
Towards A Contextual and Scalable
Automated-testing Service for Mobile Apps

Li Lyna Zhang?‡, Chieh-Jan Mike Liang‡, Wei Zhang?‡, Enhong Chen?

?University of Science and Technology of China ‡Microsoft Research

ABSTRACT
As app quality is a deciding factor for user base growth,
many automated testing services are available to reduce app
developers’ burden. However, we argue that these existing
services do not sufficiently bring real-world contexts into app
testing, which reduces the visibility into how an unreleased
app would perform in the wild. In fact, this is a challenging
problem that current emulator-based or device-based test-
ing services cannot properly or scalably address. This pa-
per envisions a split-execution model for building automated
and contextual testing services for mobile apps. This model
allows the service to evolve over time, by adopting new al-
gorithms and recruiting new physical devices. Finally, pre-
liminary results from a prototype demonstrate the potential
and feasibility of our proposed architecture.

CCS Concepts
•Software and its engineering → Software testing
and debugging;

Keywords
App testing; Split Execution; Device labs; Contextual Fuzzing

1. INTRODUCTION
Reducing developers’ burden on achieving testing cover-

age can drive the mobile app quality, especially that app
complexities have generally grown beyond what manual test-
ing can reasonably cover [17]. As such, the demand for app
testing services on the market has increased significantly in
the past few years. These services [6, 23, 27] offer a con-
trolled environment for repetitive testing, with a reasonable
cost and turnaround time.

Yet current realizations of automated testing have short-
comings in efficiently scaling the system size and the test-
ing dimension. One popular approach is to use mobile de-
vice emulators [12] as the app execution container. Unfortu-
nately, while emulator instances can be easily started to scale

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotMobile ’17, February 21-22, 2017, Sonoma, CA, USA
c© 2017 ACM. ISBN 978-1-4503-4907-9/17/02. . . $15.00

DOI: http://dx.doi.org/10.1145/3032970.3032972

the system size, they cannot accurately emulate many real-
world contexts [4]. This is crucial because the ubiquity of
mobile devices implies that mobile apps can encounter con-
texts of diverse device specifications, various geo-locations,
wide spectrum of network conditions, etc. Another approach
is physical device labs, or pools of shared mobile devices that
developers can access remotely [26, 27] or locally [18]. While
device labs offer the realism w.r.t. device configurations,
it is relatively expensive to purchase and maintain devices
of different hardware configurations and operating systems.
And, certain real-world contexts such as network conditions
and geo-locations are fixed to the device lab. Finally, there
are efforts proposing application-layer record-and-reply [14,
15] to simplify repetitive testing involving sensor inputs, but
they cannot adequately capture certain contexts such as net-
work transmissions.

This paper rethinks “how automated app testing services
should evolve to scalably achieve realism of the vast testing
space of real-world contexts”. We aim to provide time-series
logs for developers to quantify real app behavior in the wild,
without actually releasing app binaries to the public. From
our own experience with app testing [10, 19], we highlight
the following design principles:

First, while a vertical system model is easy to build, a hor-
izontal model that decouples computation (e.g., algorithms
and resources) and app execution containers would better
incorporate rapid innovations from the community. Specif-
ically, the community continuously advances on techniques,
and the industry periodically releases new mobile devices
and software. Decoupling enables the automated testing
service to evolve by independently adopting new testing al-
gorithms and growing the device pool. This design concep-
tually resembles the narrow-waist of the IP stack.

Second, to make real-world contexts accessible for testing,
code blocks that access or interact with real-world contexts
must be pinned to physical devices in the wild. While there
are efforts emulating real-world contexts in software [19], the
realism still cannot match that of physical devices. Interest-
ingly, these code blocks are mostly implemented in the OS
and exposed through system APIs, e.g., sensors, GPS, and
networking stack. Furthermore, context-insensitive APIs
can be serviced inside the emulator, and they do not need to
run on the physical device. This split-execution design also
prevents disclosing unreleased apps from public eyes [9].

Third, the overhead for maintaining and operating the
testing service should be low [17]. For instance, adding phys-
ical devices (which could be retired smartphones) to the pool
should not require device rooting, or anything more than in-

stalling a simple agent app. In addition, developers should
not need to modify their app binaries.

Realizing these design principles, however, requires the in-
frastructure support. Fortunately, we can leverage the popu-
lar ”cloud-and-device” infrastructure. Conceptually, a single
test session can benefit from cloud for heavy computation.
Then, with devices sitting at the last mile of Internet consist-
ing of access points and cellular connections, mobile devices
can capture the real-world realism for the test session.

This work contributes to the above vision of evolving au-
tomated app testing. From our previous experience in app
testing [10, 19], we are motivated by pain points from both
testing service providers (e.g., Microsoft) and app develop-
ers. To this end, our prototype, RainDrops, builds on the
narrow-waist architecture to realize split-execution for con-
textual app testing.

2. BACKGROUND AND MOTIVATIONS

2.1 Real-world Contexts Relevant to Apps
Testing coverage should consider various real-world con-

texts that mobile apps experience in the wild.

Device Diversity. Mobile devices have a wide range of
computation and memory capabilities, display sizes, OS ver-
sions, etc. These differences can be reflected in the app
behavior. For example, on memory-limited devices, mobile
apps that consume too much memory could experience out-
of-memory errors, or have their own background services
be killed by the OS at an arbitrary time. In fact, An-
droid’s well-known fragmentation problem further motivates
the need to consider device diversity during testing.

Network Environment Diversity. 83% of apps in Google
Play use network access [24]. And, crawling OpenSignal [3]
suggests that there are more than 500 distinctive combi-
nations of network properties such as provider, bandwidth,
latency, and loss. Liang et al. [19] reported an interesting
location bug where one social app’s crashing frequency is
proportional to the network latency. Unfortunately, with
limited resources, app developers cannot easily gain insights
into how network conditions would impact the app behavior.

Geo-location Diversity. More than 45% of apps in Google
Play request permissions for geo-location data [24], and apps
may run at different locations throughout the day. Failure to
consider geo-locations during testing can lead to false neg-
atives. For example, we observed that one social app is
brittle in countries outside US (which is confirmed by user
comments posted online).

2.2 Existing Gaps in Testing Coverage
Table 1 summarizes shortcomings that current automated

testing practices have in achieving testing coverage.

Testing with Emulators. Being a software-based solu-
tion, emulators are relatively cost-efficient in spawning and
setting up new instances.

Emulators cannot sufficiently cover several aspects of test-
ing dimensions relevant to mobile apps – (i) Device Diver-
sity : emulators typically present a “standard” device type,
so they cannot perfectly capture the hardware-specific (e.g.,
I/O) and system-specific (e.g., device drivers) characteris-
tics. For example, there is a poor support for emulating ori-
entation, accelerometers and geo-location [4]. (ii) Network

API categories Real-world contexts
Geo-location Coordinates
Network Latency, packet loss, bandwidth
Sensors Environment dynamics
File I/O Storage medium
Device info Device ID
Others Encryption engine

Table 2: Categories of context-sensitive system
APIs that RainDrops offloads to physical devices.

Environment Diversity : while some emulators can perform
traffic shaping to emulate different network conditions [20],
they typically follow measurements in the lab, rather than
reflecting real-world conditions. (iii) Geo-location Diversity :
some emulators have a custom GPS driver that can fake co-
ordinates as desired [12, 20]. However, changing coordinates
alone might not be sufficient, as many others parameters
are also relevant, e.g., corresponding network conditions and
GPS signal strength.

Testing with Physical Devices. Industries and research
communities have invested significant efforts into building
real-world device labs [7, 16]. Device labs can be viewed
as racks of mobile devices wire-connected to some central-
ized management service, and developers can remotely start
testing jobs.

Device labs cannot sufficiently support several aspects of
testing dimensions relevant to mobile apps – (i) Device Di-
versity : the cost of growing and maintaining physical device
pools can hinder the scalability. (ii) Network Environment
Diversity : while most device labs have both Wi-Fi and cel-
lular connectivity, network conditions are fixed to the lab
setup. (iii) Geo-location Diversity : since device labs are sit-
uated at some fixed locations, they do not have the flexibility
necessary to provide geo-location diversity.

2.3 Potential of Idle Mobile Devices in the Wild
We now discuss the potential and feasibility of idle mobile

devices as a main building block for the contextual testing
service. One example of idle devices could be retired ones
that are simply stored in drawers at home [21, 28].

The rapid smartphone upgrade cycle implies that a large
fraction of idle mobile devices are less than two generations
old [8]. These devices have reasonably up-to-date hardware
configurations, and they can still run modern operating sys-
tems. For example, Android Jelly Bean 4.1 was reported to
have 26.5% of market share 2 years after its initial release
date [22].

Furthermore, since idle devices are scattered in the real
world, different devices exhibit different last-mile link con-
ditions and geo-location coordinates. For example, 3,997
different models of Android devices – with more than 250
screen resolution sizes – contributed to the OpenSignal database
hundreds of distinct network conditions and geo-locations
during a recent six-month period.

3. PROPOSED DESIGN AND CHALLENGES

3.1 Narrow-waist Architecture
Fig 1 illustrates the proposed narrow-waist architecture.

Coordinator separates and coordinates two types of execu-
tion containers: the cloud and the physical device. The for-
mer has computation capabilities to run (i) emulators and

Emulators Device labs RainDrops
Device diversity for
testing

Low: “Standard” profiles are
tested

High Medium: CPU and memory are
partially emulated

Network env diver-
sity for testing

Medium: “Standard” profiles are
tested

Low: Fixed to the device lab setup High

Geo diversity for
testing

Medium: Timing properties are
not emulated

Low: Fixed to the device lab loca-
tion

High

Sensing diversity
for testing

Low: Simplistic sensing data mod-
els are used

High High

System scalability High Low: High costs in purchasing and
maintaining devices

High

Table 1: Comparisons of different approaches for automated app testing services.

Figure 1: Architectural overview of RainDrops.

(ii) submitted custom test drivers that may call built-in li-
braries. The latter runs a light-weight Phone Agent app
to receive and execute offloading commands. Table 2 lists
types of system APIs that Phone Agent can service.

In contrast to the traditional testing practice, RainDrops
takes advantage of the narrow-waist architecture to carefully
split the app execution load between the cloud container and
the physical device. Such a split-execution model is feasi-
ble because mobile apps typically have three distinctively
functional blocks: UI layouts, user-mode computation, and
kernel-mode system APIs. Importantly, a subset of system
APIs (c.f. Table 2) enables mobile apps to act on real-world
events and contexts, e.g., network transmissions, sensing,
etc. If these context-sensitive system API calls are serviced
on a physical device, the app effectively acts on that device’s
real-world contexts. Furthermore, RainDrops runs all other
code blocks (including UI) inside the emulator so that the
cloud can drive the app automation. The transfer of execu-
tion happens over an overloading channel between a pair of
emulator and physical device.

The proposed architecture promotes three desirable char-
acteristics. First, the computation is decoupled from the
physical device pool, so the testing service can evolve by
incorporating new libraries for the custom test driver, and
organically growing the device pool. Second, by offloading
only known context-sensitive system APIs to the physical
device, the Phone Agent app can have a straight-forward de-
sign. In addition, since operating systems rarely introduce
significant changes to published APIs, the Phone Agent app
does not impose high maintenance overhead. Third, high
app confidentiality is guaranteed by not hosting the entire
app on the physical device, especially the UI.

Finally, we note that app developers do not need to mod-
ify their app binaries. Since RainDrops offloads only system
API calls to the physical device, RainDrops can be imple-

mented at the OS level in the emulator. On the device side,
the Phone Agent app does not require rooting the device, as
it only calls standard system APIs.

3.2 Challenges
The split-execution model introduces following challenges

to the automated app testing service.

Dealing with Internet Uncertainties. Since the offload-
ing channel is established over the Internet, offloading can
violate certain timing expectations that app developers as-
sume if system APIs were executed locally.

First, offloading inevitably introduces Internet latencies
to the end-to-end system API call. For instance, app de-
velopers can have some expectations on the communication
with backend servers, expressed in the form of time-outs.
However, if the offloading channel significantly slows down
for any reason, the developer can see more time-outs than
expected. Even for system APIs without time-outs (e.g.,
getting device ID), the additional latency is present in time-
series logs produced.

Second, Internet can exhibit packet losses, and this trans-
lates into data losses for sensors with periodic sampling.
This problem is similar to reliable data streaming over Inter-
net. While TCP can address the losses, it adds additional
delays and bandwidth overhead undesirable for slow over-
loading channel.

Fusing Logs From Heterogeneous Execution Con-
tainers. With the split-execution, parts of the app exe-
cution take place in different execution containers. Fusing
logs from these heterogeneous sources can be challenging.

First, different execution containers can have heteroge-
neous properties. For example, as the emulator cannot per-
fectly emulate CPUs, the emulator might be faster or slower
than the physical device. In this case, naively merging pieces
of time-series logs according to execution timestamps might
not yield right results. Second, since execution containers
maintain an offloading channel over the Internet, artifacts
due to offloading are considered to be noise and should be
carefully removed.

Lowering Test Turnaround Time. A number of factors
typically limit the test turnaround time. For one, many
automated services run random UI exploration to achieve UI
coverage, which has been shown to be very inefficient [13].

Another factor is the test space explosion from introduc-
ing real-world contexts into automated app testing. In Rain-
Drops, each physical device represents one set of real-world
contexts (c.f. Table 2): {geo-location, network, sensors,
...}. Since the range of values for each context can be large,
the test space from combinations of real-world contexts can

be infeasible to completely explore. For instance, if it takes
10 minutes to automate an app under a set of real-world
contexts, RainDrops could only finish six testing sessions in
an machine-hour.

Standard Programming Interfaces. To give developers
control over how their apps should be tested, the testing ser-
vice should have standard programming interfaces to expose
certain service functionalities.

4. FEASIBILITY AND PROTOTYPE
For the feasibility study, we have been prototyping an

automated testing service for Android apps (c.f. Fig 1),
RainDrops. This section discusses our efforts.

4.1 Testing Session Planning
App developers submit via the cloud portal: (1) an An-

droid app binary, (2) a test specification file, and (3) an
optional custom test driver.

The test specification is a XML file describing sets of real-
world contexts to test: geo-locations, network conditions,
device configuration, OS version, etc. According to the test
specification, Coordinator initializes an emulator instance
and finds a physical device that can provide the requested
contexts. For this matching, we note that each physical
device runs a Phone Agent app that registers the device ca-
pabilities and contexts with Coordinator. Finally, the emu-
lator instance establishes a TCP connection to the selected
device. We choose Genymotion [12] as it is one of the fastest
Android emulators on the market.

App developers optionally submit a custom test driver,
to override the default planning of random UI exploration.
This test driver can directly call functions in libraries hosted
by the cloud execution container, e.g., Android app binary
decompiler [1], control/data flow analysis tools, UI automa-
tor [2], etc. We note that new libraries can be added.

As an example, one custom test driver that we have built
implements targeted UI automation. Since most mobile app
package formats are compiled to an intermediate byte code
(e.g., the Java bytecode format in the case of Android), de-
compilation can recover the program structure such as vari-
ables and methods. Then, combining data flow analysis and
UI metadata can construct UI flow graph (UIFG), which
shows transitions among app UI pages. Compared to naive
random exploration, UIFG can guide automated testing to
efficiently traverse all app pages.

4.2 Split-Execution on Apps
After loading app binaries in the emulator, RainDrops ex-

ercises the app UI either randomly or as instructed by the
custom test driver. Split-execution occurs as the app exe-
cution moves across the boundary of selected system APIs
(c.f. Table 2).

Intercepting System API Calls. The emulator relies on
Xposed [5] to modify the Android system process, Zygote,
to add redirections before and after pre-specified API func-
tions. Table 2 lists types of context-sensitive system APIs
that RainDrops intercepts. Upon an interception, the em-
ulator records arguments, and then its Remote Invocation
Stub forwards them over the offloading channel. During the
offloading, the system API call is blocked by Xposed.

Offloading System API Calls. Fig 2 illustrates offload-
ing. Phone Agent on the physical device waits for offloading

Figure 2: Intercepting and offloading an app’s sys-
tem API calls.

commands. Offloading is serviced by calling the system API
specified in the command. Then, the return value is sent
back to the emulator over the same offloading channel.

We note that offloading system APIs over Internet can lose
certain timing guarantees that app developers assume sys-
tem APIs to have, especially considering the Internet fluctu-
ation over time. To this end, we are currently investigating
the following two strategies:

First, many sensors (e.g., accelerometer) allow apps to
register for periodic data updates. To minimize the impact
of Internet fluctuations on supposedly periodic events, the
emulator prefetches and buffers a certain amount of sensor
data prior to the testing session. Then, at each periodic
time instance, the emulator feeds the app one data point
from the buffer. At the same time, the device still continu-
ously streams new sensing data points. To determine sensors
to prefetch and buffer, RainDrops statically analyzes the de-
compiled app binaries. Finally, we note that, since all sensor
streams need to be temporally aligned, prefetching happens
for all requested sensors at the same time.

Second, some system APIs have a developer-specified time-
out threshold, and an example is HTTP requests issued to
get content updates from remote servers. The additional la-
tencies due to API offloading can trigger unexpected time-
outs. RainDrops handles this situation by intercepting de-
veloper’s attempts to set the timeout threshold, and increase
it before passing to the OS.

4.3 Aggregation of Logs From Heterogeneous
Execution Containers

Due to split-execution, both the emulator and the physical
device need to log app performance counters. Presenting an
unified view requires RainDrops to aggregate logs from these
two heterogeneous sources, as described in §3.2. Fig 2 illus-
trates steps of offloading. Conceptually, RainDrops should
present data relevant to app execution (i.e., white boxes),
not noises due to the offloading overhead (i.e., black boxes).
Then, RainDrops needs to minimize the differences due to
heterogeneous sources. The rest of this section discusses our
current implementation.

Step 1: Noise Removal on Emulator Logs. We are
exploring two methods to minimize the presence of noise
(i.e., black boxes in Fig 2) in the feedback to app developers.

The first method relies on event timestamps for noise re-
moval. Specifically, Remote Invocation Stub records times-
tamps of system call interception and completion, and the
time period between these two timestamps are discarded.
While this method is simple to implement, it might not well
handle the case of multi-threaded apps. For instance, if
thread #1’s system API offloading overlaps with thread #2’s

user code execution, it is difficult to separate the resource
utilization of each thread at a time instance.

The second method under consideration is execution slow-
down. Namely, the app execution is slowed down while
the Internet-induced offloading remains the same. Although
execution slow-down has benefited various testing scenar-
ios [11, 29], our goal is to reduce the ratio of offloading in
the time-series log, which in turn increases the size ratio of
white boxes to black boxes in Fig 2. Effectively, this creates
the illustration that the offloading delay is sufficiently short
to be reasonably ignored. To achieve execution slow-down,
we are investigating ways to clock down the CPU.

Step 2: Log Segmentation. Next, RainDrops determines
temporal boundaries of user code execution and system API
execution. This step can be done by having Remote Invo-
cation Stub and Phone Agent record event timestamps.

Step 3: Piece-wise Merging. After noise removal in
step 1, the Internet-induced offloading delay should be min-
imized. And, the emulator log should have a “gap” where
the app makes the system API call. Intuitively, this gap
can be filled by merging the time period system API exe-
cution on the physical device (which is determined in Step
2). However, since raw logs are generated on heterogeneous
devices, piece-wise merging requires considerations below.

First, directly taking absolute values from logs does not
work, as different execution containers may already be us-
ing different levels of (base) resource utilization before the
system API call. So, on the physical device, RainDrops con-
siders only the resource utilization increase due to servicing
the system API call.

Second, it is possible that the gap’s starting point, end
point, or even the size do not match those of the physical
device log. Therefore, we currently transform the physical
device log by stretching or compressing, as necessary.

5. PRELIMINARY EVALUATION
This section addresses the following questions: (1) Are

logs from RainDrops sufficiently accurate? (2) What are
resource costs for an idle device in the wild to join Rain-
Drops? (3) How has RainDrops helped developers in the
real world so far?

5.1 Methodology
We implement the RainDrops with Genymotion emulators

hosted on a Windows 8 Server (with quad-score 2.5 GHz
CPU), and two popular models of Android smartphones:
Nexus 6 and Galaxy S5. Our device pool currently spans
over locations in Beijing and Seattle. The offloading channel
uses JSON as the message format.

To generate reproducible workloads, we develop an An-
droid benchmarking app, RainTester, to perform four se-
quenced tasks: requesting geo-location updates, posting HTTP
requests to a popular weather server, encrypting a large
piece of data, and requesting accelerometer data. We log the
relevant performance counters – CPU : utilization and user
time, memory : private dirty, and network : HTTP request-
reply latency and incoming/outgoing packet rate.

5.2 Are Logs from RainDrops Sufficiently Ac-
curate?

To show that RainDrops can provide accurate logs as de-
veloper feedback, we use the traditional device-based testing

(a) Memory usage logged by traditional testing of real devices

(b) Memory usage logged by RainDrops

Figure 3: App behavior logged by RainDrops closely
resembles that logged by traditional testing of real
devices. Through event timestamping, we annotate
both figures with the RainTester app’s system API
calls.

CPU user time Private dirty memory
Location 0.973 0.898
Networking 0.803 0.876
Encryption 0.806 0.641
Sensing 0.608 0.964

Table 3: We quantify the testing accuracy of by cal-
culating the similarity score (r) for RainTester. A
score close to 1 would suggest that RainDrops logs
are very similar to traditional testing of real devices.

as the comparison baseline. And, we run the RainTester app
under different real-world contexts. Fig 3(a) and Fig 3(b)
show the private dirty memory consumption while running
RainTester with the traditional testing of real devices and
RainDrops, respectively. The fact that both curves exhibit
a very similar trend suggests RainDrops can provide suffi-
ciently accurate logs.

We further examine this observation by quantifying the
similarity of curve features captured by RainDrops and the
comparison baseline. First, since emulators cannot perfectly
emulate the CPU clock speed, we align two time-series logs
by applying Dynamic Time Wrapping (DTW) [25] in the
time axis. Then, we compute the Pearson correlation coef-
ficient (r) to quantify the log similarity. Since DTW does
not change curve features, r can reflect the similarity with a
score between -1 (i.e., total negative correlation) and 1 (i.e.,
total positive correlation).

Table 3 shows the r score w.r.t. both CPU user time
and private dirty memory from running the RainTester app.
Most r values are above 0.8, which indicates logs from Rain-
Drops closely resemble those from traditional device-based
testing. Furthermore, we note that encryption exhibits the
lowest similarity score on private dirty memory in Table 3.
This is due to Phone Agent consuming some memory to
cache the content to be encrypted. In addition, sensing ex-
hibits the lowest similarity score on CPU user time. That

Idle wait Execution
CPU util (%) 0.2 1.3
Private dirty memory (KB) 29488.1 33700.0
Network (KB/s) 0.2 10.5
Power (mw) 36.8 158.7

Table 4: Overhead of Phone Agent on Galaxy
S5. (1)Idle Wait: waiting for offloading commands.
(2)Execution: servicing offloading commands.

Table 5: RainDrops quickly provides feedback on
app behavior w.r.t. different real-world contexts.

(a) Avg. object download
time for five apps

Beijing Seattle
(ms) (ms)

#1 228 514
#2 268 507
#3 283 549
#4 513 319
#5 463 876

(b) Normalized test dura-
tion for App #1

Time
(Normalized)

802.11n 1
3G 1.14
GPRS 2.59

is because asynchronous sensor callbacks frequently overlap
with other Phone Agent activities.

5.3 Is Overhead from Phone Agent Feasible?
Ideally, Phone Agent should be light-weight to minimize

any undesirable artifacts being introduced to testing. Ta-
ble 4 shows its maximum resource overhead as measured
on a Galaxy S5 smartphone. We organize measurements
by the two states of Phone Agent. While empirical results
show that Phone Agent consumes little resources, it is in-
teresting that the memory consumption is higher than ex-
pected, especially during idle wait. This is because Phone
Agent consumes some resources to (1) periodically process
and stream sensor data that our testing app, RainTester,
registers for, and (2) periodically send keep-alive messages
to Coordinator.

5.4 Case Studies of App Problems Reported
Geo-location Factor. While a lot of apps depend on the
geo-location to dynamically present contents (e.g., news and
weather apps), adding location-aware code can introduce
opportunities for errors, especially that developers cannot
quickly get feedback from worldwide locations. One obser-
vation is that developers typically do not think about how
the app responsiveness changes with the user location. Ta-
ble 5(a) shows how the average object download time (msec)
varies from Beijing to Seattle for five production apps. In-
terestingly, the download time is always longer in Seattle
because the backend service has more Seattle-related con-
tents available. Our findings have motivated developers to
implement aggressive caching and background refresh.

Network Factor. Developers typically assume reasonably
good network conditions between their apps and backend
services. This assumption might not hold in the wild, and
lossy or slow network conditions can impact apps that are
not properly tuned for it. We illustrate this case study with
app #1. Table 5(b) shows how one production app’s (nor-
malized) test session completion time changes under differ-
ent network conditions. This feedback successfully help the
app developers to adopt image resolution scaling to mini-

mize the load time variance.

6. CONCLUSION
This paper takes the first step towards evolving automated

app testing services to scalably achieve test coverage and
realism. To this end, we demonstrate the potential of app
split-execution, and show the feasibility through a narrow-
waist architecture that combines emulators in the cloud and
physical devices in the wild.

7. REFERENCES
[1] Androguard. https://code.google.com/p/androguard/.

[2] Appium. http://appium.io/.
[3] OpenSignal. https://opensignal.com/products/.

[4] Rely on Real Emulators vs Devices. http://testdroid.com/
testdroid/5901/rely-only-on-real-emulators-vs-devices.

[5] Xposed. http://repo.xposed.info/.
[6] Applause. Applause. http://applause.com.

[7] Apple. TestFlight.

[8] Business Insider. iPhone Users Upgrade A Lot More Often
Than Android Users, 2015.

[9] Centercode. Keep The Beta Tests Confidential. 2013.
[10] R. Chandra, B. Karlsson, N. D. Lane, C.-J. M. Liang,

S. Nath, J. Padhye, L. R. Sivalingam, and F. Zhao. How to
Smash the Next Billion Mobile App Bugs? GetMobile, 19,
2015.

[11] C. Curtsinger and E. D. Berger. COZ: Finding Code that
Counts with Causal Profiling. In ATC. USENIX, 2016.

[12] Genymobile. Genymotion. http://genymotion.com.

[13] P. Gilbert, B.-G. Chun, L. P. Cox, and J. Jung. Vision:
Automated Security Validation of Mobile Apps at App
Markets. In MCS, 2011.

[14] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. RERAN:
Timing- and Touch-Sensitive Record and Replay for
Android. In ICSE. IEEE, 2013.

[15] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein.
MobiPlay: A Remote Execution Based Record-and-Replay
Tool for Mobile Applications. In ICSE. ACM, 2016.

[16] Google. Firebase Test Lab for Android.

[17] P. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and
D. Lo. Understanding the Test Automation Culture of App
Developers. In IEEE. ICST, 2015.

[18] LabUp! OpenDeviceLab.com - Access a Variety of Devices.
Worldwide. For Free.

[19] C.-J. M. Liang, N. D. Lane, N. Brouwers, L. Zhang, B. F.
Karlsson, H. Liu, Y. Liu, J. Tang, X. Shan, R. Chandra,
and F. Zhao. Caiipa: Automated Large-scale Mobile App
Testing through Contextual Fuzzing. In MobiCom. ACM,
2014.

[20] Microsoft. Windows Phone Emulator.
[21] Mikael Ricknas. Most Old Mobile Phones End Up in

Drawers. Computer World, 2008.
[22] OpenSignal. Android Fragmentation Visualized, 2014.
[23] Perfecto Mobile. A Single Platform for Your Digital App

Quality Needs. http://perfectomobile.com.
[24] Pew Research Center. Apps Permissions in the Google Play

Store. http://www.pewinternet.org/2015/11/10/
apps-permissions-in-the-google-play-store/, 2015.

[25] C. A. Ratanamahatana and E. Keogh. Everything You
Know about Dynamic Time Warping is Wrong. In KDD.
ACM, 2004.

[26] Sauce Labs. Sauce Labs. http://saucelabs.com.

[27] Testin Inc. Automated App Testing on Real Devices.

[28] Yahoo! Finance. New Study Finds $47 Billion Worth Of
Cell Phones Gathering Dust, 2014.

[29] T. Yoshida, H. Yamada, and K. Knon. Using a Virtual
Machine Monitor to Slow Down CPU Speed for Embedded
Time-Sensitive Software Testing. In ACS. IPSJ, 2009.

