP estimator.
However, (1) has shown the factorial complexity of the num-
ber of permitted permutations even for general trees, not to
mention for general graphs. We will show how to get the
approximate estimators to speed up the detection from the
perspective of likelihood approximation.

A. Brute Force Search Approximation

BFSA tries to enumerate all the permitted permutations to
derive the MAP estimator. Algorithm 1 shows the pseudo
codes. Specifically, it first initializes the likelihood, gets
the breadth-first search spanning tree and the prior R(v, GI)

for every infected node, from lines 1 to 4. Then it calls
Algorithm 2 to generate permitted permutations and obtains
the likelihood. Finally, it selects the detected source according
to (3).

Algorithm 2: getLikelihoodByBFSA(σ, p, q)
input : σ - the infected node array

p - the starting index
q - the end index

1 if p == q then
2 get P(σ |v∗ = v) by Eq. (12);
3 P(GI |v∗ = v) += P(σ |v∗ = v);

4 else
5 for i = p; i ≤ q; ++i do
6 if σ [p] is a node of the subtree rooted at σ [i] of

Tbfs(σ [1]) then
7 swap(σ [p], σ [i]);
8 getLikelihoodByBFSA(σ, p + 1, q);
9 swap(σ [p], σ [i]);

Algorithm 2 extends heap’s permutation generating algo-
rithm [48]. During the generating process, it prunes the
searching branches that do not follow the topological con-
strain by line 6. That means if σ [p] is a descendant of σ [i]
in Tbfs(σ [1]), we can swap them to get a new permitted
permutation.

BFSA can output the optimal MAP estimator for gen-
eral trees, but may miss some permitted permutations for
graphs with loops. Nevertheless, we will show the effective-
ness of BFSA for source detection in the experiment part.
However, its time complexity is exorbitantly high. To further
improve the efficiency, we propose the following approximate
estimator.

B. Greedy Search Bound Approximation

The basic idea of GSBA is to find the upper bound of the
probability P(σ |v∗ = v) of permitted permutations starting
with the same node, and then to reduce the computational
complexity of computing the likelihood P(GI |v∗ = v).

Recall that �(v, GI) is the set of permitted permutations
beginning with v, and P(GI |v∗ = v) can be decomposed as the
sum of probabilities of all permitted permutations in �(v, GI).
Among �(v, GI), there must be a permutation σ such that its
probability P(σ |v∗ = v) in (8) is maximal, which is denoted
as σ v

max. Therefore, for σ ∈ �(v, GI), we have

P(σ |v∗ = v) ≤ P
(
σ v

max|v∗ = v
)

=
N∏

i=2

wσ v
max(i)|σ v

max(1,...,i−1)∑
v∈N(σ v

max(1,...,i−1)) wv|σ v
max(1,...,i−1)

.

(21)

More importantly, if we adopt the permitted permutation gen-
eration method in Algorithm 2, there exists the following
approximation:

|�(v, GI)| = R(v, GI) (22)

where R(v, GI) is the RC, computed by (5). Note that the above
is exact when the graph is a tree. Combining (21) and (22)
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with (14), we derive an upper bound of the posterior P(v∗ =
v|GI) like

P
(
v∗ = v|GI

) ≤ R2(v, GI)P
(
σ v

max|v∗ = v
)
. (23)

Accordingly, if we exploit this upper bound to approximate
P(v∗ = v|GI), the MAP estimator of (3) changes into

v̂ = arg max
v∈GI

R2(v, GI)P
(
σ v

max|v∗ = v
)
. (24)

We denote it as MAP upper-bound (MAP-ub).
Now the only issue left is how to find σ v

max and deter-
mine the upper bound. When σ(1, . . . , i − 1) is given, if
exploiting the greedy search strategy to select h from the
neighbors of σ(1, . . . , i − 1) to be the ith infected node such
that ([wh|σ(1,...,i−1)]/[

∑
v∈N(σ (1,...,i−1)) wv|σ(1,...,i−1)]) is max-

imal, we can get a permitted permutation σ v
gs. If we set σ v

gs as
a surrogate of σ v

max, and the estimator of (24) becomes

v̂ = arg max
v∈GI

R2(v, GI)P
(
σ v

gs|v∗ = v
)
. (25)

Note that when choosing other priors, (23)–(25) should be
modified accordingly.

So far, we have derived the final GSBA. The pseudo codes
of GSBA is mostly like BFSA’s in Algorithm 1, except for
lines 6 and 7. GSBA will approximate the likelihood by
Algorithm 3 and detect the source according to the estima-
tor in (25). Specifically, lines 2–7 in Algorithm 3 initialize
the program to find σ v

gs. Line 9 selects the first node u of
Q with the maximal effective propagation probability w[u] to
be the next infected node. If w[h] has been computed, line
16 exploits the old value to update w[h] according to (10),
which can avoid traversing the adjacent nodes of h when
updating w[h]. Otherwise, h has not been visited and there
must be only one edge euh between h and the already selected
infected-nodes, thus line 18 uses the propagation probabil-
ity auh to update w[h]. When inserting a new node into the
queue Q in line 20, we use the concept of insertion sort to
ensure that the first node of Q has the maximal probability to
be the next infected node. The computational complexity of
Algorithm 3 is O(c · N2), where c is the average node degree,
and we will show its effectiveness in the experiment. GSBA
is a tradeoff between effectiveness and efficiency to approx-
imate the likelihood. We leave it as future works to explore
other algorithms to find σ v

max more accurate such as dynamic
programming.

VI. EXPERIMENT

In this section, we first present some experimental settings,
including datasets, baselines and evaluation measures. Then
we explore how different kinds of a priori affect our method,
and compare our methods with baselines for single information
source detection on different networks.

A. Datasets

Our datasets are simulations about information diffu-
sion on four networks, namely SCALE-FREE, POWER-GRID,
WIKI-VOTE, and CA-ASTROPH. This kind of datasets are
widely used in [8] and [27]. Specifically, a scale-free network

Algorithm 3: getLikelihoodByGSBA(GI)
input : G(V, E, A) - the whole graph with A = [aij]

GI(VI, EI) - the infected subgraph
1 for v ∈ VI do
2 P(σ v

gs|v∗ = v) = 1;
3 Q = an empty queue storing nodes to be selected

into σ v
gs;

4 S = an empty set storing nodes selected already;
5 w = an empty hash-table storing the effective

propagation probabilities in Eq. (10);
6 add v into Q;
7 w[v] = 1;
8 while S �= VI do
9 u = the first node of Q;

10 P(σ v
gs|v∗ = v) = P(σ v

gs|v∗ = v) · w[u]∑
j∈Q w[j] ;

11 add u into S; # i.e., select u into σ v
gs

12 remove u from Q;
13 for h ∈ neighbors of u in G do
14 if h is not in S then
15 if w[h] has been computed then
16 w[h] = 1 − (1 − w[h]) ∗ (1 − auh);
17 else
18 w[h] = auh;

19 if h ∈ VI then
20 insert h into Q according to the

descending order of w[h];
21

22

is a connected graph, whose degree distribution nearly follows
a power law. We generate it with the Barabási–Albert [49]
model. POWER-GRID [50] is an undirected network con-
taining information about the power grid of Western States
of the USA.1 WIKI-VOTE [51] is a who-voted-who graph
on Wikipedia,2 and CA-ASTROPH [52] is a collaboration
network of Astro Physics category on arXiv.3 WIKI-VOTE

and CA-ASTROPH are downloaded from Stanford Network
Analysis Project [53]. We assume that node u and v have
an undirected edge if there is an edge between them in the
original network, and the information propagation probability
along this edge is randomly sampled from the uniform distri-
bution [0, 1]. As we said in Section III-A, an infected subgraph
should be connected. So we remove the disconnected nodes
and keep the maximal connected component. After this filter-
ing, their statistical information is listed in Table II. We can
see the edges of POWER-GRID are extremely sparse.

To simulate the information diffusion on a graph G, we
adopt the following two strategies to select the source node.

1) Random Test: We randomly select a node from G as the
infection source.

1http://konect.uni-koblenz.de/networks/opsahl-powergrid
2http://www.wikipedia.org/
3https://arxiv.org/
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TABLE II
STATISTICS OF OUR DATASETS

2) Full Test: We select the source node by turns such that
each node has a chance to be the source, which is more
suitable for real scenarios.

After selecting a source node, we start to run the SI model
until the number of infected nodes equals to a given value
N. Repeating this process, and finally we have M infected
subgraphs with a given size for each network. Specifically,
for random test, let M = 100, and for full test, M = |V|,
where |V| is the node number of G.

B. Baselines and Evaluation Measures

To validate our methods, namely BFSA and GSBA, we
compare them with the following methods which are suitable
for the SI model and adopt the same settings with ours.

1) Distance Center (DC): It selects an infected node
which has the minimal distance centrality as the source.
Distance centrality is a sum of the shortest distance from
a node to any others [8].

2) JC: It selects an infected node which minimizes the
maximum distance to others as the source [24].

3) RC: It selects an infected node which has the maximal
RC as the source. RC is defined as (1) [8].

4) Reverse Infection (RI): The algorithm lets every infected
node broadcast its identity to the neighbors. Once a node
receives a new identity, it will record the arriving time,
and then broadcasts the identity to its neighbors. At last,
the node which has received all the identities and the
sum of their arriving times is minimal, is selected as the
source [6].

5) DMP: The algorithm uses DMP equations to estimate
the marginal probability of a given node to be in a
given state, and then exploits a mean-field-type approach
to approximate the likelihood. It selects an infected
node corresponding to the maximal likelihood as the
source [27].

6) Dynamic Importance (DI): This is a method of the spec-
tral family. It selects an infected node which has the
maximal reduction of the largest eigenvalue of the adja-
cent matrix after it is removed from the network, as the
source [17].

7) GSBA−: It is from our preliminary work [28], which is
designed for unweighted graphs and approximates the
likelihood of a permitted permutation like (25).

Note that Lokhov et al. [27] have shown DMP is the
state of the art among these methods. We implement all the
methods based on NetworkX,4 which is a python package
for manipulations on graphs. Their codes can be found from

4https://networkx.github.io/

TABLE III
TIME COMPLEXITIES OF DIFFERENT METHODS, WHERE c IS THE

AVERAGE NODE DEGREE, AND dI IS THE DIAMETER

OF THE INFECTED SUBGRAPH GI

our Github.5 Indeed, full test can validate the stability of a
method more accurately. But we only use full test to compare
DC, JC, RC, RI, and DI with GSBA in this paper, because oth-
ers are too time-consuming. Their time complexities are listed
in Table III. Our experiments are conducted on a personal
computer with a 3.1-GHz i5-3450 CPU and 8-GB RAM.

We apply the following three widely used measures to eval-
uate the performances of different methods [8], [27], [32]. Let
v∗ be the real source and v̂ be the detected source.

1) Detection Rate: It is defined as

Detection Rate = MT

M
(26)

where M is the running number of tests and MT is the
number of tests which detect the source correctly.

2) Detection Error: It is the average shortest topological
distance between v∗ and v̂.

3) Normalized Ranking: We first rank the infected nodes
in descending order by the probability to be the source
computed by a method. Normalized ranking is defined as

Normalized Ranking = Ranking(v∗) − 1

N
(27)

where N is the number of infected nodes and
Ranking(v∗) is the ranking of v∗ in the sorted list.

To some degree, detection rate can reflect the detection
accuracy of a method, and detection error shows how far the
detected source is away from the real source on the network,
while normalized ranking can validate the precision that a
method sorts the real source. Note that the larger detection rate
is, the better performance the corresponding method achieves,
but detection error and normalized ranking are opposite. In the
following, we will show the performances of these methods
under different settings.

C. Effect of Different Priors

As said in Section III-C, based on MAP estimation, our
method can be easily integrated with other methods by involv-
ing them as a priori. Therefore, this section is to explore the
effect of different kinds of a priori on our method and select
the appropriate one for GSBA. Specifically, we first select
three simple but effective baselines (i.e., RC, DC, and JC) as

5https://github.com/biaochangb/research/tree/master/SourceDetection
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Fig. 2. GSBA with different kinds of a priori on the SCALE-FREE network.

Fig. 3. GSBA with different kinds of a priori on the POWER-GRID network.

Fig. 4. GSBA with different kinds of a priori on the WIKI-VOTE network.

the prior for GSBA, respectively, and have three correspond-
ing instances GSBA-RC, GSBA-DC, and GSBA-JC. Then we
run the full test on SCALE-FREE, POWER-GRID, and WIKI-
VOTE networks. The number of infected nodes ranges from
20 to 45, which can help us quickly find the appropriate pri-
ori for following comparisons. Figs. 2–4 show the evaluation
results of source detection, and we can have several obvious
conclusions.

First, involving other methods into our model as a
priori can significantly improve their performances with
respect to all of the three measures: 1) detection rate;
2) detection error; and 3) normalized ranking, especially
on WIKI-VOTE which has a larger graph size. This proves

the reasonableness of our solution based on MAP in
Section III-C.

Second, different kinds of a priori indeed make GSBA
have varying detection performances. Note that GSBA-DC and
GSBA-JC have similar performances on these three networks
with respect to all of three measures. From Fig. 4, we can find
that GSBA-RC performs worse than GSBA-DC and GSBA-JC.
The main reason we think is that RC only counts the number
of permitted permutations but does not consider the hetero-
geneity of edge weights when detecting. This also shows the
necessity of extending our previous work [28] for weighted
graphs. However, GSBA-RC performs better in Figs. 2 and 4
on denser graphs, SCALE-FREE and WIKI-VOTE.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 16,2020 at 13:07:09 UTC from IEEE Xplore.  Restrictions apply. 



2252 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 50, NO. 6, JUNE 2020

Fig. 5. Random test performances of different methods on the SCALE-FREE network.

Fig. 6. Full test performances of different methods on the SCALE-FREE network.

Therefore, in the following parts, we will choose RC as
the prior of GSBA except for specific explanations, because
GSBA-RC is more effective than others in most cases over
these three types of networks.

D. Results on the Scale-Free Network

In this section, we compare our methods, namely GSBA-
RC and BFSA-RC, with other baselines including RC, DC,
JC, RI, DI, DMP, and GSBA− on the SCALE-FREE network.
BFSA-RC is the method described in Algorithm 1 with RC as
the prior. GSBA− is our preliminary work [28] with RC as the
prior. However, Table III has shown the high time complexities
of DMP and BFSA-JC. Besides, when evaluating the source
detection performance, it needs to repeat M times for each
value of N to avoid stochastic errors, which corresponds to
our random test (i.e., M = 100) and full test (i.e., M = |V|)
strategies. This further restricts the application of DMP and
BFSA. Therefore, the number of observed infected nodes, N,
ranges from 5 to 10 for comparison. Results of random and
full tests are shown in Figs. 5 and 6, respectively. We can have
the following observations.

First, for both of random test and full test, our methods
(GSBA-RC and BFSA-RC) achieve better performance than
RC under all the three measures. The reason is that our
methods consider uninfected nodes and the heterogeneity of
edge weights when inferring the probabilities of permitted
permutations for general graphs. This proves once more that

uninfected nodes are also helpful for detecting the information
source.

Second, Figs. 5 and 6 clearly show GSBA-RC, BFSA-RC,
and DMP outperform other methods no matter under random
or full test. Additionally, BFSA-RC performs nearly the same
as DMP with respect to detection rate and detection error,
even better in some cases such as N = 9. But GSBA-RC
and BFSA-RC achieve much smaller normalized ranking than
DMP. This means our methods can sort the real source more
accurately. Our preliminary work, GSBA−, achieves nearly
the best detection error, but its performances about detec-
tion rate and normalized ranking are unsatisfactory. The above
indicates the feasibility of MAP-ub and the greedy search strat-
egy in Section V-B. In other words, after selecting the prior,
determining the likelihood like Section IV can improve the
detection performance drastically.

Finally, we display the average running times of different
methods on the SCALE-FREE network in Fig. 7(a). We can
see their trends are similar with the increasing number of
infected nodes, but the running time of DMP is larger than
GSBA-RC’s by more than an order of magnitude. The reason
is that DMP has to iteratively compute the DMP equations for
each node in the whole network including all uninfected nodes,
but GSBA-RC only needs infected nodes and their neighbors.
Therefore, DMP is not applicable for other datasets with larger
scales. Other centralities such as RC, DC, and JC are faster,
but their detection performances are unsatisfactory as said
before.
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(a) (b)

Fig. 7. Average running times of different methods on (a) SCALE-FREE and (b) POWER-GRID.

Fig. 8. Random test performances of different methods on the POWER-GRID network.

Fig. 9. Full test performances of different methods on the POWER-GRID network.

To sum up, if combined with an appropriate priori, BFSA
can achieve better performance than DMP with respect to
Normalized Ranking on the SCALE-FREE network, and GSBA
is a tradeoff between effectiveness and efficiency. These results
prove the feasibility of our estimation approximations in
Section V.

E. Results on Other Networks

In the following, we will first display the experimen-
tal results for larger sizes N of infected subgraphs on the
POWER-GRID Network. But as mentioned before, DMP and

BFSA are time-consuming and not applicable for large-scale
networks, and BFSA behaves similarly to DMP on scale-free
networks. Therefore, we only compare RC, DC, JC, RI, DI,
and GSBA− with GSBA-RC, and the number of observed
infected nodes N ranges from 50 to 400 due to the time-
consuming repeating detection evaluations for each value of
N to avoid stochastic errors. Results of random and full tests
are shown in Figs. 8 and 9. We can have some interesting
findings.

First, the performances of all methods under the strategy of
full test are more regular and distinguishable, but the curves
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Fig. 10. Random test performances of different methods on the WIKI-VOTE network.

Fig. 11. Random test performances of different methods on the CA-ASTROPH network.

in Fig. 8 shake severely. This shows the necessity of repeat-
ing detection for each N to avoid stochastic errors. Second,
our GSBA-RC always achieves the best performance for all
situations shown in Figs. 8 and 9. RC, DC, JC, RI, and
GSBA− perform similarly in terms of detection rate and nor-
malized ranking but DI is unsatisfactory. Generally speaking,
the results of random test and full test are consistent. Third,
detection rates of different methods decrease obviously with
the increasing number of infected nodes, but our method out-
performs others with a big gap in Fig. 9. Forth, normalized
ranking behaves very steadily and basically keeps invariant as
the number of infected nodes are more than 80 in Fig. 9. This
is an important property such that we can measure the ability
of ranking the real source as higher as possible for a method on
small sizes of infected subgraphs. Fifth, the average running
times of different methods are shown in Fig. 7(b). GSBA-
RC is little slower than our previous method GSBA−, but the
improvements of detection performances in Figs. 8 and 9 are
significant.

We also repeated the above experiments on WIKI-VOTE and
CA-ASTROPH networks. Results of random tests are shown
in Figs. 10 and 11. Except for the above similar findings, we
have some new ones. First, on the WIKI-VOTE network, RC
performs better than DC, JC, RI, and DI for all three mea-
sures under random or full test. Let us take N = 35 under
full test as an example. For POWER-GRID, the average diam-
eter of infected subgraphs GI is 2.42, and the average ratio

of edges to nodes in GI is 1.34. For WIKI-VOTE, the average
diameter and ratio are 2.65 and 3.44, respectively. Indeed, the
ratio of a tree is less than 1. Therefore, the infected subgraphs
of POWER-GRID are more tree-like. This may explain why
RC performs better than JC. Second, on the CA-ASTROPH

network, when the number of infected nodes is less than 25, DI
performs better than others, except for GSBA-RC. This is quite
different from their performances on other three networks.
Therefore, the graph structure significantly affects baselines’
performances.

To summarize, GSBA-RC always achieves the best
performance on these three networks, especially with respect
to detection rate and normalized ranking. The graph topolog-
ical structures can significantly affect the performances of all
methods, but our method can achieve the best if combined
with an appropriate priori.

VII. CONCLUSION

In this paper, we revisited the problem of single informa-
tion source detection in weighted graphs from the perspective
of likelihood approximation. After deriving the MAP esti-
mator, we design two approximation approaches to improve
the efficiency, namely BFSA and GSBA. Experiments on
several networks clearly show the superiority of our meth-
ods especially when measured by normalized ranking, and
the feasibility of likelihood approximation. Additionally,
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GSBA is nearly as effective as BFSA, but far more
efficient.

Three directions are worth exploring as further study. First,
so far we have derived our methods to detect the single
information source under the SI model. It is interesting
to extend them for multiple information sources detection
under other models, such as SIR. The second direction is
to explore other more effective approaches to find the upper
bound of likelihood, instead of greedy search. We can exploit
the Cramer–Rao bound to evaluate their estimation qualities.
Third, there may be other methods to approximate the likeli-
hood such as Markov chain Monte Carlo sampling, instead of
the upper bound to derive GSBA in Section V-B.
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