
A Contextual Collaborative Approach for App Usage
Forecasting

Yingzi Wang∗†1, Nicholas Jing Yuan§2, Yu Sun‡†3,
Fuzheng Zhang†4, Xing Xie†5, Qi Liu∗6, Enhong Chen∗7

∗University of Science and Technology of China †Microsoft Research
§Microsoft Corporation ‡University of Melbourne

1yingzi@mail.ustc.edu.cn, {2nicholas.yuan, 4fuzzhang, 5xing.xie}@microsoft.com,
3sun.y@unimelb.edu.au, {6qiliuql, 7cheneh}@ustc.edu.cn

ABSTRACT
Fine-grained long-term forecasting enables many emerging
recommendation applications such as forecasting the usage
amounts of various apps to guide future investments, and fore-
casting users’ seasonal demands for a certain commodity to
find potential repeat buyers. For these applications, there of-
ten exists certain homogeneity in terms of similar users and
items (e.g., apps), which also correlates with various con-
texts like users’ spatial movements and physical environments.
Most existing works only focus on predicting the upcoming
situation such as the next used app or next online purchase,
without considering the long-term temporal co-evolution of
items and contexts and the homogeneity among all dimen-
sions. In this paper, we propose a contextual collaborative
forecasting (CCF) model to address the above issues. The
model integrates contextual collaborative filtering with time
series analysis, and simultaneously captures various compo-
nents of temporal patterns, including trend, seasonality, and
stationarity. The approach models the temporal homogeneity
of similar users, items, and contexts. We evaluate the model
on a large real-world app usage dataset, which validates that
CCF outperforms state-of-the-art methods in terms of both
accuracy and efficiency for long-term app usage forecasting.

Author Keywords
app usage forecasting; tensor decomposition; seasonal time
series; collabotative filtering

INTRODUCTION
Long-term forecasting is a typical way to predict future values
for many traditional applications. For example, it is used
to predict the trends of stock prices to minimize risks and
maximize returns for investors [4], to predict the demand
change of certain commodity for manufacturers [12], and to
predict severe weather such as heavy rain and blizzards to
reduce economic losses [2].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

UbiComp ’16, September 12-16, 2016, Heidelberg, Germany

© 2016 ACM. ISBN 978-1-4503-4461-6/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2971648.2971729

Many newly emerged applications further require fine-grained
long-term forecasting. Specifically, to provide more accurate
and personalized recommendation, we need to understand
users’ evolving preferences in terms of similar users, similar
items, and various contexts. For example, online retailers need
to know similar users’ long-term seasonal demand for certain
commodity and hence find potential repeat buyers [32]; App
developers need to find users’ long-term preferences for dif-
ferent apps to guide future investments; And news providers
need to understand users’ time-varying preferences for topics
under various contexts. There are also many other ubiquitous
applications that require fine-grained long-term forecasting
considering similarities and contexts. For example, when fore-
casting the count of influenza-like-illness cases for different
countries [37], we could explore similarities among region-
s and diseases, and find results under various contexts (e.g.,
time-varying regional demographics and economic statuses).
When forecasting the long-term probability of failures for t-
housands of servers in a data center, we could consider similar
performances of servers and various contexts measured by
temperature, humidity, etc. From the above examples, we can
observe that different from traditional forecasting problems,
these applications present evident homogeneous patterns, for
example, users with similar society background or lifestyles
tend to aggregate into groups [15, 39], as with items with
similar product functions [19, 20] or similar information con-
tents [22]. In addition, these applications are also related to
various contexts, such as users’ spatial movements and sea-
sonal weather changes, which reflect real-life situations and
enable more accurate forecasting.

Most previous works have only attempted to predict users’
upcoming requirement at current contexts (location, time, pre-
vious demand, etc.). For example, some methods predict the
next app a user will use to improve device usability and opti-
mize hardware operation [1, 28, 39], or predict customers’ next
online purchase to prepare for next item recommendation [17,
34]. These methods lack the ability to model long-term pattens
when only predicting the upcoming requirement one by one
because the uncertainty of future contexts will bring signifi-
cant challenges when we apply these methods to long-term
forecasting.

Timeseries analysis methods, for example, the ARIMA algo-
rithm [3] and Discrete Fourier Transform [18], present inspir-

1247

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

http://dx.doi.org/10.1145/2971648.2971729

ing performance in long-term forecasting for a single time
series. However, these methods cannot effectively address
fine-grained long-term forecasting problem due to the follow-
ing reasons. First, real-world user behavior data are often
sparse and long-tail. Second, these methods lack the capabili-
ty to exploit users’ contextual information. Thirdly, they can
not model the behavior patterns of users without history data,
which is considered a data missing problem. Although a few
studies have incorporated the collaborative filtering approach
in their time series models (tackling the sparse and missing da-
ta problems), such as MLDS in [26] and TriMine in [23], they
ignore the seasonal and trending properties, and contextual
information in temporal patterns.

In this paper, we propose a scalable and generalized
Contextual Collaborative Forecasting (CCF) model to de-
tect long-term patterns and jointly forecast the future values
of many variables of interest. Specifically, we deploy a high-
dimensional collaborative filtering method through tensor de-
composition to tackle sparse and data missing problems, where
we exploit the aggregate properties of similar users, items, and
contexts. We apply a detrend seasonal auto-regressive ap-
proach to predict the variables for each user in each type of
context, considering the auto-regressive, seasonal, and trend-
ing properties simultaneously for a long period. We systemati-
cally integrate collaborative filtering and time series analysis
through a joint optimization approach, accomplishing the tem-
poral co-evolution of all informative dimensions (i.e., user,
item, and context). In particular, we investigate and develop
the CCF model with the specific application of long-term app
usage forecasting. The proposed model could be easily ap-
plied to many other long-term forecasting problems such as
modeling users’ long-term online shopping behavior.

In summary, our paper offers the following contributions.

• We propose the CCF model which systematically integrates
contextual collaborative method with time series analysis.
The temporal co-evolution of informative dimensions is
achieved by an innovative joint optimization.

• We simultaneously consider seasonal, trending, and autore-
gressive properties of long-term temporal data, and model
the homogeneity of all informative dimensions using a col-
laborative filtering approach.

• We explore the correlation between users’ app usage be-
haviors and various types of contexts, and observe that app
usage patterns in functional-analogous venues are more
similar than venues of different functions.

• We evaluate the CCF model using a large real-world dataset
which consists of top-100 dominantly used apps (covering
over 70% share of the app market) and users’ real-time loca-
tions. Experiment results demonstrate that CCF significant-
ly outperforms state-of-the-art algorithms for forecasting
and data missing problems on several metrics.

The rest of paper is organized as follows. We first review
related work, and then introduce the contextual and homoge-
neous patterns, define the long-term forecasting problem, and
present the CCF model. After that, we report experiments and
conclude our work.

RELATED WORK
App Usage Prediction and Recommendation
We currently have abundant apps that provide useful services
in almost every aspect of modern life. Both users and app
developers have increasing requirements to explore the usage
patterns of different apps and users, for individual and com-
mercial use, respectively. Several studies have demonstrated
that human mobility is highly predictable in both spatial and
temporal dimensions [6, 36], especially for mobile phone us-
age patterns [29]. Therefore, app usage prediction [10, 28,
39] becomes a meaningful and achievable application for user
patterns mining on mobile apps.

Spatial and temporal mobility patterns are two fundamental
aspects in predicting future activities. Huang et al. [10] pro-
vide a Bayesian network and a linear model to explore the
spatialtemporal influence on app usage prediction. A classifi-
cation method is applied in [1] where real-time location-time
contexts are considered important features. Liao et al. [18] in-
vestigate the relation between apps and their usage times. They
utilize Discrete Fourier Transform to analyze usage periods
and specific times of different apps. Moreover, many studies
emphasize the correlation between temporally sequential app
usage records, in which a Markov chain [1], a Gaussian based
method [10], or a naive Bayes classifier [28] is applied to
extract the relationships between app actions.

Sociality is another fundamental factor of app usage pattern-
s [15]. Xu et al. [39] demonstrate that people in the same
community tend to share similar patterns of making app usage
decisions, especially for those users sharing similar spatial-
temporal lifestyles. The collaborative filtering technique is an
effective method to detect similar users and explore individual
potential app usage tendentiousness [13, 31, 40], especially
in a sparse dataset. Nevertheless, most previous studies fo-
cus on the next app usage prediction, ignoring the long-term
trend of apps for different users. Similar to users, apps for
similar situations or services also present similar long-term
spatial-temporal usage patterns.

Tensor Decomposition and Time Evolution
The tensor decomposition method has strong performance in
personalized prediction and recommendation applications [23,
25, 30, 42]. By computing a low rank approximation of the
original tensor, tensor decomposition clusters related dimen-
sions into specified numbers of groups. Zheng et al. [42] map
user, location, and user activity into a 3-dimensional tensor
to address the sparse problem in recommendation systems.
Rendle et al. [25] introduce a gradient descent optimization
method to solve the ranking problem for user tag recommen-
dation instead of the traditional least-square method. However,
real-world data are seldom stationary, and traditional tensor de-
composition algorithms lack the ability to deal with temporal
dynamic problems.

Time evolution investigation is a profound aspect in long-term
forecasting for weather, economics, supply chain, user mobil-
ity prediction, and so on [2, 4, 12, 27]. Some fundamental
and effective time series analyzing methods, like ARIMA,
Discrete Fourier Transform, and Markov chain algorithms,
are prevalently adopted in temporal dynamic analysis [3, 10,

1248

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

Lifestyle-related Office-related Game

Home Work

Figure 1. Spatial distributions of three different app usage logs

18]. Tseng et al. [33] propose a hybrid forecasting model,
combining the seasonal ARIMA method and the neural back
propagation model. Elfeky et al. [7] and Vlachos et al. [35]
explore the algorithms to detect periodicity in time-series data,
capturing the evolution patterns of temporal data.

After a long-time development of tensor decomposition and
time evolution algorithms, researchers perceive the limitation
of considering only one of them in some time-varying dataset.
A Bayesian probabilistic tensor decomposition method [38]
makes a Markovian assumption for the time-dependent feature
vector, assuming that each time vector depends only on its
immediate predecessor. Similarly, Rogers et al. [26] present a
multilinear dynamic system to model time series patterns in a
tensor, considering that the data in a time series are multilinear
projections of the latent matrices in tensor decomposition. By
combining auto-regressive model and tensor decomposition,
Matsubara et al. [23] propose a forecasting method, TriM-
ine, for time-evolving datasets. Unfortunately, they only deal
with Markovian correlated and auto-regressive properties in
time series, ignoring other important patterns, like seasonality
and tendency. Besides, TriMine firstly decomposes the user-
itemtime tensor into three latent matrices and then exploits the
auto-regressive model on temporal matrix for multiple time
window sizes, having the risk of losing temporal patterns in
the initial tensor decomposition procedure.

PROBLEM FORMULATION

Contextual and Homogeneous Patterns of App Usage
Many studies have demonstrated that human mobility is high-
ly predictable in a spatial-temporal space [6, 36]. Apps on
mobile devices, which are "carried" with people most time
and are easily triggered, can effectively reflect users’ mobility
characteristics [29]. Users exhibit diverse moving patterns for
different apps in spatial context. Figure 1 shows an anonymous
user’s spatial distribution when he/she launches three different
apps (a lifestyle-related app, an office-related app, and a game
app) in a city of USA, from November 20, 2015 to January 23,
2016. Here the black circles represent the user’s home, and
the triangles are his/her work place. We can clearly see that
lifestyle-related apps primarily distribute around the locations
of home and office, and scatter around some other places close
to home and office. Work place and home are dominant places
for office-related apps and game apps, respectively. When
users are in different contexts, the purpose in that situation
probably leads to a certain suitable app. For instance, users
will launch a food recommendation app when he/she steps into

(a) The app usage in two functionally similar venues

(b) The app usage in two functionally different venues
Figure 2. App usage patterns of a study-related app at three different
venues contexts

a food court, but when they enter a hospital, they may open
the hospital’s on-line registration system soon.

The homogeneous effects of similar users and apps have been
investigated in recent studies [15, 39]. Users with similar
society backgrounds and preferences attempt to aggregate in-
to a group since they may have analogous mobility patterns.
Besides, a person will typically become the user of a number
of apps with overlapping service purposes, to build broader
within-app social relationships, or enjoy diverse service expe-
riences. For example, a user may use Facebook and Twitter
frequently during the same period, which are both social app-
s, and a white-collar worker who launches Microsoft Word
everyday may have high demand for Excel. For apps, the
ones with similar functions, even similar user interface styles,
may attract the users with similar lifestyles or requirements.
Also, it is well understood that the usage of apps of similar
functionalities shows similar usage patterns. Work-related
apps have more users during working hours while game apps
attract more users in evenings and weekends. In addition, we
discover that aggregate patterns also exist in the contextual
dimension. Figure 2 presents the temporal usage amounts of
a study-related app in two education-related venues (green
and blue lines) and one entertainment place (red line). It illus-
trates that the app usage in two functional-analogous venues
(education-related) is more similar than two venues of differen-
t functions (an education-related venue and an entertainment
venue). Both venue visits and app usages are purpose-driven
activities, which helps us understand the similar homogeneous
pattens of visit and usage behaviors.

Problem Definition
We define our studied problem in this section. First, we in-
troduce the notations used throughout this paper. Let U =
{u1, u2, ..., uM} denote the M users. Let V = {v1, v2, ..., vN}

represent the N apps in our model. Let C = {c1, c2, ..., cL}

represent the L spatial-contextual features of a certain user-
app-time group (detailed in Data Preprocessing Section). We
split the time line into a number of slices, for example, 8
hours per slice. Let time slice list S = {s1, s2, ..., sTS } denote
the training period and F = { f1, f2, ..., fTF } denote the testing
period, where f1 is the next slice of sTS .

Our studied problem is to forecast the long-term app usage
amount and trend for each user-app pair, where the long-term

1249

SESSION: NOTIFICATIONS AND SCHEDULING

Table 1. Mathematical Notation
Symbol Size Description
X M × N × L × TS detrend training tensor of app usage for

M users, N apps, L contexts and TS time
slices

X̃ M × N × L × TF forecasting tensor
Ẍ M × N × L × TF testing tensor
U M × K user latent matrix
V N × K app latent matrix
C L × K context latent matrix
S TS × K detrend training time series latent matrix
F TF × K forecasting time series latent matrix
W(k) T × H(k) constraint regularization matrix for Sk
Φ K × P time series’ AR parameter matrix
Θ K × Q time series’ seasonal parameter matrix
d 1 × K season length set for K clusters

means at least half a month. Specifically, given the app usage
amount of all dimensions um, vn, cl and stS (where um ∈ U,
vn ∈ V, cl ∈ C and stS ∈ S), our goal is to extract the patterns
to forecast the temporal fluctuation of a certain user um and app
vn in future time slices F . For model simplicity, we assume
that slices in S and F have the same split length. Moreover,
we can forecast the temporal trend in various time granularities
(4 hours or 6 hours per time slice etc) to capture diverse time-
related characteristics.

MODEL
We propose a constrained tensor decomposition model to sys-
tematically integrate the contextual collaborative filtering tech-
nique with time series analysis. Specifically, we utilize a high-
dimensional tensor to exploit aggregate properties of similar
users, apps and contexts. Then, we apply a detrend seasonal
auto-regressive approach to constrain and model the tempo-
ral dimension of this tensor, considering the auto-regressive,
seasonal, and trending properties simultaneously with a joint
optimization.

4-Dimensional Tensor Decomposition
To capture the complicated temporal relationships among user-
s, apps, and contexts, as well as the homogeneous phenomenon
in each dimension as mentioned before, we introduce a 4-
dimensional tensor X in our model. Each entry Xm,n,l,t rep-
resents the app usage amount of app n for user m in the lth
context at time slice t. We assume that each dimension con-
tains K latent clusters. Specifically, we decompose tensor
X into 4 low-rank latent matrices U, V, C and S, which is
illustrated in Figure 4. For a better visulization, we flatten the
time dimension to a parallel direction with context in Figure
4. Column vectors Uk, Vk, Ck and Sk represent the kth cluster
of each latent matrix. Noted that the co-evolving temporal
patterns, such as regularity or sequentiality of time series,
constrain the distribution of S matrix. We deploy a temporal
regularization function G(S) to achieve such pattern-related
constraints, where G(S) = 0 if the time series latent matrix S
satisfies the constraint completely. The larger G(S) is, the less
S meets the constraint. More details about G(S) are discussed
in the following section. Now we use CP decomposition [16]
to decompose tensor X into rank-one tensors and estimate X
as:

X ≈

K∑
k=1

Uk ◦ Ck ◦ Vk ◦ Sk,

s.t. G(S) = 0,

(1)

Figure 3. Decomposition of an app usage time series

where (Uk ◦Ck ◦Vk ◦ Sk)u,c,v,s = Uu,kCc,kVv,kSs,k, and ◦ repre-
sents the vector outer product [16]. We summarize the related
notations and their sizes in Table 1.

Seasonal AR Parameters
A single time series includes all of or part of the three com-
ponents: trend, seasonality and stationarity [3, 9]. Trend is
the slow, gradual increasing or decreasing patterns over the
whole time series. Seasonality, also called periodicity, is the re-
curring component with regular moving characteristic, which
shows regular fluctuation in a time series curve. Stationarity
is defined by the condition that (X1, ..., Xn) and (X1+h, ..., Xn+h)
have the same joint distribution for any integer h and n > 0 [3].
Figure 3 is the decomposition result of a certain user’s app
usage time series using moving averages method in [14]. The
time series is decomposed into three components as mentioned
above. The top figure is the raw app usage count series in 46
days (from Nov. 20 2015), where a time slice contains 8 hours.
The yellow, blue, and red lines (from the second to the last fig-
ure) represent the trend, seasonal, and stationary components
of the raw time series, respectively. We can clearly see that
the seasonal component shows a one-week (21 time slices)
periodical pattern, with higher app usage in weekdays and
lower in weekends. The trend comes up in the first two weeks
then gradually decreases in the rest time.

Time series analytics techniques often first remove the trend
and seasonality from the raw time series, estimate the remain-
ing stationary component [3], compute the trend and period
separately, and then add them back to the stationary compo-
nent. Following this method, we apply a trend identi f ying
method [8] and a detrending approach [3] to remove the trends
from raw time series. Specifically, we apply linear regression
on all time series against time and compute the slope coeffi-
cient for estimating significance. If the coefficient is larger
than a predefined threshold, we consider that the time series
includes a linear trend component. Next, we eliminate all
the trend components in raw time series by differencing. In
particular, for each time series X̄m,n,l with a trend component,
the difference operation of each time slice t is defined as:

Xm,n,l,t = 5X̄m,n,l,t = X̄m,n,l,t − X̄m,n,l,t−1, (2)

for t > 1.

1250

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

≈ +… … +

M

N

L
M

L

N

K

M
L

N

M
L

N

Figure 4. Illustration of CCF model

Nevertheless, the seasons of different user-app-context groups
are diverse and complex, which makes it difficult to detect
them, even remove them one by one. As illustrated before, the
temporal co-evolving series in tensor X tend to aggregate into
K clusters, forming the latent matrix S. We propose to investi-
gate the seasonal and stationary components of the K temporal
clusters through a seasonal auto-regressive (AR) algorithm [3,
5, 9, 33], and obtain the seasonal and autoregressive compo-
nents simultaneously. If we only consider the AR part of the
model, the constraint function G(S) of time series Sk can be
written as:

φk(B) · Sk,t = Zk
t , (3)

where
φk(B) = 1 − Φk,1B − Φk,2B2 − ... − Φk,PBP,

BpSk,t = Sk,t−p,

Zk
t ∼ WN(0, σ2

k),
t ∈ {P + 1, P + 2, ...,TS }.

Here we assume TS > (P + 1). P is the auto-regressive degree
in the model, which indicates that the current result is corre-
lated with the previous P time slices (Sk,t−1,Sk,t−2, ...,Sk,t−P).
Φk,p is the correlation coefficient for time slice Sk,t−p, repre-
senting the weight of each previous time slice, and φk(·) is a
Pth polynomial. B is the backshift operater and Zk

t is white
noise.

Now we discuss the seasonal component of the previous func-
tion. We apply the Segment Periodicity Detection (SPD)
method [7] to discover the periodic pattern of a time series
without completely searching the whole sequence. Specifi-
cally, we first reduce the dimensionality of time series and
discretize them using the method in [21], transforming the
values of time slices into a predefined number of symbols,
and then apply SPD on the K latent time series and obtain the
period set d = {d1, d2, ..., dK}. We add the seasonal difference
and seasonal AR component to the constraint function G(S):

φk(B) · θk(Bdk) · (1 − Bdk)DSk,t = Zk
t , (4)

where{
θk(Bdk) = 1 − Θk,1Bdk − Θk,2B2dk − ... − Θk,QBQdk ,

t ∈ {(Q + D)dk + P + 1, (Q + D)dk + P + 2, ...,TS },

and other parameters conform the definitions in Equation (3).
Here we also assume TS > ((Q+D)dk+P+1). Q is the seasonal
auto-regressive degree, which indicates that the current value is
relevant to previous Q seasons, and D is a non-negative integer
represents the seasonal difference degree (similar with the

difference operation in Equation (2)). Brockwell and Davis [3]
suggest that D is rarely more than 1, and P, Q are less than 3
in typical applications. Therefore, we set D = 1 and P, Q less
than or equal to 3 in the rest of our paper.

Let Φk,0 = −1,Θk,−1 = 0,Θk,0 = −1 and Θk,Q+1 = 0, Equation
(4) can be rewritten as

Q+1∑
q=0

P∑
p=0

(Θk,q − Θk,q−1)Φk,pBqdk+pSk,t = Zk
t . (5)

CCF Model
With the above formulation, we can write the function G(S) in
Equation (1) as:

G(S) =

K∑
k=1

TS∑
t=t̄

Q+1∑
q=0

P∑
p=0

(Θk,q −Θk,q−1)Φk,pBqdk+pSk,t −Zk
t , (6)

where t̄ = (Q + 1)dk + P + 1. G(Sk) = 0 represents the sea-
sonal auto-regressive constraint function for latent time series
Sk. At this point, we have specified the constraint function
G(S) of latent matrix S to achieve obtaining the seasonal and
autoregressive components simultaneously.

To integrate the estimation of tensor X and the constraint func-
tion G(S) for temporal co-evolution, we propose a constraint
matrix W(k)

∈ RTS×(TS−(Q+1)dk−P) for Sk. G(S) = 0 is equivalent
to
∑K

k=1 ‖S
>
k W(k)

‖2F = 0. Assuming P,Q < dk, we can define
W(k) as:

W(k)
i, j =


Ψ(q, p) i f (i − j) mod dk = P − p

and (i − j)/dk = Q + 1 − q ,
0 otherwise

(7)

here Ψ(q, p) = (Θk,q − Θk,q−1)Φk,p. The matrix structure of
W(k) is:

Ψ(Q + 1, P ∼ 0)
.
.
.

. . .

Ψ(1, P ∼ 0) Ψ(Q + 1, P ∼ 0)
.
.
.

. . .
.
.
. Ψ(Q + 1, P ∼ 0)

Ψ(0, P ∼ 0) Ψ(1, P ∼ 0)
.
.
.

. . .
.
.
. Ψ(1, P ∼ 0)

Ψ(0, P ∼ 0)
.
.
.

Ψ(0, P ∼ 0)


,

where Ψ(q, P ∼ 0) = (Ψ(q, P),Ψ(q, P − 1), ...,Ψ(q, 0))>, and
the intervel between Ψ(q, P ∼ 0) and Ψ(q+1, P ∼ 0) is (dk−P).

1251

SESSION: NOTIFICATIONS AND SCHEDULING

Algorithm 1: Optimization of CCF Model

Input: X̄,K, λ, η, I, iter, ε
Output: U,V,C, d,Φ,Θ

1 detect X̄m,n,l with trend, update it with (2);
2 U, V, C, S, d⇐ U0, V0, C0, S0, d0 ;
3 i = 0;
4 repeat
5 i++;
6 update U with (9);
7 update V with (11);
8 update C with (10);
9 for k = 1, 2, ...,K do

10 update Sk with (12);
11 update d;
12 estimate Φ,Θ using maximum likelihood procedure ;
13 for k = 1, 2, ...,K do
14 update W(k) with (7);

15 until (Ω in (4) < ε) or (i > iter);
16 return U,V,C, d,Φ,Θ

If we consider Ψ(q, P ∼ 0) as a module, each column of W(k)

contains (Q + 2) discontinuous modules.

Now our goal is to estimate parameters U, V, C, S, and
{W(1),W(2), ...,W(K)

} that minimize the following objective
function:

Ω =‖X −

K∑
k=1

Uk ◦ Ck ◦ Vk ◦ Sk‖
2
F + λ

K∑
k=1

‖S>k W(k)
‖2F

+ η(‖U‖2F + ‖V‖2F + ‖C‖2F),

(8)

where (Uk ◦ Ck ◦ Vk ◦ Sk)u,c,v,s = Uu,kCc,kVv,kSs,k, and λ, η
are two regularization parameters. The optimization of matrix
W(k) is the estimation ofΦ,Θ, and d, which are the parameters
of time series’ seasonal and AR components.

After obtaining all the parameters above, we can effectively
forecast the future app usage amount. We estimate the future
time series latent matrix F ∈ RTF×Kusing Equation (5), and
compute the forecasting tensor as X̃ =

∑K
k=1 Uk ◦Ck ◦Vk ◦ Fk.

Optimization
Tensor decomposition can be approximated as a linear least-
square problem [16]. However, the optimization of our latent
matrices is more complicated on account of the regulariza-
tion terms. Therefore, we apply the alternative estimation
method in our model optimization. We iteratively estimate
the four tensor latent matrices U, V, S, C, and the constraint
matrix W(k), systematically integrating collaborative filtering
approach and time series analysis method. We use gradient de-
scent to estimate the four latent matrices. It is hard to compute
the gradient of a 4-dimensional tensor directly. Thus we firstly
flatten the tensor X into matrix along different dimensions,
and then compute the gradient of each matrix. Specifically, we
flatten the tensor through 4 dimensions which are denoted by
X(U),X(C) , X(V), and X(S), respectively. Specifically, matrix
X(U) ∈ RM×(T NL) is a type of arrangement of X, where the user

(a) distribution of users (b) distribution of apps

Figure 5. Statistics of app usage data

dimension in X becomes the rows of the resulting matrix X
and the rest dimensions are flattened into a vector through the
oreder of {context, app, time}. Other matrices are obtained
similarly.

Let X̂ denotes the vector outer product of four latent matrices∑K
k=1 Uk ◦Vk ◦Ck ◦ Sk. We flatten X̂ and obtain the following

matrices:

X̂(U) = U(S � V � C)> ∈ RM×(T NL);

X̂(C) = C(S � V � U)> ∈ RL×(T NM);

X̂(V) = V(S � C � U)> ∈ RN×(T LM);

X̂(S) = S(V � C � U)> ∈ RT×(NLM),

where � is the Khatri-Rao product [16]. We compute the
gradients of the above four target matrices:

• Gradient of U:
∂Ω

∂U
= 2(X(U) − X̂(U))(−S � V � C) + 2ηU, (9)

• Gradient of C:
∂Ω

∂C
= 2(X(C) − X̂(C))(−S � V � U) + 2ηC, (10)

• Gradient of V:
∂Ω

∂V
= 2(X(V) − X̂(V))(−S � C � U) + 2ηV, (11)

• Gradient of Sk:

∂Ω

∂Sk
= 2(X(S) − X̂(S))(−Vk � Ck � Uk) + 2λW(k)W(k)>Sk,

(12)
where W(k) is defined in Equation (7).

We need to further estimateΦ, Θ and d for W(k). The approxi-
mation of d is presented in Detrend Seasonal Auto-Regression
Section. The Φ and Θ vectors are estimated by the maximum
likelihood procedure [3]. Pseudo-code of the optimization
process is presented in Algorithm 1.

EXPERIMENT

Settings
Data Preprocessing
We utilized a real-world app usage dataset from a digital as-
sistant consisting of anonymized users’ PC and mobile phone
records from November 20, 2015 to January 23, 2016. The
information of each record included user id, app name, app

1252

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

category, launch time, duration time, time zone, and etc. Us-
ing only PC records or mobile phone records fails to reflect
users’ total demands on apps, so we use PC and mobile data
simultaneously. Users could link their PCs and mobile phones
through uniform accounts. In addition, considering that only
mobile phones could reflect users’ real-time locations, we se-
lected users with at least one mobile phone record. We mainly
collected users’ app usage logs and location signal logs. We
plot the Log-Log distribution of these users and used apps in
Figure 5. Figure 5(a) shows that a small amount of apps have
dominant usage while a large amount of apps were launched
less than 1000 times. Figure 5(b) shows that most users have
similar app usage patterns during the 65 days, and only a few
of them have extremely high or low app usage records.

We also collected POI venues’ information (latitude, longitude,
and category) of United States and a few countries in the
Middle East. We then mapped locations signals of users in
these areas to POI venues’ location information to obtain the
visited venue signals. According to our statistics, the top-100
apps have dominant usage records (more than 70%) in these
areas. To experiment with apps having sufficient records, we
chose the app usage records of the these top-100 apps in our
experiments. After that, the detection method in [41] was
applied to detect the home and work places for these users.
Then, we filtered users with less than 3250 usage logs of these
100 apps (50 records per day on average), and less than 65
visited venue logs (visited some venues at least once a day on
average). We also filtered users who only used less than 50
apps in the 100 apps, avoiding getting an excessively sparse
dataset. After such preprocessing, we obtained 11,489,997
app usage logs of 1558 users, together with their app usage
location records, visited venues, home, and work information.

Baselines
We compare the proposed CCF model with four baselines,
MLDS, TriMine, Seasonal ARIMA, and Context-aware next
app prediction model.

• MLDS. Multilinear Dynamical System (MLDS) [26] mod-
els the time series tensor as a multilinear projection on
some latent spaces. Specifically, it creates a latent ten-
sor sequence {Z1,Z2, ...,ZTS }, in which each tensor Zt
is projected to an observation tensor Xt. The initialization
probability P(Z1), the conditional distribution probability
P(Zt+1|Zt) and the observation probability P(Xt |Zt) are
estimated through an EM algorithm.

• TriMine. TriMine [23] assumes each latent matrix of tensor
X has K hidden topics. It uses topic modeling approach
and applies the collapsed Gibbs sampling method to extract
the latent factors for each dimension. Then they model the
temporal dimension matrix with auto-regression method on
multiple time granularities.

• SARIMA. Seasonal ARIMA (SARIMA) is an efficient non-
stationary single time series analysis algorithm [3, 11]. It
forecasts each single time series of a certain user-app pair
through the automatic SARIMA approach proposed in [11].

• Next-Pre. Contextual next app prediction (Next-Pre)
method collects several user-related, environment-related,

and app-related contextual data, estimating the probability
of each app through a naive Bayes classifier [28]. In our
experiments, we use Next-Pre to predict the next app one
by one keeping consistent with the app usage frequency in
training data.

Metrics
We use three metrics to measure the performance of app usage
forecasting: Root Mean Square Error, Relative Euclidean
Distance, and Pearson’ Correlation. Since we only focus on
user-app long-term forecasting, we define the user-app testing
data and forecasting result as Ẍ , X̃ ∈ RM×N×TF , respectively.
For CCF model, we define X̃m,n,t =

∑L
l=1 X̃m,n,l,t and Ẍm,n,t =∑L

l=1 Ẍm,n,l,t

• RMSE. Root Mean Square Error (RMSE) [24] of time slice
t is defined as:

RMS E(t) =

√∑
(m,n)

(Ẍm,n,t − X̃m,n,t)2/|X̃t |,

where t ∈ {1, 2, ...,TF}, and |X̃t | is number of elements in
the tth time slice of X̃.

• RED. Relative Euclidean Distance (RED) [26] is another
metric to measure the app usage count prediction error:

RED(t) =

√
(
∑
(m,n)

(Ẍm,n,t − X̃m,n,t)2)/(
∑
m,n,l

Ẍ2
m,n,t).

• PC. We exploited the Pearson’ Correlation (PC) to measure
the trend similarity (the similarity of curves’ shapes):

PC(t) =
E[ẌtX̃t] − E[Ẍt]E[X̃t]√

E[Ẍ2
t] − E[Ẍt]2

√
E[X̃2

t] − E[X̃t]2

where t ∈ {I, I + 1, ...,TF} and Ẍt is a I-length sequence
defined as Ẍt,i =

∑
m,n Ẍm,n,t−I+i. In our experiments, we set

I = 10;

Here, a lower RMSE, RED value and a higher PC value indi-
cate a better performance.

Experiment Design
We used the location information and visited venues as app
usage context. The locations where a user launched an app
were categorized into four types: home-correlated, office-
correlated, venue-correlated and others. We allocated app
usage locations to the first or second type if their distances to
home or office were less than a chosen threshold (500 meters in
our experiment). Subsequently, we aggregated visited venues
into 18 general types according to the POI information, such
as travel, education, restaurant, and art, and mapped all the
venue-visited-synchronous app signals into these general types.
The app signals which did not match to home, work or any
venues were categorized into the "others" type. Therefore,
the context dimension contained 21 spatial and venue-related
types of content. We split the 65 days between November 20,
2015 and January 23, 2016 into 195 time slices, with 8 hours
per slice. We use 140 slices as training data and 55 as testing.

1253

SESSION: NOTIFICATIONS AND SCHEDULING

RMSE CCF CCF-Con CCF-appCF CCF-Ss CCF-CoEv TriMine SARIMA Next-Pre
12-8am 0.8362 0.8651 0.8472 1.0766 0.8725 1.0649 1.5053 2.8716

8am-4pm 2.1390 2.2125 2.2233 2.2033 2.2108 2.5369 2.7291 4.1295
4pm-12am 1.8802 1.9370 1.9752 1.9092 1.9498 2.2069 2.4505 4.0407

Table 2. RMSE results of different models.

(a) different K (b) different λ

(c) different η (d) different (P, Q) pairs
Figure 6. Experiment results of CCF for different parameters

In this way, we created a training tensor X̄ ∈ R1558×21×100×140

and a testing tensor Ẍ ∈ R1558×21×100×55.

To emphasize the effects of different components in CCF, we
add four sub-CCF models in the experiment: 1. We remove the
seasonal part of CCF and denote it by CCF-Ss, 2. We change
the co-evolving optimization procedure in Algorithm 1, only
updating matrix W(k) after the iterth optimization iterations,
which is represented as CCF-CoEv, 3. We aggregate the con-
textual dimension of tensor X̄ and Ẍ, denote it as CCF-Con,
4. We ignore the collaborative filtering of different apps and
optimize the result for each app separately, which is denoted
as CCF-appCF.

Forecasting the app usage trend for a user without history
records is required in many real-world applications. Therefore,
we also designed a data missing test in our experiment, which
randomly removed a certain proportion of user-app pairs in
training data, and evaluated the performance of CCF and TriM-
ine against these removed data (we cannot evaluate SARIMA
and Next-Pre since they can only forecast the app usage of a
user with complete history records).

Results
We first present the results of different parameter values in
Figure 6. We applied z-normalization approach to amplify and
normalize the results. Figure 6(a) plots the result when we
vary K from 5 to 60 when (λ, η) = (0.1, 0.1) and (P,Q) = (3, 1).
We can see that the CCF model has the best performance when
K = 50, and the sudden decrease of performance happens
when K is larger than 50. Factor λ is the regularization pa-
rameter of time series latent matrix S. Figure 6(b) shows that
the influence of λ is stable when it is less than 0.01 and larger
than 0.5, and CCF has the lowest RED and RMSE values
when λ = 0.1. We can also see that the PC result shows tiny
changes when λ varies from 0.001 to 5, indicating that the
weight of S’s regularization has little impact on shape sim-

(a) Relative Euclidean Distance results comparison

(b) Pearson Correlation results comparison
Figure 7. Experiment results of CCF, SARIMA, TriMine, and Next-Pre

ilarity of forecasting series than forecasting value accuracy.
Figures 6(c) and 6(d) plot the result of varying η from 0.001
to 5 and result of different (P, Q) combinations, respectively.
The CCF model has the best performance on RED and PC
when η (the regularization term of U, V and C) equals 0.1.
The PC value keeps stable when η is between 0.05 and 1. We
evaluate all the (P, Q) combinations with P and Q less than
4 (reason is explained in the Model Section). CCF shows the
best results when P = 3 and Q = 1, which means that current
app usage amount is highly related to the previous three time
slices and one season, where three time slices are just one day.
We train the CCF model with K = 10, λ = 0.1, η = 0.1 and
(P,Q) = (3, 1) in the rest of our experiment (we set K as 10
due to the model complexity problem, the complexity of CCF
is linear with K).

Next, we present the results of CCF, TriMine, MLDS, SARI-
MA, and Next-Pre. The time complexity of MLDS is ex-
tremely high for a 4-dimensional tensor. We therefore selected
small sub-tensors ofX including different amount of users and
tested the efficiencies of MLDS and CCF. Figure 8(a) shows
that with the growth of users, the running time of MLDS in-
creases exponentially, while the time of CCF only presents
linear growth. MLDS will take weeks of time if the number
of users is larger than 1000. Therefore, we randomly selected
100 users to compare the performance of MLDS and CCF, and
presented the average results of 5 runs in Figure 8(b). CCF
outperforms MLDS on all the three metrics, and has a large
(9.92%) improvement on PC. Figures 7(a) and 7(b) show the
RED and PC results for app usage forecasting of TriMine,
SARIMA, Next-Pre, and CCF, where the differences between
CCF, TriMine, and SARIMA are presented in the bottom his-
tograms. We present the RMSE results in Table 2. Overall,
we observe that the performance of Next-Pre is worse than the

1254

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

(a) Wall clock time comparison
between CCF and MLDS

(b) Performance comparison be-
tween CCF and MLDS

(c) RMSE values comparison among the top-100 apps

Figure 8. (a)Efficiency comparison between CCF and MLDS (b) Performance comparison between CCF and MLDS (c) RMSE values of the 100 apps

(a) Forecasting results of CCF and TriMine

(b) Forecasting results of SARIMA and Next-Pre
Figure 9. Forecasting results of a certain life-related app from CCF,
SARIMA, TriMine, and Next-Pre

other three methods on RED, PC, and RMSE. Next-Pre also
has an upward tend on RED, which is mainly due to the error
accumulation when predicting the next app one by one. On
average, CCF outperforms TriMine, SARIMA and Next-Pre
by 14.75%, 15.30%, 48.63% on RED, and 14.80%, 29.36%,
57.47% on RMSE, respectively. Figure 7(b) illustrates that
the forecasting PC of SARIMA deteriorates rapidly during
the 55 time slices, and finally has almost the same value as
Next-Pre. We can also observe that all four models have the
highest RED value in the first 8 hours during a day, but lowest
RMSE during that period. This demonstrates that users’ ap-
p usages are smallest during 12am-8am, which is consistent
with our everyday experiences. Similarly, the lowest RED and
highest RMSE values during 8am-4pm verify that 8am-4pm
has the largest usage amount during a day. CCF has the most
stable RED and highest PC values within the testing period,
which indicates the best ability to fit the trend of temporal
patterns. Figure 9 shows the forecasting results of different
models for a music app. For a better visualization, we separate
Figure 9 into two sub-figures. The performance of TriMine is
as good as CCF in the first 15 time slices, but decreases rapidly
in the rest. The forecasting from SARIMA has regular and
diminishing fluctuation, consistent with the increasing RED
and decreasing PC values in Figure 7.

Figure 10 and Table 2 show the results of CCF and sub-CCF
models. Figure 10(a) presents the increase rate of RED when
we remove different components from CCF model. It clearly
shows that CCF has significant superiority compared to all
the sub-models. CCF-Ss has the highest RED increase rate
(increase 11.27% compared with CCF on average), highest
RMSE value in 12am-8am, and lowest, decreasing PC values,
which confirms the importance of considering seasonal part

(a) RED Increase rates of different sub-CCFs compared with CCF

(b) Pearson Correlation results of different sub-CCF models
Figure 10. Comparison between CCF and sub-CCF models

of time series in forecasting. The removal of the co-evolving
procedure during optimization, CCF-CoEv, decreases 6.96%
PC from CCF, demonstrating the effectiveness of modeling
co-evolution among different dimensions. CCF outperforms
CCF-appCF by 3.25% on RMSE on average. The decrease
of RMSE during 8am-4pm is 1.93 times larger than that of
12am-8am period, which is mainly due to the higher app usage
amount which provides more collaborative opportunities.

The collaborative component of CCF model iteratively aggre-
gates apps with similar usage patterns into clusters, detects
the temporal patterns of these clusters, and then forecasts their
future patterns after convergence. Figure 11 shows app usage
time series of two different app clusters, where solid lines
represent training data, and dotted lines are forecasting results.
We can observe what the first cluster, which is plotted by the
green line, contains apps that are mostly office related tools,
such as Calendar and Microsoft Office. We can see a clear
one-week season and a decreasing usage on weekends and
American holidays, like Thanksgiving, Christmas and New
Year. Besides, these apps have evident usage peak at 8am-4pm
during workdays, which is consistent of our empirical thought-
s of work time during a day. As mentioned before, P = 3 and
Q = 1 makes the forecasting only related to the previous three
time slices and one season, which leads to the lower predic-
tion value for Thursday and Friday (due to the low app usage
amount at New Year). The red line shows a cluster consisting
of popular game apps, such as League of Legends and Candy
Crush. Different from the first cluster, the game cluster has
high usage amount on weekends and holidays. The period
4pm-12am is the usage peak of this cluster, which indicates
that most users prefer to playing games during leisure time.

1255

SESSION: NOTIFICATIONS AND SCHEDULING

Thanksgiving
Christmas New Yearweekend

8am-4pm

4pm-12am

Figure 11. Time series of two app clusters

Rate CCF TriMine

RMSE RED PC RMSE RED PC
0.1 1.7836 0.9464 0.5584 1.8391 1.0180 0.3661
0.2 1.9588 0.9494 0.5616 2.0198 1.0195 0.3717
0.3 1.9502 0.9618 0.5266 2.0091 1.0137 0.3559
0.4 1.9951 0.9553 0.5252 2.0585 1.0097 0.3453
0.5 1.9983 0.9533 0.5195 2.0632 1.0137 0.2349
0.6 2.0064 0.9627 0.4799 2.0718 1.0199 0.2222

Table 3. Data missing test results of CCF and TriMine.

We plot the average RMSE value of the 100 selected apps in
Figure 8(c). We categorize these apps into six types, annotated
in the figure. It shows that games and lifestyle related apps
(news, weather, sport etc.) are mostly predictable, while the
usages of browsers and readers are least predictable. The
predictability of apps for photo, media, and tools do not have a
consistent pattern, which requires more exact category division
to investigate their properties. Social and communication
apps, such as Facebook and Skype, show medium predictive
performance, which indicates that online social and chatting
behaviors has both high regularity and uncertainty.

Finally, we discuss the data missing problem of app usage
forecasting, with the results presented in Table 3. The miss-
ing rate is the proportion of removed training data, and the
evaluation is only tested on removed user-app pairs. We can
observe that both CCF and TriMine perform worse on new
users for existing apps compared with the results in Figure 7
and Table 2, and they all have decreasing performance when
the missing rate increases. Nevertheless, CCF still outper-
forms TriMine at all missing rates on three metrics, and has a
78.43% improvement on PC compared with TriMine.

DISCUSSION

Implications and Limitations
We have evaluated our approaches on a large-scale real-world
dataset, collected the usage logs of top 100 used apps which
cover over 70% share of market in the digital assistant in Unit-
ed States and several Middle Eastern countries, and recorded
the continuous locational context information of all users. Al-
though there are some biases focusing on only top-100 apps,
it still has the power of persuasion. Besides, the CCF model
has superior scalability, because we can easily enlarge context
types by extending the contextual vector or adding new di-
mensions in the tensor. Moreover, CCF can also generalize to
other analogous long-term mobility modeling problems. For
example, users’ online shopping behaviors present various
time series patterns for different products, where aggregate
effects may present in either users with similar interests or
products of similar functions, and long-term Point of Interests

(POI) visiting mobility may also show analogous temporal
properties among similar users and POIs.

Meanwhile, our model and experiment have several limitation-
s. First, there are some biases in our dataset. We have only
collected the data of users who had mobile logs and provided
permission to record their locations which are only a small
part of all users, ensuring the contextual dimension but losing
the comprehensiveness of data. We also have only focused
on forecasting top-100 apps, leaving the evaluation suffering
from bias. In addition, we have considered the POI venues’
information only from the United States and a few countries
in the Middle East, constraining the diversity of users and
apps. Some regionally famous apps, such as WeChat of China,
were not included in our experiment. Second, only a small
part of app usage records present conspicuous increasing or
decreasing trends within two months. In the future, we will
extend the time span of dataset and study more complicated
interactions among different apps, such as the positive and
negative correlation of different apps’ usage amount tendency.
Third, all the aggregated time series are modeled by a uniform
latent factor size K, auto-regression degree P, seasonal dif-
ference D, and auto-regression degree Q. Our future work is
to extend CCF to investigate the automatic degree learning
approach, and achieve the co-evolution among different apps
in optimization.

Privacy
In our experiment, we have collected the app usage logs and
location signals of users who granted recording permission to
the digital assistant. All the logs were anonymously record-
ed, and a character id with uniform format and consistent
length was allocated to each user. Particularly, the system uses
several advanced techniques to protect users’ privacies, and
deletes dataset periodically to only preserve the latest data for
improving personal services of the digital assistant.

CONCLUSION
In this paper, we introduced the influence of location-based
contextual information on long-term app usage patterns, and
developed a general model integrating collaborative method
and time series analysis, which achieves the temporal co-
evolution in model optimization. In particular, we have applied
collaborative filtering to exploit the homogeneous patterns of
similar users, items, and contexts, and explored the long-term
temporal patterns of these three dimensions through a time
series analysis method considering the seasonal, trending, and
auto-regressive properties simultaneously. Extensive evalua-
tions were provided to validate the performance of our model
using a large-scale real-world app usage dataset. The results
have shown that our model significantly outperforms state-
of-the-art methods on long-term forecasting and data missing
problems.

ACKNOWLEDGMENTS
This research was partially supported by grants from the Na-
tional Science Foundation for Distinguished Young Scholars
of China (Grant No. 61325010). Qi Liu gratefully acknowl-
edges the support of the Youth Innovation Promotion Asso-
ciation of CAS (No. 2014299) and the MOE-Microsoft Key
Laboratory of USTC.

1256

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

REFERENCES
1. Ricardo Baeza-Yates, Di Jiang, Fabrizio Silvestri, and

Beverly Harrison. 2015. Predicting the next app that you
are going to use. In Proceedings of the Eighth ACM
International Conference on Web Search and Data
Mining. ACM, 285–294.

2. Veronica J Berrocal, Adrian E Raftery, Tilmann Gneiting,
and Richard C Steed. 2012. Probabilistic weather
forecasting for winter road maintenance. J. Amer. Statist.
Assoc. (2012).

3. Peter J Brockwell and Richard A Davis. 2006.
Introduction to time series and forecasting. Springer
Science & Business Media.

4. QiSen Cai, Defu Zhang, Bo Wu, and Stehpen CH Leung.
2013. A novel stock forecasting model based on fuzzy
time series and genetic algorithm. Procedia Computer
Science 18 (2013), 1155–1162.

5. Ching-Fu Chen, Yu-Hern Chang, and Yu-Wei Chang.
2009. Seasonal ARIMA forecasting of inbound air travel
arrivals to Taiwan. Transportmetrica 5, 2 (2009),
125–140.

6. Yves-Alexandre de Montjoye, César A Hidalgo, Michel
Verleysen, and Vincent D Blondel. 2013. Unique in the
crowd: The privacy bounds of human mobility. Scientific
reports 3 (2013).

7. Mohamed G Elfeky, Walid G Aref, and Ahmed K
Elmagarmid. 2005. Periodicity detection in time series
databases. Knowledge and Data Engineering, IEEE
Transactions on 17, 7 (2005), 875–887.

8. Charles Thomas Haan. 2002. Statistical methods in
hydrology. (2002).

9. James Douglas Hamilton. 1994. Time series analysis.
Vol. 2. Princeton university press Princeton.

10. Ke Huang, Chunhui Zhang, Xiaoxiao Ma, and Guanling
Chen. 2012. Predicting mobile application usage using
contextual information. In Proceedings of the 2012 ACM
Conference on Ubiquitous Computing. ACM, 1059–1065.

11. Rob J Hyndman, Yeasmin Khandakar, and others. 2007.
Automatic time series for forecasting: the forecast
package for R. Technical Report. Monash University,
Department of Econometrics and Business Statistics.

12. Sanjita Jaipuria and SS Mahapatra. 2014. An improved
demand forecasting method to reduce bullwhip effect in
supply chains. Expert Systems with Applications 41, 5
(2014), 2395–2408.

13. Alexandros Karatzoglou, Linas Baltrunas, Karen Church,
and Matthias Böhmer. 2012. Climbing the app wall:
enabling mobile app discovery through context-aware
recommendations. In Proceedings of the 21st ACM
international conference on Information and knowledge
management. ACM, 2527–2530.

14. Maurice George Kendall and others. 1946. The advanced
theory of statistics. The advanced theory of statistics. 2nd
Ed (1946).

15. Isabel Kloumann, Lada Adamic, Jon Kleinberg, and
Shaomei Wu. 2015. The lifecycles of apps in a social
ecosystem. In Proceedings of the 24th International
Conference on World Wide Web. International World
Wide Web Conferences Steering Committee, 581–591.

16. Tamara G Kolda and Brett W Bader. 2009. Tensor
decompositions and applications. SIAM review 51, 3
(2009), 455–500.

17. Farshad Kooti, Kristina Lerman, Luca Maria Aiello,
Mihajlo Grbovic, Nemanja Djuric, and Vladan
Radosavljevic. 2016. Portrait of an Online Shopper:
Understanding and Predicting Consumer Behavior. In
Proceedings of the Ninth ACM International Conference
on Web Search and Data Mining. ACM, 205–214.

18. Zhung-Xun Liao, Po-Ruey Lei, Tsu-Jou Shen,
Shou-Chung Li, and Wen-Chih Peng. 2012. Mining
temporal profiles of mobile applications for usage
prediction. In Data Mining Workshops (ICDMW), 2012
IEEE 12th International Conference on. IEEE, 890–893.

19. Jovian Lin, Kazunari Sugiyama, Min-Yen Kan, and
Tat-Seng Chua. 2013. Addressing cold-start in app
recommendation: latent user models constructed from
twitter followers. In Proceedings of the 36th international
ACM SIGIR conference on Research and development in
information retrieval. ACM, 283–292.

20. Greg Linden, Brent Smith, and Jeremy York. 2003.
Amazon. com recommendations: Item-to-item
collaborative filtering. IEEE Internet computing 7, 1
(2003), 76–80.

21. JLEKS Lonardi and Pranav Patel. 2002. Finding motifs in
time series. In Proc. of the 2nd Workshop on Temporal
Data Mining. 53–68.

22. Zhongqi Lu, Zhicheng Dou, Jianxun Lian, Xing Xie, and
Qiang Yang. 2015. Content-Based Collaborative Filtering
for News Topic Recommendation.. In AAAI. Citeseer,
217–223.

23. Yasuko Matsubara, Yasushi Sakurai, Christos Faloutsos,
Tomoharu Iwata, and Masatoshi Yoshikawa. 2012. Fast
mining and forecasting of complex time-stamped events.
In Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining.
ACM, 271–279.

24. Weike Pan, Evan Wei Xiang, Nathan Nan Liu, and Qiang
Yang. 2010. Transfer Learning in Collaborative Filtering
for Sparsity Reduction.. In AAAI, Vol. 10. 230–235.

25. Steffen Rendle, Leandro Balby Marinho, Alexandros
Nanopoulos, and Lars Schmidt-Thieme. 2009. Learning
optimal ranking with tensor factorization for tag
recommendation. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge
discovery and data mining. ACM, 727–736.

1257

SESSION: NOTIFICATIONS AND SCHEDULING

26. Mark Rogers, Lei Li, and Stuart J Russell. 2013.
Multilinear dynamical systems for tensor time series. In
Advances in Neural Information Processing Systems.
2634–2642.

27. Adam Sadilek and John Krumm. 2012. Far out:
predicting long-term human mobility. In Proceedings of
the Twenty-Sixth AAAI Conference on Artificial
Intelligence. AAAI Press, 814–820.

28. Choonsung Shin, Jin-Hyuk Hong, and Anind K Dey.
2012. Understanding and prediction of mobile application
usage for smart phones. In Proceedings of the 2012 ACM
Conference on Ubiquitous Computing. ACM, 173–182.

29. Chaoming Song, Zehui Qu, Nicholas Blumm, and
Albert-László Barabási. 2010. Limits of predictability in
human mobility. Science 327, 5968 (2010), 1018–1021.

30. Yu Sun, Nicholas Jing Yuan, Yingzi Wang, Xing Xie,
Kieran McDonald, and Rui Zhang. 2016a. Contextual
Intent Tracking for Personal Assistants. In Proceedings of
the 22th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM.

31. Yu Sun, Nicholas Jing Yuan, Xing Xie, Kieran
McDonald, and Rui Zhang. 2016b. Collaborative
Nowcasting for Contextual Recommendation. In
Proceedings of the 25th International Conference on
World Wide Web. International World Wide Web
Conferences Steering Committee, 1407–1418.

32. Ye Tian, Zuoliang Ye, Yufei Yan, and Miao Sun. 2015. A
practical model to predict the repeat purchasing pattern of
consumers in the C2C e-commerce. Electronic
Commerce Research 15, 4 (2015), 571–583.

33. Fang-Mei Tseng, Hsiao-Cheng Yu, and Gwo-Hsiung
Tzeng. 2002. Combining neural network model with
seasonal time series ARIMA model. Technological
Forecasting and Social Change 69, 1 (2002), 71–87.

34. Dirk Van den Poel and Wouter Buckinx. 2005. Predicting
online-purchasing behaviour. European Journal of
Operational Research 166, 2 (2005), 557–575.

35. Michail Vlachos, Christopher Meek, Zografoula Vagena,
and Dimitrios Gunopulos. 2004. Identifying similarities,

periodicities and bursts for online search queries. In
Proceedings of the 2004 ACM SIGMOD international
conference on Management of data. ACM, 131–142.

36. Dashun Wang, Dino Pedreschi, Chaoming Song, Fosca
Giannotti, and Albert-Laszlo Barabasi. 2011. Human
mobility, social ties, and link prediction. In Proceedings
of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM,
1100–1108.

37. Zheng Wang, Prithwish Chakraborty, Sumiko R Mekaru,
John S Brownstein, Jieping Ye, and Naren Ramakrishnan.
2015. Dynamic poisson autoregression for
influenza-like-illness case count prediction. In
Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.
ACM, 1285–1294.

38. Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff G
Schneider, and Jaime G Carbonell. 2010. Temporal
Collaborative Filtering with Bayesian Probabilistic
Tensor Factorization.. In SDM, Vol. 10. SIAM, 211–222.

39. Ye Xu, Mu Lin, Hong Lu, Giuseppe Cardone, Nicholas
Lane, Zhenyu Chen, Andrew Campbell, and Tanzeem
Choudhury. 2013. Preference, context and communities:
a multi-faceted approach to predicting smartphone app
usage patterns. In Proceedings of the 2013 International
Symposium on Wearable Computers. ACM, 69–76.

40. Bo Yan and Guanling Chen. 2011. AppJoy: personalized
mobile application discovery. In Proceedings of the 9th
international conference on Mobile systems, applications,
and services. ACM, 113–126.

41. Nicholas Jing Yuan, Yingzi Wang, Fuzheng Zhang, Xing
Xie, and Guangzhong Sun. 2013. Reconstructing
individual mobility from smart card transactions: A space
alignment approach. In Data Mining (ICDM), 2013 IEEE
13th International Conference on. IEEE, 877–886.

42. Vincent Wenchen Zheng, Bin Cao, Yu Zheng, Xing Xie,
and Qiang Yang. 2010. Collaborative Filtering Meets
Mobile Recommendation: A User-Centered Approach..
In AAAI, Vol. 10. 236–241.

1258

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

	Introduction
	Related Work
	App Usage Prediction and Recommendation
	Tensor Decomposition and Time Evolution

	Problem Formulation
	Contextual and Homogeneous Patterns of App Usage
	Problem Definition

	Model
	4-Dimensional Tensor Decomposition
	Seasonal AR Parameters
	CCF Model
	Optimization

	Experiment
	Settings
	Data Preprocessing
	Baselines
	Metrics

	Experiment Design
	Results

	discussion
	Implications and Limitations
	Privacy

	Conclusion
	Acknowledgments
	References

