
Discrete Ranking-based Matrix Factorization
with Self-Paced Learning

Yan Zhang
School of Computer Science and

Engineering, University of Electronic
Science and Technology of China

yixianqianzy@gmail.com

Haoyu Wang
School of Computer Science and

Engineering, University of Electronic
Science and Technology of China

haoyu.uestc@gmail.com

Defu Lian∗

School of Computer Science and
Engineering, University of Electronic
Science and Technology of China

dove.ustc@gmail.com

Ivor W. Tsang
Centre for Artificial Intelligence,
University of Technology Sydney

Ivor.Tsang@uts.edu.au

Hongzhi Yin
School of Information Technology
and Electrical Engineering, The

University of Queensland
h.yin1@uq.edu.au

Guowu Yang
School of Computer Science and

Engineering, University of Electronic
Science and Technology of China

guowu@uestc.edu.cn

ABSTRACT

The efficiency of top-k recommendation is vital to large-scale rec-

ommender systems. Hashing is not only an efficient alternative but

also complementary to distributed computing, and also a practi-

cal and effective option in a computing environment with limited

resources. Hashing techniques improve the efficiency of online

recommendation by representing users and items by binary codes.

However, objective functions of existing methods are not consistent

with ultimate goals of recommender systems, and are often opti-

mized via discrete coordinate descent, easily getting stuck in a local

optimum. To this end, we propose a Discrete Ranking-based Ma-

trix Factorization (DRMF) algorithm based on each user’s pairwise

preferences, and formulate it into binary quadratic programming

problems to learn binary codes. Due to non-convexity and binary

constraints, we further propose self-paced learning for improv-

ing the optimization, to include pairwise preferences gradually

from easy to complex. We finally evaluate the proposed algorithm

on three public real-world datasets, and show that the proposed

algorithm outperforms the state-of-the-art hashing-based recom-

mendation algorithms, and even achieves comparable performance

to matrix factorization methods.

CCS CONCEPTS

• Information systems → Collaborative filtering; Personal-

ization; Recommender systems;

KEYWORDS

Ranking-based matrix factorization; hashing; binary quadratic pro-

gramming; self-paced learning

∗The corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD ’18, August 19–23, 2018, London, United Kingdom

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00
https://doi.org/10.1145/3219819.3220116

ACM Reference Format:

Yan Zhang, HaoyuWang, Defu Lian, IvorW. Tsang, Hongzhi Yin, andGuowu

Yang. 2018. Discrete Ranking-based Matrix Factorization with Self-Paced

Learning. In KDD ’18: The 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, August 19–23, 2018, London, United

Kingdom. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/

3219819.3220116

1 INTRODUCTION

With the development of E-commerce, recommender systems have

been extensively applied in a growing number of e-commerce web-

sites for helping their customers find desirable products. However,

it is challenging to match products to their potential customers

accurately and efficiently, particularly with the ever-growing scales

of products and customers.

Matching products to potential customers is an essential goal

of recommender systems, whose techniques have been widely in-

vestigated for improving the accuracy [1, 13]. As a critical class of

recommendation methods, collaborative filtering (CF) techniques

exemplified by latent factor models (e.g., matrix factorization) show

not only high effectiveness but also the best role-model perfor-

mance in real-world recommender systems. The basic method of

latent factor models usually factorizes anM × N rating/preference

matrix to map M users and N items into a D-dimensional latent

space [13]. Each user’s preference for each item is predicted as

the inner product between their representation in the latent space.

To align with the ultimate goal of recommender systems, matrix

factorization (MF) with ranking based objectives, such as BPR [23],

CofiRank [29], and ListCF [25], have been proposed, showing supe-

rior performance of recommendation to others.

However, it is challenging to generate an immediate response for

the better user experience, particularly with growing scale of users

and items. Specifically, recommending the top-k preferred items

for each user from those N items costs O(ND + N logk) with real-

valued latent factors. Furthermore, many recommender systems [4,

6, 26] update user interest frequently, and a good recommender

system shall recommend items which are matched with users’ latest

interests. In this case, the top-k preferred items should be generated

frequently. Although parallel/distributed computing is a practical

solution, the computational burden remains unchanged.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2758

Recent studies show that hashing based recommendation meth-

ods, by representing users and items by binary codes, are promising

to tackle the efficiency challenge [31, 33, 35]. Specifically, the pref-

erence score in this case could be fast calculated via Hamming

distance. One can even use multi-index hashing [22] for exact top-k
preferred items with sub-linear time complexity. More advanced

indexing techniques can also be leveraged to find approximated

ones with logarithmic or constant time complexity [27]. Besides,

hashing has advantages concerning storage cost. In particular, each

dimension of binary codes is only stored by one bit instead of

32/64 bits float number for real-valued vectors, so the storage for

representations of users and items can be dramatically reduced.

However, many previous hashing-based recommender systems

improve the efficiency at the price of accuracy due to a large amount

of quantization loss [19, 33, 35]. Although effort has been devoted

to reducing quantization loss by discrete optimization [31], this

method has two important limitations. First, the optimized objective

is not consistent with ultimate goals of recommender systems, i.e.,

generating top-k preferred items for each user. Second, the loss

function for optimization is discontinuous, so optimization via

discrete coordinate descent may easily get stuck in a local optimum,

even with a good initialization.

To address the above challenges, we propose a Discrete Ranking-

based Matrix Factorization (DRMF) to optimize cross-entropy loss

between the true pairwise preference ranking and predicted pair-

wise preference ranking for each user. Due to non-linearity of the

cross-entropy loss, it is difficult to derive closed-form solutions for

updating user/item binary codes, so that we seek its local quadratic

upper bound [10]. We then formulate the upper bound into a series

of binary quadratic programming problems and resort to semi-

definite programming solvers followed by Gaussian randomization

to obtain binary codes. Hence, binary codes of each user/item are

optimized as a whole instead of bit-by-bit in discrete coordinate

descent. This optimization strategy should be superior to discrete

coordinate descent in achieving lower loss values. This is similar

to the difference between blocked Gibbs sampling and collapsed

Gibbs sampling [9]. To further improve optimization, we exploit

self-paced learning (SPL) to include pairwise preferences gradually

from easy to complex. SPL has been demonstrated to be useful to

avoid bad local optima and achieve better generalization results in

latent variable models [14–16, 34].

We finally evaluate the proposed algorithms on three real-world

rating datasets. The experimental results show that it significantly

outperforms the state-of-the-art hashing-based recommendation

algorithms, and even achieve comparable recommendation perfor-

mance to matrix factorization methods. The results also verify the

effectiveness of self-paced learning for improving recommenda-

tion performance, and demonstrate efficiency improvements of the

top-k recommendation via binary coding.

To summarize, we make the following contributions:

• We propose discrete ranking-based matrix factorization for di-

rectly optimizing pairwise ranking cross-entropy loss. Hence, the

objective function is consistent with ultimate goals of real-world

recommender systems.

• We transform the discrete objective function into a series of

binary quadratic programming problems after seeking the local

quadratic upper bound of the cross-entropy cost, and thus learn

each binary code as a whole instead of bit-by-bit.

• We incorporate self-paced learning into the overall optimization

procedure to avoid bad local optima and achieve better general-

ization results. To the best of our knowledge, self-paced learning

is used for discrete and ranking-based matrix factorization for

the first time.

• We test the proposed algorithm on three real-world datasets and

demonstrate its consistent and significant superiority to the state-

of-the-art hashing-based and ranking-based recommendation

methods.

2 RELATEDWORK

The recent advance of hashing-based recommendation algorithms

will be discussed below. Please refer [28] for comprehensive reviews

of hashing techniques and their applications in multimedia retrieval

and computer vision.

2.1 Quantization-based Hashing

Due to binary constraints, learning binary codes is generally NP-

hard. Quantization-based hashing or two-stage hashing consists of

relaxed optimization and binary quantization. By relaxed optimiza-

tion with some specific constraints, user/item continuous latent

representation are obtained, and binary quantization then converts

continuous latent representations into binary codes. Before 2012,

there are a few two-stage frameworks, such as [5, 12, 35]. Recently,

for deriving compact binary codes from user/item latent factors,

the uncorrelated constraint of binary codes was imposed when

learning user/item latent factors [19]. However, since user/item’s

latent factors’ magnitudes are lost out of binary quantization [33],

Zhang et al. imposed a Constant Feature Norm (CFN) constraint on

user/item latent factors, and then separately quantized magnitudes

of latent factors and cosine similarity between the user and item

latent factors.

2.2 Optimization-based Hashing

These quantization-based hashing methods suffer from large in-

formation loss in the binary quantization stage according to [31],

so matrix factorization with binary constraints was optimized. To

derive compact hash codes for users and items, the balanced and

de-correlated constraints were further imposed. For dealing with

implicit feedback datasets, a ranking-based AUC objective func-

tion with the similar constraints was proposed in [32], and im-

plicit/interaction regularization [2, 6] was proposed for penalizing

non-zero predicted preference [17].

3 DISCRETE RANKING-BASED MATRIX
FACTORIZATIONWITH SELF-PACED
LEARNING

Different from existing rating-based hashing recommender sys-

tems [17, 31, 33], we propose a ranking-based hashing framework,

Discrete Ranking-based Matrix Factorization with Self-Paced Learn-

ing (DRMF-SPL). DRMF-SPL provides a more reliable efficient rec-

ommendation framework based on the following three points: first,

the ranking-based objective is consistent with ultimate goals of

recommender systems – recommending top-k preferred items to

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2759

users, which is vital to ascertain accurate recommendation; second,

the block-wise rule of updating each user’s/item’s binary code as a

whole is applied during the optimization of the proposed ranking-

based objective. It should be superior to the bit-wise rule of discrete

coordinate descent in achieving lower loss values; third, self-paced

learning is applied to further improve optimization by including

pairwise preferences gradually from easy to complex, which is help-

ful to avoid bad local optima and achieve better performance for

recommender systems.

We first introduce the preference model and loss funcitons of

discrete ranking-based matrix factorization (DRMF) and its self-

paced learning variant DRMF-SPL in Section 3.1. We then present

the model optimization algorithm of DRMF and DRMF-SPL in Sec-

tion 3.2, and explore how to optimize the objective function by a

strategy of solving binary quadratic programming (BQP). Specifi-

cally, we first seek its local quadratic upper bound, and then formu-

late the upper bound into binary quadratic programming problems,

by which we update each binary code as a whole instead of bit-by-

bit. We finally analyze the complexity of the proposed algorithm in

Section 3.3.

3.1 Loss Function

3.1.1 Preference Model. Suppose we have M users, N items

and integer rating values from 1 to K . The user set is denoted

as U and the item set is denoted as I . Let rui in the matrix R be

the rating of user u to item i . P ∈ {±1}M×D and Q ∈ {±1}N×D

are binary matrices stacked by hash codes of users and items, re-

spectively, whose the u-th row pu of P and the i-th row qi of
Q represent hash codes of user u and item i , respectively. Let
Ω = {(u, i)|rui is a observed rating} be the index set of observed

entries in R, Ui = {u |(u, i) ∈ Ω} be users who have rated item i ,
and Iu = {i |(u, i) ∈ Ω} be items that user u has rated. Then the

preference of user u for item i is defined as

r̂ui =
1

D

D∑
k=1

I (puk = qik) = 1 −
1

D
H (pu ,qi)

=
1

2
+

1

2D
pTuqi ,

(1)

where I(·) is an indicator function that returns 1 if the input is

true and returns 0 otherwise, and H (pu ,qi) denotes the Ham-

ming distance between pu and qi . Note that this preference can
be efficiently computed by Hamming distance. Then we denote

R̂ = [r̂ui] ∈ [0, 1]M×N the predicted preference matrix.

3.1.2 The DRMF Model. In order to align with ultimate goals

of recommender systems, we define the loss function based on

pairwise preferences instead of ratings themselves. In this paper,

we follow RankNet [3] and use cross entropy for loss function. In

particular, we first define Pui j the target probability that item i is
preferred by a user u to item j and specify it as follows:

Pui j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if rui > ruj

0.5 if rui = ruj

0 if rui < ruj

. (2)

We then define P̂ui j the predicted probability that item i is preferred
by a user u to item j, and model it based on a logistic function,

P̂ui j =
eôui j

1 + eôui j
, (3)

where ôui j = r̂ui−r̂uj . If r̂ui > r̂uj , then P̂ui j > 0.5, indicating there

are over 50% chances that user u prefers item i to item j; otherwise,
P̂ui j < 0.5. Then cross entropy is used to penalize inconsistent

pairwise ranking, i.e.,

�ui j = −Pui j log P̂ui j − (1 − Pui j) log(1 − P̂ui j)

= −Pui j ôui j + log
(
1 + eôui j

) (4)

Let’s denote S = {(u, i, j)|(u, i) ∈ Ω, (u, j) ∈ Ω, i < j} a set of

user-specific pairs of rated items. Then the objective function of

DRMF is represented as

min
P ,Q

L1 =
∑

(u,i, j)∈S

−Pui j ôui j + log
(
1 + eôui j

)
s.t. P ∈ {±1}M×D ,Q ∈ {±1}N×D ,

(5)

where ôui j = r̂ui − r̂uj =
1
2Dp

T
u (qi − qj).

3.1.3 The DRMF-SPL Model. Owing to discontinuous and non-

linearity of the loss function for optimization in DRMF, directly

optimization may easily stuck in local optima, therefore self-paced

learning is introduced for improving optimization. Self-paced learn-

ing has been shown significant improvements in generalization

and effectiveness in alleviating the bad local optimum problem in

non-convex optimization. When applied in matrix factorization,

which is a non-convex problem with missing values, it sequentially

includes elements of the targeted matrix R into learning algorithms

from easy to challenging. In particular, it optimizes the following

objective function [34]:∑
(u,i)∈Ω

wui �(rui , [PQ
T]ui) + λΓ(P ,Q) +

∑
(u,i)∈Ω

fk (wui)

s.t.wui ∈ [0, 1] if (u, i) ∈ Ω,

(6)

where Γ(P ,Q) is the regularizer term ofmatrix factorization. fk (wui)

is a self-paced regularizer, which consists of two classes: the “hard”

self-paced regularizers that determine the samples (observed rat-

ings in R) to be selected or not be selected in training, i.e., wui

takes value 0 or 1, and the “soft” self-paced regularizers that assign

weights to selected samples, so that their levels of simplicity can be

distinguished from each other by the weights, i.e.,wui takes value

in the closed interval [0, 1]. Thus self-paced regularizers are also

regarded as weighting schemes of samples.

Similarly, taking the user-specific pairwise item preferences as

samples, easy pairs are considered first for optimization, and with

progressing of training procedure, difficult pairs are gradually taken

into account. DRMF-SPL solves the following optimization problem:

min
P ,Q ,W

L2 =
∑

(u,i, j)∈S

(
wui j�ui j + fk (wui j))

s.t. P ∈ {±1}M×D ,Q ∈ {±1}N×D ,W ∈ [0, 1] |S | .

(7)

According to the previous study, no single weighting scheme can

always work best, and their performance is often comparable with

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2760

respect to each other. The choice of weighting schemes is problem-

specific, so we compare different weighting schemes and select

the best one. In this paper, we apply two self-paced regularizers: a

“hard” self-paced regularizer fk (wui j) = − 1
k
wui j [14] and a “soft”

linear weighting fk (wui j) =
1
k
(12w

2
ui j −wui j) [11], to test their per-

formances. The experiments show that the “soft” linear weighting

can achieve better performance.

Since hashing based recommendation frameworks generally suf-

fer from low recommendation accuracy, it’s necessary to incorpo-

rate self-paced learning into the overall optimization for avoiding

bad local optima and achieving better recommendation accuracy. To

the best of our knowledge, self-paced learning is used for discrete

and ranking-based matrix factorization for the first time.

3.2 Model Optimization

Due to non-linearity of Eq (5), it is difficult to derive closed formu-

las for updating binary codes pu and qi . However, �ui j is convex
with respect to ôui j , so we can seek its quadratic upper bound. In

particular, based on Jaakkola-Jordan bound [10], log
(
1 + expôui j

)
is locally bounded from above:

log
(
1 + eôui j

)
≤ λ(φui j)(ô

2
ui j − φ2ui j)

+
1

2
(ôui j − φui j) + log

(
1 + eφui j

)
, (8)

where λ(φui j) =
1

4φui j
tanh(

φui j
2) = 1

2φui j

(
σ (φui j) −

1
2

)
, σ (x) =

1
1+e−x is a sigmoid function. Note that the optimal φui j = ôui j , as
we will show later, so this upper bound is tight. Hence, �ui j is then

bounded by a upper bound �̃ui j ,

�̃ui j = −Pui j ôui j + λ(φui j)(ô
2
ui j − φ2ui j)

+
1

2
(ôui j − φui j) + log

(
1 + eφui j

)
,

(9)

After introducing a variational parameter φui j , the objective func-
tion of DRMF-SPL, Eq (7) is re-formulated as:

min
P ,Q ,Φ,W

L3 =
∑

(u,i, j)∈S

(
wui j �̃ui j + fk (wui j))

s.t. P ∈ {±1}M×D ,Q ∈{±1}N×D ,Φ ∈ R |S | ,W ∈ [0, 1] |S | .

(10)

This method is called Majorize-Minimization [8]. According to [14],

alternative search strategy is used for optimization in self-paced

learning, by alternatively optimizing the parameters P , Q and Φ
given the weight of pairwise preferencesW , and optimizingW
given P ,Q and Φ. We denote the optimization of DRMF-SPL given

W as DRMFW :

min
P ,Q ,Φ

LW =
∑

(u,i, j)∈S

wui j �̃ui j . (11)

In fact, for the “hard” self-paced regularizer, optimizing DRMF-SPL

givenW is equivalent to solving the DRMF problem. The optimiza-

tion of LW is also based on alternating optimization, which is an

important technique for matrix factorization in addition to stochas-

tic gradient descent [13]. Below, we first introduce how to update

pu (qi) as a whole vector instead of bit-by-bit. To distinguish this

strategy from discrete coordinate descent, we also briefly introduce

discrete coordinate descent in Section 3.2.1. We then introduce how

to update the variational parameter Φ and the weightW . The over-

all procedure of minimizing LW is shown in Algorithm 1 and the

procedure of DRMF-SPL is shown in Algorithm 2.

3.2.1 Updating User Hash Codes P . Given Q , Φ and W , we

update pu for each user u separately. Ignoring terms irrelevant to

pu , the sub-objective function is quadratic with respect to pu ,

min
pu ∈{±1}

D
pTuCupu + d

T
upu , (12)

where

Cu =
∑
i ∈Iu

qiq
T
i

(∑
j ∈Iu

λ(φui j)wui j
)

−
∑
i ∈Iu

qi
(∑
j ∈Iu

λ(φui j)wui jq
T
j

)
, (13)

and

du =
∑
i ∈Iu

qi
(∑
j ∈Iu ,i<j

1

2
wui j −wui jPui j

)
−

∑
i ∈Iu

∑
j ∈Iu ,i<j

(1
2
wui j −wui jPui j

)
qj . (14)

It is easy to verify that Cu is a real symmetric matrix since

λ(φui j) = λ(φuji) and wui j = wuji . And the constraint i � j is
dropped in Cu by noting that λ(φui j) = 0 if i = j. However, the
problem (12) is generally NP-hard, so several greedy algorithms

are proposed. The commonly-used algorithm is discrete coordinate

descent [24, 31], which updates pu by a bit-wise way. In particular,

denoting puk as the k-th bit of pu and puk̄ as the rest codes ex-

cluding puk , the bit-wise method with discrete coordinate descent

updates puk when puk̄ fixed. Ignoring the terms independent of

puk , the Eq (12) could be rewritten as a sub-objective with respect

to puk . However, as a greedy algorithm, discrete coordinate descent

easily falls into local optima and is very sensitive to the initializa-

tion of parameters. In contrast to discrete coordinate descent, we

will update pu all together in a block-wise way instead of bit-wise.

When treating pu as a vector variable, Eq (12) is a binary qua-

dratic programming (BQP) problem, but inhomogeneous. Semi-

definite relaxation (SDR) technique is a powerful computationally

efficient approximation technique for BQP problems [20], but is

based on homogeneous problems. To this end, we first transform

Eq (12) to a homogeneous BQP. Let’s introduce a scalar v ∈ R, and

then Eq (12) can be rewritten as

min
x ∈RD+1

xTHux

s.t. x2
d
= 1,d = 1 · · · ,D + 1,

(15)

where Hu =

[
Cu ,

du
2

dTu
2 , 0

]
is a real symmetric matrix and x =

[pTu ,v]
T . The details about how SDR solves BPQ problems are

elaborated in Appendix. In some cases, Hu is singular, and SDR

may fail. Therefore, C̃u = Cu + αID is used in Hu .

3.2.2 Updating Item Hash CodesQ . Similarly, given P , Φ, and
W , we can also derive a quadratic sub-objective with respect to qi ,

min
qi ∈{±1}

D
qTi Ciqi + d

T
i qi (16)

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2761

where

Ci =
∑
u ∈Ui

∑
j ∈Iu

λ(φui j)wui jpup
T
u (17)

and

di =
1

2

∑
u ∈Ui

∑
j ∈Iu

wui jpu − 2
∑
u ∈Ui

pup
T
u

∑
j ∈Iu

λ(φui j)wui jqj

−
∑
u ∈Ui

(∑
j ∈Iu

wui jPui j
)
pu (18)

Similar to updating pu in Section 3.2.1, the constraint i � j is also
dropped, and qi can be also updated by solving a similar BQP

problem. To avoid the failure of SDR in some cases, C̃i = Ci + βID
is also used in this paper.

3.2.3 Learning Variational Parameter Φ. Fixing P , Q , andW ,

the sub-objective function with respect to φui j is derived as follows

Eq (19) by substituting �̃ui j into Eq (10):

min
φui j ∈R

wui j
(
λ(φui j)(ô

2
ui j − φ2ui j) −

1

2
φui j + log(1 + e

φui j)
)
. (19)

The sub-objective is convex since its second derivative is greater

than zero. Hence, the optimal value is achieved when the derivation

of Eq (19) equals to zero. For each user, the derivation of Eq (19)

equals to zero at

φui j = ôui j = r̂ui − r̂uj (20)

Actually, we don’t need store φui j , ∀(u, i, j) ∈ S , since we only need
to store the all predicted ratings r̂ui . We do also not need to store

λ(φui j), since it can be computed on-the-fly in constant time when

we cache these r̂ui .

3.2.4 Updating Weight of Pairwise Preferences. Given P ,Q , and

Φ, the sub-objective with respect towui j is

min
wui j ∈[0,1]

wui j �̃ui j + fk (wui j), (21)

the optimal weight wui j is obtained by setting the derivative of

Eq (21) to zero. Experiments show that the linear “soft” weighting

can achieve better performance. Therefore, we choose the linear

“soft” self-paced regularizer fk (wui j) =
1
k
(12w

2
ui j − wui j) in this

paper, which indicates that the optimal weight for each user u is

wui j =

{
−k �̃ui j + 1 if �̃ui j ≤

1
k
;

0 otherwise.
(22)

3.3 Complexity Analysis

In this section, we analyze the complexity of updating binary codes

P andQ in one round of iteration in Algorithm 2. Take the iteration

of P as an example, updatingpu for each useru contains three steps:

computingCu and du , solving an SDR problem, and conducting a

Gaussian randomization procedure.

For speeding up the computing of Cu and du , we first cache

the all preference prediction r̂ui , we then calculate terms aui , bui ,
q̄ui and q̃ui (listed in Table 1) ofCu and du outside the user loop

in Algorithm 1. The complexity of computing these quantities is

O(|Iu |D) as long as we cache the all r̂ui first. After that, the com-

putation ofCu and du costs O(|Iu |D
2) and O(|Iu |D), respectively.

In terms of solving an SDR problem, the complexity is O(D3.5)

Algorithm 1: DRMFW

Input: User-item rating matrix R, dimension D of

Hamming space, weightW
Output: User binary codes P and item binary codesQ

1 Initialize P andQ using the standard normal distribution

(μ = 0,σ = 0.1);

2 repeat

3 for u ∈ {1, · · · ,M} do

4 for i ∈ Iu do

5 Compute r̂u,i ;

6 Update pu based on the BQP solver;

7 for i ∈ {1, · · · ,N } do

8 for u ∈ Ui do
9 Compute r̂u,i ;

10 Update qi based on the BQP solver;

11 until LW is convergent;

Algorithm 2: DRMF-SPL

Input: User-item rating matrix R, k0, kend , τ ≥ 1

Output: User binary codes P and item binary codes Q

1 Initialize P0,Q0 ← DRMFW givenW = 1
|S | , and initialize

k ← k0, t ← 0 by calculating the all �̃ui j ;

2 repeat

3 W t+1 ← Eq (22);

4 P t+1,Qt+1 ← DRMFW ;

5 Evaluate the all loss �̃ui j ;

6 k ← k/τ , t ← t + 1 ;

7 until k < kend ;

as introduced in Appendix. Gaussian randomization procedure

costs O(D3 + LD2) since it can be achieved by eigenvalue decom-

position of X ∗ with complexity of O(D3), i.e., X = VΛVT , and

drawing L samples
{
ξ l
}
l ∈{1, · · · ,L } with complexity of O(LD2) by

ξ l = VΛ
1
2 ϵl , where ϵl is generated from N (0, In), which is intro-

duced in Appendix in detail. Therefore, solving the optimal P costs

O
(
‖R‖0D2 +M(D3.5 +LD2)

)
in one round of iteration, where ‖R‖0

denotes the number of observed entries in the matrix R.
Similarly, for speeding up the computing of Ci and di , we first

calculate terms aui , dui , q̄ui and p̄ui (listed in Table 1) of Ci and

di outside the item loop. The time complexity of computingCi and

di is O(|Ui |D
2) for each item i . Therefore, solving the optimal Q

costs O
(
‖R‖0D2 + N (D3.5 + LD2)

)
in one round of iteration.

In summary, the complexity of Algorithm 2 in one round of

iteration is O
(
‖R‖0D2 + (M + N)(D3.5 + LD2)

)
, and the overall

DRMF-SPL generally ends in several rounds.

4 EXPERIMENT

In this section, we evaluate our proposed hashing framework with

the aim of answering the following questions.

(1) Does the recommendation performance of the proposed

DRMF-SPL outperform the state-of-the-art hashing-based

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2762

Table 1: Pre-computation

aui =
∑
j

λ(φui j)wui j bui =
∑

j,i< j

1
2wui j −wui jPui j

p̄ui =
∑
j

wui jpu q̃ui =
∑

j,i< j

(1
2wui j −wui jPui j

)
q j

q̄ui =
∑
j

λ(φui j)wui jq j dui =
∑
j

wui jPui j

recommender systems, ranking-based recommender sys-

tems, or rating-based recommender systems?

(2) Is the self-paced learning strategy helpful to improve the

recommendation performance?

(3) Whether or not the semidefinite relaxation and Gaussian

randomization approximation techniques are effective in the

proposed discrete optimization algorithm?

(4) What’s the gap between the cross-entropy loss and its qua-

dratic upper bound approximation used in this paper? How

about the convergence of Algorithm 1?

(5) What’s the advantage of hashing-based methods for online

recommendation over real-valued frameworks?

In the following, we first introduce the experimental settings, fol-

lowed by answering the above questions.

4.1 Experiment Settings

In this section, we first introduce datasets used in our experiments.

Then we display six important baselines, including ranking-based,

rating-based, and hashing-based recommendation frameworks, fol-

lowed by the introduction of the evaluation metric, Normalized

Discounted Cumulative Gain(NDCG) used in this paper.

4.1.1 Datasets. We do experiment with three public datasets:

MovieLens-100K, MovieLens-10M, and Amazon Book dataset, to

evaluate the proposed framework. In the three datasets, it is sup-

posed that each user had only one rating for each item.

MovieLens datasets1 are collected and made available rating

data sets from the MovieLens web site2 by GroupLens Research.

MovieLens-100K originally includes 100000 ratings from 1 to 5

from 943 users on 1682 items. MovieLens-10M contains 10 million

ratings and 100,000 tag applications applied to 10,681 movies by

71,567 users, and the rating scores are from 0.5 to 5 with 0.5 interval.

Amazon dataset3 contains user ratings and reviews on Amazon

of 24 product categories, such as Books, Electronics, Movies and TV,

etc. We evaluate our method on one of the largest product category,

Books dataset, which initially contains 8,898,041 integer ratings

from 1 to 5 rated by 603,668 users to 367,982 movies.

As we evaluate our algorithm on top-10 recommendation, for

all datasets, users having less than 20 ratings are not considered.

The statistics of the filtered datasets are summarized in Table 2. For

each user, we randomly sampled 50% ratings as training and the

rest 50% ratings as testing. We repeated for ten random splits and

reported the average results.

4.1.2 Comparison Methods. As introduced in Section 1 and Sec-

tion 2, we choose three types of recommendation methods that

1https://grouplens.org/datasets/movielens/
2http://movielens.org
3http://jmcauley.ucsd.edu/data/amazon/

Table 2: Statistics of datasets.

Dataset #User #Item #Rating Density

MovieLens-100K 917 939 94,481 10.97%

MovieLens-10M 69,838 8,939 9,983,758 1.60%

Amazon-Books 35,151 33,195 1,732,060 0.15%

consist of two ranking-based recommender systems: BPR and

PAIR-MF, four real-valued recommender systems: BPR, PAIR-

MF, MF-L2, and PMF, and two latest competing hashing-based

recommender systems consists of a quantization-based hashing

PPH and an optimization-based hashing DCF. Specifically, PAIR-

MF is a real-valued pairwise ranking framework based on matrix

factorization, which has the same objective Eq (5) with our proposed

method. The difference is: PAIR-MF learned real latent factors

from the objective Eq (5) by Newton method, while DRMF-SPL

attain hash codes by Algorithm 2. To verify the effectiveness of the

proposed hashing framework, we set the PAIR-MF method as a

baseline.

4.1.3 Evaluation Metric. We evaluate the recommendation per-

formance with a widely used ranking based metric, Normalized

Discounted Cumulative Gain (NDCG) [18]. NDCG is the normal-

ization of DCG(Discounted Cumulative Gain). DCG is a measure

which can weigh the quality of ranking. Recommendation can be re-

garded as a task of ranking items. In our experiments, we predicted

a top-k preference items ranking list for each user from testing

datasets.

4.1.4 Parameter Settings. In our experiments,α and β are treated
as two hyper-parameters of our models, because they take effect

on the recommendation performance to some extent. We use 5-fold

cross validation method on randomly splits of training data, to tune

the optimal hyper-parameters by the grid search for the proposed

DRMF-SPL and other compared algorithms, respectively.

Specifically, for DRMF-SPL, we set α = 100 for all datasets, the

optimal β depends on datasets and code lengths, we analyze the

impact of β on recommendation accuracy in Figure 3.

Besides, for all baselines, we also tune the optimal parameters

under the same settings. As a result, we set α = 100 for PAIR-MF,

similar to DRMF-SPL, β depends on datasets and code lengths. For

BPR, we set α = 0.03, λi = 0.01, and λj = 0.01. For MF-L2, the

optimal hyper-parameter of the regularization term λ = 0.009. For

PMF, it can achieve good performance when we setmomentum =
0.9, λU = λV = 0.9 for Amazon-Books and λU = λV = 0.7 for

MovieLens-100K, MovieLens-10M. For DCF, we set the optimal

parameters α = 1e−3 and β = 1e−3, respectively. For PPH, we set
λ = 10.

4.2 Accuracy Comparison with Baselines

As introduced in Section 1, hashing recommendation has the sig-

nificant advantage over real-valued recommendation for online

recommendation, however, hashing usually suffers low recommen-

dation accuracy due to a binary value instinctively carries less

information than a real value. How to balance the recommenda-

tion accuracy and efficiency is challenging for a recommendation.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2763

PAIR-MF BPR MF-L2 PMF PPH DCF DRMF-SPL

2 4 6 8

N
D

C
G

@
k:

 M
ov

ie
Le

ns
-1

00
K

0.65

0.7

0.75

0.8

0.85
8-bit

2 4 6 8
0.65

0.7

0.75

0.8

0.85
16-bit

2 4 6 8
0.65

0.7

0.75

0.8

0.85
24-bit

2 4 6 8
0.65

0.7

0.75

0.8

0.85
32-bit

2 4 6 8
0.65

0.7

0.75

0.8

0.85
40-bit

2 4 6 8

N
D

C
G

@
k:

 M
ov

ie
Le

ns
-1

0M

0.7

0.75

0.8

0.85

2 4 6 8

0.7

0.75

0.8

0.85

2 4 6 8

0.7

0.75

0.8

0.85

2 4 6 8

0.7

0.75

0.8

0.85

2 4 6 8

0.7

0.75

0.8

0.85

Position: k
2 4 6 8

N
D

C
G

@
k:

 A
m

az
on

-B
oo

ks

0.82

0.84

0.86

0.88

0.9

Position: k
2 4 6 8

0.82

0.84

0.86

0.88

0.9

Position: k
2 4 6 8

0.82

0.84

0.86

0.88

0.9

Position: k
2 4 6 8

0.82

0.84

0.86

0.88

0.9

Position: k
2 4 6 8

0.82

0.84

0.86

0.88

0.9

Figure 1: Recommendation performances on MovieLens-100K, MovieLens-10M, Amazon-Books.

Position: k
2 4 6 8

N
D

C
G

@
k:

 M
ov

ie
Le

ns
-1

00
K

0.825

0.83

0.835

0.84

0.845

0.85
Effectiveness of Self-Paced Learning

No-SPL
Hard weight-SPL
Soft weight-SPL

Position: k
2 4 6 8

N
D

C
G

@
k:

 A
m

az
on

-B
oo

ks

0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885
Effectiveness of the approximate discrete optimization

DRMF-SPL
Real-valued features

Figure 2: Left. Effectiveness of self-paced learning on the

MovieLens-100K; Right. Effectiveness of the approximate

discrete optimization on the Amazon-Books

DRMF-SPL is proposed to search a better trade-off between effi-

ciency and accuracy with hashing technology.

In this part, we will answer the first question at the beginning of

Section 4. The recommendation accuracy (NDCG@k) comparisons

Itration times: t
1 2 3 4 5 6 7 8 9 10

Tr
ai

ni
ng

 lo
ss

×107

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8
Effectiveness of the upper bound approximation

Cross entropy loss
DRMF-SPL loss

beta
1 2 3 4 5 6 7 8 9 10

N
D

C
G

@
10

0.8865

0.887

0.8875

0.888

0.8885

0.889

0.8895

0.89
Accuracy vs beta

x102

Figure 3: Left. The training loss comparison of DRMF-SPL

and cross-entropy. Right. The effect of β on recommenda-

tion accuracy on the Amazon-Books (α = 100, d = 8).

on three datasets are shown in Figure 1 respectively. The perfor-

mances of real-valued and hashing based recommender systems

are plotted as blue and red lines, respectively. The performances of

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2764

Item Size
80000 320000 1280000

Ti
m

e
C

os
t(s

ec
on

ds
)

0

100

200

300

400

500

600

700
Time Cost vs Item Size

Hamming Rank
Real-valued Rank

Item size
1M 10M 50M

S
to

ra
ge

 c
os

t

×107

0

1

2

3

4
Storage Cost vs Item Size

Hash code
Real-valued

Figure 4: Efficiency results on artificial data. Left. The com-

parison of time cost. Right. The comparison of storage cost

ranking-based and rating-based recommender systems are plotted

as solid and dotted lines, respectively.

Compared with hashing recommendation, the performance of

DRMF-SPL far surpasses PPH on all datasets since DRMF-SPL ex-

tract binary codes by directly solving a discrete optimization prob-

lem instead of quantification method. DRMF-SPL is superior to DCF

on MovieLens 100K and MovieLens 10M, since DRMF-SPL is pro-

posed to optimize a ranking-based loss instead of a rating-based loss

considered in DCF. The performance of DCF approaches to DRMF-

SPL on Amazon-Books as the code length increases, which accounts

for the high sparsity of Amazon-Books. Because DCF is adapted

to sparse settings on account of the balanced and un-correlation

constraints on hash codes.

Compared with ranking-based real-valued recommender sys-

tems, DRMF-SPL has evident advantages over BPR. Because BPR

is based on implicit feedback other than explicit feedback such

as ratings exploited in the proposed method. DRMF-SPL has very

close performance with PAIR-MF since they have the same ranking-

based objective. In spite of existing difference between DRMF-SPL

and PAIR-MF, but its not significant. Due to real latent vectors

intuitively carried more information than hash codes. Thus it is

acceptable and reasonable to have small gaps between real-valued

PAIR-MF and hashing based DRMF-SPL. Furthermore, DRMF-SPL

has superiority in the efficiency of online recommendation over

real-valued recommender systems, which will be demonstrated in

Section 4.6.

Compared with other state-of-the-art methods, apart from the ef-

ficiency advantage for online recommendation, DRMF-SPL has the

advantage of recommendation accuracy over traditional methods

in some cases. From Figure 1, the accuracy of DRMF-SPL is superior

to the traditional MF-L2, PMF, BPR, and approaches to PAIR-MF.

The good performance of DRMF-SPL attributes to a ranking based

objective, and a series effective learning strategies. We will explore

the effectiveness of these strategies in the following experiments.

4.3 Effectiveness of Self-paced Learning

For answering the second question proposed at the beginning of

Section 4, self-paced learning is also helpful to our algorithm. The

left of Figure 2 shows the performance of three different learning

strategies. It says that the linear “soft” weight SPL [30] can achieve

a better performance than the “hard” weight SPL [11] in our algo-

rithm. We can also obtain the answer of question (2) that self-paced

learning can improve the recommendation performance.

4.4 Effectiveness of the Block-wise Hashing
Framework

In Section 3, we learn hash codes in a block-wise way. Specifically,

we first solve an SDR problem, which is the relaxation of the BQP

problem, we then attain hash codes by the Gauss randomization

method. To verify these approximation strategies are reliable, we

relax the BQP problem to a real-valued QP problem, and then real-

valued closed-form solutions can be obtained straightly. By com-

paring the performance of the real-valued features and the derived

hash codes, we can validate whether or not these approximation

techniques are effective in our algorithm.

The right of Figure 2 shows the performance between hash

codes and the real-valued features on Amazon-Books dataset, which

demonstrates the effectiveness of these approximation techniques,

and thus answers the question (3). It tells us the performance differ-

ence is small in total, and the most significant difference is about

0.002. As the number of recommendation items increases, the dif-

ference becomes smaller. So our block-wise hashing optimization

framework is valid.

4.5 Gap Between the Cross-entropy Loss and
the DRMF-SPL Loss

In this section, we will answer the question (4) proposed at the

beginning of Section 4. Due to the objective of DRMF-SPL does

not straightly optimize the cross-entropy loss function, but turn to

minimize a variational quadratic upper bound. So it is necessary

to test the gap between the upper bound and the cross-entropy in

the training procedure. In Figure 3, we train the proposed model by

Algorithm 2 on Amazon-Books dataset, and record both the loss of

DRMF-SPL and the cross entropy loss. We find the gap between the

two loss functions is small, which indicates the upper bound ap-

proximation is a good approximation of the cross entropy loss in the

proposed model. Therefore, it guarantees a good recommendation

accuracy. Besides, we can conclude that the proposed optimization

method can be converged within serval iterations, which furtherly

ascertain the correctness of the optimization algorithm.

4.6 Efficiency Comparison

As analyzed in Section 1, the significant advantage of hashing

recommendation over real-valued recommendation is the efficiency

for online recommendation. In this section, we answer the question

(5) and display the effectiveness of hashing-based recommendation

compared with real-valued frameworks. We separately evaluate the

efficiency in terms of time and storage on a synthetic dataset.

4.6.1 Time Complexity. We investigate the time cost of pref-

erence ranking when the item number varies. We use standard

Gaussian distribution to generate real-valued features of items ran-

domly. Items hash codes are obtained from real-valued vectors by

sign function. We set different item numbers in our experiment:

5000, 20000, 80000, 320000, 128000, to test the ranking time vari-

ation. The time cost variation over item number is shown in the

left of Figure 4. We can conclude that the time cost of real-valued

features grows fast with the items number, in comparison, the time

cost of hash codes increases much slower than real-valued features.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2765

4.6.2 Storage Complexity. We test the storage costs of hash

codes and real-valued features on three different sizes of item sets:

1 million, 10 million, 50 million. From the right of Figure 4, hash

codes cost much less memory to store the same number of items

than real-valued features, which is consistent with the analysis in

Section 1.

5 CONCLUSION AND FUTUREWORK

In this paper, we propose discrete ranking-based matrix factoriza-

tion, to match the ultimate goal of the recommender system. For

the sake of learning each binary code as a whole instead of bit-by-

bit, we formulate it into a series of binary quadratic programming

problems. Leveraging semidefinite programming and Gaussian ran-

domization, we can obtain binary codes of higher quality, since the

semidefinite relaxation of binary quadratic programming incurs

smaller loss. The experiments on three real-world rating datasets

reveal that the proposed algorithm can be significantly better than

the state-of-the-art hashing based recommendation algorithms,

particular on the denser datasets. However, the drawback of the

proposed algorithm is the reliance of BQP solvers, but current BQP

solvers are low efficiency with high dimensional BQP problems

due to the time complexity of O(n3.5). For improving the efficiency

of updating high dimensional hash codes, in the future, we will

try to apply an effective hashing technique, Hamming Subspace

Learning (HSL) [21], to learn hash codes efficiently on massive

social datasets.

A BINARY QUADRATIC PROGRAMMING

BQP is a classical combinatorial optimization problem [20], which

minimizes a quadratic function, with respect to binary variables,

i.e.,

min
x ∈Rn

xTCx

s.t. x2
d
= 1,d = 1 · · · ,n

(23)

where C is a real symmetric matrix. The BQP is well known to

be a computationally difficult problem, particularly belonging to

the class of NP-hard problems. Hence, computing good solutions

is a quite difficult task. Semidefinite relaxation (SDR) technique

is a powerful computationally efficient approximation technique

for a host of very difficult optimization problem including binary

quadratic programming problems. A crucial first step in deriving

a SDR of BQP in Eq (23) is to observe that xTCx = tr(CxxT).
Introducing a new variable X = xxT and noting that X = xxT is

equivalent to X being a rank one symmetric positive semidefinite

(PSD) matrix, we can obtain the following equivalent formulation

min
X ∈Sn

tr (CX)

s.t. Xd,d = 1, X � 0, rank(X) = 1.
(24)

where Sn denotes the set of symmetric n × n matrices, X � 0

indicates thatX is PSD. The re-formulation allows us to identify the

difficulty of solving BQP, that is, the rank constraint rank(X) = 1.

Thus, we may drop it to obtain the following semidefinite relaxation

(SDR) of BQP:
min
X ∈Sn+

tr(CX)

s.t. Xd,d = 1.
(25)

Algorithm 3: Gaussian randomization: x∗ = Round(X ∗)

Input: The SDR solution X ∗, the number of randomization

L
Output: x∗ the best approximated feasible solution

1 for � = 1, 2, · · · ,L do

2 generate ξ � ∼ N (0,X ∗);

3 construct a feasible point x� ← sign(ξ �);

4 determine �∗ ← argmin�∈{1, · · · ,L } x
T
�
Cx� ;

5 x∗ ← x�∗ as the best approximated solution of BQP;

where Sn+ denotes the set of symmetric positive semidefinite n × n
matrices. In spite of dropping the rank one constraint, SDR still

provides an approximation of BQP with a very high accuracy[20].

Moreover, SDR can then be solved, to any arbitrary accuracy in a

numerically reliable and efficient fashion, using like interior-point

algorithms [7] with time complexity of O(n3.5). However, there
remains an issue of using SDR, that is how to convert a globally

optimal solution of Eq (25) into a feasible solution to Eq (23).

If the optimalX ∗ is of rank one, thenX ∗ = x∗x∗T , and x∗ is the
optimal solution of BQP. Otherwise, Gaussian randomization proce-

dure can be applied as shown in Algorithm 3 due to its probabilistic

interpretation. In other words, X ∗ is also the optimal solution to

the stochastic BQP:

min
X ∈Sn+

Eξ∼N (0,X)[ξ
T Cξ]

s.t. Eξ∼N (0,X)[ξ
2
i] = 1

(26)

Here sampling from normal distribution with a specified variance

can be achieved by the following two steps:

(1) eigenvalue decomposition of variance X , i.e., X = VΛVT ,

with the complexity of O(n3).
(2) drawing L samples

{
ξ l
}
l ∈{1, · · · ,L } with the complexity of

O(Ln2) by ξ l = VΛ
1
2 ϵl , where ϵl is generated from N (0, In).

Therefore, the complexity of Gaussian randomization is O(n3+Ln2).

ACKNOWLEDGMENTS

This work was supported by National Natural Science Founda-

tion of China (Grant No. 61572335, 61572109, 61502077, 61631005)

and the Fundamental Research Funds for the Central Universities

(Grant No. ZYGX2016J087). Prof. Ivor W. Tsang was supported by

ARC FT130100746, DP180100106 and LP150100671. Dr. Hongzhi Yin

was supported by ARC DE160100308, DP170103954, and New Staff

Research Grant of the University of Queensland (Grant No.613134).

REFERENCES
[1] Gediminas Adomavicius and Alexander Tuzhilin. 2005. Toward the next gen-

eration of recommender systems: A survey of the state-of-the-art and possible
extensions. IEEE Trans. Know. Data. Eng. 17, 6 (2005), 734–749.

[2] Immanuel Bayer, Xiangnan He, Bhargav Kanagal, and Steffen Rendle. 2017. A
generic coordinate descent framework for learning from implicit feedback. In
Proceedings of WWW’17. International World Wide Web Conferences Steering
Committee, 1341–1350.

[3] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G.
Hullender. 2005. Learning to rank using gradient descent. In Proceedings of
ICML’05. ACM, 89–96.

[4] Wei Chen, Wynne Hsu, and Mong Li Lee. 2013. Modeling user’s receptiveness
over time for recommendation. In Proceedings of SIGIR’13. ACM, 373–382.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2766

[5] Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. 2007.
Google news personalization: scalable online collaborative filtering. In Proceed-
ings of WWW’07. ACM, 271–280.

[6] Robin Devooght, Nicolas Kourtellis, and Amin Mantrach. 2015. Dynamic matrix
factorization with priors on unknown values. In Proceedings of KDD’15. ACM,
189–198.

[7] Christoph Helmberg, Franz Rendl, Robert J Vanderbei, and Henry Wolkowicz.
1996. An interior-point method for semidefinite programming. SIAM Journal on
Optimization 6, 2 (1996), 342–361.

[8] David R Hunter and Kenneth Lange. 2004. A tutorial on MM algorithms. The
American Statistician 58, 1 (2004), 30–37.

[9] Hemant Ishwaran and Lancelot F James. 2001. Gibbs sampling methods for
stick-breaking priors. J. Amer. Statist. Assoc. 96, 453 (2001), 161–173.

[10] T Jaakkola and M Jordan. 1997. A variational approach to Bayesian logistic re-
gression models and their extensions. In Sixth International Workshop on Artificial
Intelligence and Statistics, Vol. 82.

[11] Lu Jiang, Deyu Meng, Teruko Mitamura, and Alexander G Hauptmann. 2014.
Easy samples first: Self-paced reranking for zero-example multimedia search.
In Proceedings of the 22nd ACM international conference on Multimedia. ACM,
547–556.

[12] Alexandros Karatzoglou, Alexander J Smola, and Markus Weimer. 2010. Collabo-
rative Filtering on a Budget.. In AISTATS. 389–396.

[13] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[14] M Pawan Kumar, Benjamin Packer, and Daphne Koller. 2010. Self-paced learning
for latent variable models. In Proceedings of NIPS’10. 1189–1197.

[15] M Pawan Kumar, Haithem Turki, Dan Preston, and Daphne Koller. 2011. Learning
specific-class segmentation from diverse data. In Proceedings of ICCV’11. IEEE,
1800–1807.

[16] Changsheng Li, FanWei, Junchi Yan, Xiaoyu Zhang, Qingshan Liu, andHongyuan
Zha. 2016. A Self-Paced Regularization Framework for Multilabel Learning. IEEE
Transactions on Neural Networks and Learning Systems 99 (2016), 1–7.

[17] Defu Lian, Rui Liu, Yong Ge, Kai Zheng, Xing Xie, and Longbing Cao. 2017.
Discrete Content-aware Matrix Factorization. In Proceedings of KDD’17. ACM,
325–334.

[18] T.Y. Liu. 2009. Learning to rank for information retrieval. Foundations and Trends
in Information Retrieval 3, 3 (2009), 225–331.

[19] Xianglong Liu, Junfeng He, Cheng Deng, and Bo Lang. 2014. Collaborative
hashing. In Proceedings of CVPR’14. 2139–2146.

[20] Zhi-Quan Luo, Wing-Kin Ma, Anthony Man-Cho So, Yinyu Ye, and Shuzhong
Zhang. 2010. Semidefinite relaxation of quadratic optimization problems. IEEE
Signal Processing Magazine 27, 3 (2010), 20–34.

[21] Chao Ma, Ivor W Tsang, Furong Peng, and Chuancai Liu. 2017. Partial hash
update via hamming subspace learning. IEEE Transactions on Image Processing
26, 4 (2017), 1939–1951.

[22] Mohammad Norouzi, Ali Punjani, and David J Fleet. 2012. Fast search in hamming
space with multi-index hashing. In Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on. IEEE, 3108–3115.

[23] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. 2009. BPR:
Bayesian personalized ranking from implicit feedback. In Proceedings of UAI’09.
AUAI Press, 452–461.

[24] Fumin Shen, Chunhua Shen, Wei Liu, and Heng Tao Shen. 2015. Supervised
Discrete Hashing. In CVPR. 37–45.

[25] Yue Shi, Martha Larson, and Alan Hanjalic. 2010. List-wise learning to rank with
matrix factorization for collaborative filtering. In Proceedings of RecSys’10. ACM,
269–272.

[26] Kazunari Sugiyama, Kenji Hatano, and Masatoshi Yoshikawa. 2004. Adaptive
web search based on user profile constructed without any effort from users. In
Proceedings of WWW’04. ACM, 675–684.

[27] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. 2012. Semi-supervised hashing for
large-scale search. IEEE TPAMI 34, 12 (2012), 2393–2406.

[28] Jun Wang, Wei Liu, Sanjiv Kumar, and Shih-Fu Chang. 2016. Learning to hash
for indexing big data – A survey. Proc. IEEE 104, 1 (2016), 34–57.

[29] Markus Weimer, Alexandros Karatzoglou, Quoc Viet Le, and Alex Smola. 2007.
Maximum margin matrix factorization for collaborative ranking. Proceedings of
NIPS’07 (2007), 1–8.

[30] Chang Xu, Dacheng Tao, and Chao Xu. 2015. Multi-view Self-Paced Learning for
Clustering.. In IJCAI. 3974–3980.

[31] Hanwang Zhang, Fumin Shen, Wei Liu, Xiangnan He, Huanbo Luan, and Tat-
Seng Chua. 2016. Discrete collaborative filtering. In Proceedings of SIGIR’16,
Vol. 16.

[32] Yan Zhang, Defu Lian, and Guowu Yang. 2017. Discrete Personalized Ranking
for Fast Collaborative Filtering from Implicit Feedback.. In AAAI. 1669–1675.

[33] Zhiwei Zhang, Qifan Wang, Lingyun Ruan, and Luo Si. 2014. Preference pre-
serving hashing for efficient recommendation. In Proceedings of SIGIR’14. ACM,
183–192.

[34] Qian Zhao, Deyu Meng, Lu Jiang, Qi Xie, Zongben Xu, and Alexander G Haupt-
mann. 2015. Self-Paced Learning for Matrix Factorization.. In AAAI. 3196–3202.

[35] Ke Zhou and Hongyuan Zha. 2012. Learning binary codes for collaborative
filtering. In Proceedings of KDD’12. ACM, 498–506.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2767

