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Abstract Time series classification is related to many
different domains, such as health informatics, finance, and
bioinformatics. Due to its broad applications, researchers
have developed many algorithms for this kind of tasks,
e.g., multivariate time series classification. Among
the classification algorithms, Nearest Neighbor (k-NN)
classification (particularly 1-NN) combined with Dynamic
Time Warping (DTW) achieves the state of the art
performance. The deficiency is that when the data set grows
large, the time consumption of 1-NN with DTW will be very
expensive. In contrast to 1-NN with DTW, it is more efficient
but less effective for feature-based classification methods
since their performance usually depends on the quality of
hand-crafted features. In this paper, we aim to improve
the performance of traditional feature-based approaches
through the feature learning techniques. Specifically, we
propose a novel deep learning framework, Multi-Channels
Deep Convolutional Neural Networks (MC-DCNN), for
multivariate time series classification. This model first
learns features from individual univariate time series in each
channel, and combines information from all channels as
feature representation at the final layer. Then, the learnt
features are applied into a Multilayer Perceptron (MLP) for
classification. Finally, the extensive experiments on real-
world data sets show that our model is not only more efficient
than the state of the art but also competitive in accuracy. This
study implies that feature learning is worth to be investigated
for the problem of time series classification.
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1 Introduction

As the development of information technology, sensors be-
come cheaper and more prevalent in recent years. Hence, a
large amount of time series data (e.g., Electrocardiograph)
can be collected from different domains such as bioinformat-
ics and finance. Indeed, the topic of time series data mining,
e.g., univariate time series classification and multivariate time
series classification, has drawn a lot of attention [1–4].

Particularly, compared to univariate time series, multivari-
ate time series can provide more patterns and views of the
same underlying phenomena, and help improve the classifi-
cation performance. Therefore, multivariate time series clas-
sification is becoming more and more important in a broad
range of applications, such as activity recognition and health-
care [5–7]. In this paper, we focus on the classification of
multivariate time series. Along this line, there has been a
number of classification algorithms developed. As many
previous studies claimed [2, 8], among these methods, the
distance-based method k-Nearest Neighbor (k-NN) classifi-
cation is very difficult to beat. On the other hand, more
evidences have also shown that the Dynamic Time Warp-
ing (DTW) is the best sequence distance measurement for
time series in many domains [2, 8–10]. Hence, it could
reach the best performance of classification through combin-
ing the k-NN and DTW in most scenarios [9]. As contrasted
to the sequence distance based methods, traditional feature-
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based classification methods could also be applied for time
series [1], and the performance of these methods depends
on the quality of hand-crafted features heavily. However,
different from other applications, for time series data, it is
difficult to manually design good features to capture the in-
trinsic properties. As a consequence, the classification accu-
racy of feature-based approaches is usually worse than that
of sequence distance based approaches, particularly 1-NN
with DTW method. Recall that both of 1-NN and DTW are
effective but cause too much computation in many applica-
tions [10]. Hence, we have the following motivation.

Motivation. Is it possible to improve the accuracy of
feature-based methods for multivariate time series? So that
the feature-based methods are not only superior to 1-NN with
DTW in efficiency but also competitive to it in accuracy.

Inspired by the deep feature learning for image
classification [11–13], in our preliminary work [14], we
introduced a deep learning framework for multivariate time
series classification. Deep learning does not need any
hand-crafted features, as it can learn a hierarchical feature
representation from raw data automatically. Specifically, we
proposed an effective Multi-Channels Deep Convolutional
Neural Networks (MC-DCNN) model 1), each channel of
which takes a single dimension of multivariate time series
as input and learns features individually. After that, the MC-
DCNN model combines the learnt features of each channel
and feeds them into a Multilayer Perceptron (MLP) to
perform further classification. We adopted the gradient-based
method to estimate the parameters of the model. Finally,
we evaluated the performance of our MC-DCNN model on
several real-world data sets. The experimental results on
these data sets reveal that our MC-DCNN model outperforms
the baseline methods with significant margins and has a good
generalization, especially for weakly labeled data. In this
extended version, we integrate novel activation function and
pooling strategy, and meanwhile, we compare its rate of
convergence with the traditional combinations of activation
functions and pooling strategies. To further improve the
performance, we also apply an unsupervised initialization
to pretrain the convolutional neural networks and propose
the pretrained version of MC-DCNN model. Moreover, in
order to understand the learnt features intuitively, we provide
visualizations of them at two filter layers. Through the new
investigation, we summarize several discussions of current
study and they guide the directions for our future work.

The rest of the paper is organized as follows. In Section 2,

1) A preliminary version of this work has been published in the
proceedings of WAIM 2014 (full paper).

we provide some preliminaries. In Section 3, we present
the architecture of MC-DCNN, and describe how to train
the neural networks. In Section 4, we conduct experiments
on several real-world data sets and discuss the performance
of each model. We make a short review of related work in
Section 5. Finally, we conclude the paper in Section 6.

2 Preliminaries

In this section, we first introduce some definitions and
notations. Then, we define two distance measures used in
the paper.

2.1 Definitions and Notations

Definition 1. Univariate time series is a sequence of data
points, measured typically at successive points in time spaced
at uniform time intervals. A univariate time series can be
denoted as T = {t1, t2, ..., tn}.

Definition 2. Multivariate time series is a set of time series
with the same timestamps. A multivariate time series M is
a n × l matrice where the jth row and ith column of M are
m j· and m·i. While n and l show the length and the number
of single univariate time series in M. Correspondingly, m j·

and m·i represent the jth univariate time series as shown in
Definitions 1 and the points of these univariate time series at
time i.

We follow previous work [15] and extract subsequences
from long time series to perform classification instead of
directly classifying with the entire sequence.

Definition 3. Subsequence is a sequence of consecutive
points which are extracted from time series T and can be
denoted as S = {ti, ti+1, ..., ti+k−1}, where k is the length of
subsequence. Similarly, multivariate subsequence can be
denoted as Y = {m·i,m·i+1, ...,m·i+k−1}, where m·i is defined
in Definition 2.

Since we perform classification on multivariate subse-
quences in our work, in remainder of the paper, we use sub-
sequence standing for both univariate and multivariate subse-
quence for short according to the context. For a long-term
time series, domain experts may manually label and align
subsequences based on experience. We define this type of
data as well aligned and labeled data.

Definition 4. Well aligned and labeled data: Subsequences
are labeled by domain experts, and different subsequences
with the same pattern are well aligned.
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Algorithm 1 Sliding window algorithm
1: procedure [s]=SlidingWindow(T, L, P)
2: i := 0,m := 0; . m is the number of subsequences.
3: s := empty; . The set of extracted subsequences.
4: while i + L 6 length(T ) do
5: . L is the length of sliding window.
6: s[m] := T [i..(i + L − 1)];
7: i := i + P,m := m + 1; . P is the step.
8: end while
9: end procedure

Fig.1 shows a snippet of time series extracted from
BIDMC Congestive Heart Failure data set [16]. Each
subsequence is extracted and labeled according to the dotted
line by medical staffs. However, to acquire the well aligned
and labeled data, it always needs great manual cost.

N N N N N N V N N N N N N

0 1000 2000 3000

Fig. 1 A snippet of time series which contains two types of heartbeat:
normal (N) and ventricular fibrillation (V).

a)

b)

c)

d)

0 500 1000 1500

Fig. 2 Four 1D samples of 3D weakly labeled physical activities: a)
‘standing’, b) ‘walking’, c) ‘ascending stairs’, d) ‘descending stairs’.

In contrast to well aligned and labeled data, in practice,
weakly labeled data can be obtained more easily [7, 15],
which is defined as follows.

Definition 5. Weakly labeled data: A long-term time series
is associated with a single global label as shown in Fig.2.

Due to the alignment-free property of weakly labeled data,
it requires to extract subsequences by specific algorithm. The
most widely used algorithm is sliding window [17], by which
a large number of redundant subsequences may be extracted
and all kinds of potential subsequences in alignment-free
pattern space are covered. We illustrate the pseudo-code of
sliding window algorithm in Algorithm 1. The parameters T ,
L and P denote the long-term time series, the window length
and the sliding step. Supposing the length of T is n, it is easy
to find that the number of extracted subsequences is d n−L+1

P e.
In summary, in this paper, we will primarily concentrate

on the time series of the same length and conduct experiments
on both labeled data that is well aligned and weakly labeled.

2.2 Time Series Distance Measure

For time series data, Euclidean distance is the most widely
used measure. Suppose we have two univariate time series Q
and C, of same length n, where Q = {q1, q2, ..., qi, ..., qn} and
C = {c1, c2, ..., ci, ..., cn}. The Euclidean distance between Q
and C is:

ED(C,Q) =

√∑n

i=1
(ci − qi)2

Furthermore, for two multivariate time series X and Y , the
Euclidean distance between them could be defined as follows:

ED(X,Y) =
∑l

i=1
ED(xi, yi)

where l denotes the number of components, and xi and yi

represent the ith univariate time series of them, respectively.
As a simple measure, Euclidean distance suffers from several
problems [2]. In the literature, DTW is considered as an
alternative that is more robust than Euclidean distance and
can align two sequences effectively [2, 9, 10]. To align two
sequences (e.g., Q and C) using DTW, we need to construct
a distance matrix first, which is shown as follows.

d(q1, c1) d(q1, c2) · · · d(q1, cn)
d(q2, c1) d(q2, c2) · · · d(q2, cn)

...
...

. . .
...

d(qn, c1) d(qn, c2) · · · d(qn, cn)


Each element d(qi, c j) of the matrix corresponds to the
distance between the i-th point of Q and the j-th point of
C, i.e., d(qi, c j) = (qi − c j)2. In this paper we primarily
concentrate on the time series of the same length, thus we use
two equal length time series to explain DTW for convenience.
Notice that DTW can also be applied to time series with
different length.

A warping path W is a sequence of contiguous matrix
elements which defines a mapping between Q and C: W =

{w1,w2, ...wk, ...,w2n−1}. Each element of W corresponds to a
certain element of the distance matrix (i.e., wk = d(qi, c j)).
There are three constraints that the warping path should
satisfy, which are shown as follows.

• Boundary : w1 = d(q1, c1) and w2n−1 = d(qn, cn).
• Continuity: Given wk = d(qi, c j) and wk−1 = d(qi′ , c j′ ),

then i − i′ 6 1 and j − j′ 6 1.
• Monotonicity: Given wk = d(qi, c j) and wk−1 =

d(qi′ , c j′ ), then i − i′ > 0 and j − j′ > 0.

Since there may exist exponentially many warping paths, the
aim of DTW is to find out the one which has the minimal
warping cost:

DTW(Q,C) = minimize
W={w1,w2,...,w2n−1}

∑2n−1

k=1
wk
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where W should satisfy these three constraints above. One
step further, for two multivariate time series X and Y , similar
to Euclidean distance, DTW between X and Y can be defined
as follows:

DTW(X,Y) =
∑l

i=1
DTW(xi, yi)

where l denotes the number of components in multivariate
time series, and both of xi and yi represent the ith univariate
time series of them, respectively.

It is common to apply dynamic programming to compute
DTW(Q,C) (or DTW(X,Y)), which is very efficient and
has a time complexity O(n2) in this context. However,
when the size of data set grows large and the length of
time series becomes long, it is very time consuming to
compute DTW combined with k-NN method. Hence, to
reduce the time consumption, window constraint DTW has
been adopted widely instead of full DTW in many previous
work [10, 18–20]. On the other hand, from the intuition, the
warping path is unlikely to go very far from the diagonal of
the distance matrix [10]. In other words, for any element
wk = d(qi, c j) in the warping path, the difference between i
and j should not be too large. By limiting the warping path
to a warping window, some previous work [10, 19] showed
that relatively tight warping windows actually improve the
classification accuracy.

According to above discussions, we consider both
Euclidean distance and window constraint DTW as the
default distance measures in the following.

3 Multi-Channels Deep Convolutional Neural
Networks

In this section, we will introduce a deep learning
framework for multivariate time series classification: Multi-
Channels Deep Convolutional Neural Networks (MC-
DCNN). Traditional Convolutional Neural Networks (CNN)
usually include two parts. One is a feature extractor,
which learns features from raw data automatically. The
other is a trainable fully-connected MLP, which performs
classification based on the learned features from the previous
part. Generally, the feature extractor is composed of multiple
similar stages, and each stage is made up of three cascading
layers: filter layer, activation layer and pooling layer. The
input and output of each layer are called feature maps [13].
In the previous work of CNN [13], the feature extractor
usually contains one, two or three such 3-layers stages. For
remainder of this section, we first introduce the components

of CNN briefly and more details of CNN can be referred
to [13, 21]. Then, we show the gradient-based learning of
our model. After that, the related unsupervised pretraining is
given at the end of this section.

3.1 Architecture

In contrast to image classification, the inputs of multivariate
time series classification are multiple 1D subsequences but
not 2D image pixels. We modify the traditional CNN and
apply it to multivariate time series classification task in this
way: We separate multivariate time series into univariate
ones and perform feature learning on each univariate series
individually, and then a traditional MLP is concatenated at
the end of feature learning that is used to do the classification.
To be understood easily, we illustrate the architecture of MC-
DCNN in Fig. 3. Specifically, this is an example of 2-stages
MC-DCNN with pretraining for activity classification. Once
the pretraining is completed, the initial weights of network
are obtained. Then, the inputs of 3-channels are fed into a
2-stages feature extractor, which learns hierarchical features
through filter, activation and pooling layers. At the end
of feature extractor, the feature maps of each channel are
flatten and combined as the input of subsequent MLP for
classification. Note that in Fig. 3, the activation layer is
embedded into filter layer in the form of non-linear operation
on each feature map. We describe how each layer works in
the following subsections.

3.1.1 Filter Layer

The input of each filter is a univariate time series, which is
denoted xl

i ∈ <
nl

2 , 1 6 i 6 nl
1, where l denotes the layer which

the time series comes from, nl
1 and nl

2 are number and length
of input time series. To capture local temporal information, it
requires to restrict each trainable filter ki j with a small size,
which is denoted ml

2, and the number of filter at layer l is
denoted ml

1. Recalling the example described in Fig. 3, in
first stage of channel 1, we have nl

1 = 1, nl
2 = 256, ml

2 = 5
and ml

1 = 8. We compute the output of each filter according
to this:

∑
i xl−1

i ∗ kl
i j + bl

j , where the ∗ is convolution operator
and bl

j is the bias term. To determine the size of each filter
ki j, we follow the earlier studies [22] and set it to 5 (m2 = 5)
as they suggested.

3.1.2 Activation Layer

The activation function introduces the non-linearity into
neural networks and allows it to learn more complex model.
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Fig. 3 A 2-stages MC-DCNN architecture for activity classification. This architecture consists of 3 channels input, 2 filter layers, 2 pooling layers and 2
fully-connected layers. Pretraining is performed for two stages gradually and then supervised learning is applied. This architecture is denoted as 8(5)-2-4(5)-
2-732-4 based on the template C1(Size)-S1-C2(Size)-S2-H-O, where C1 and C2 are numbers of filters in first and second stage, Size denotes the kernel size,
S1 and S2 are subsampling factors, H and O denote the numbers of units in hidden and output layers of MLP.

Two activation functions sigmoid(x) = 1
1+e−x and tanh(x) =

ex−e−x

ex+e−x are most widely used in artificial neural networks for
a long time. In recent years, a novel activation function
named as “rectified linear units” (ReLU) has been attempted
by many studies [23, 24]. ReLU is defined as: f (x) =

max(0, x). When comparing with traditional activation
functions (i.e., sigmoid(·) and tanh(·)), the merit of ReLU is
that it can improve the generalization and make the training
of networks become faster and simpler [23,24]. Besides, this
activation function could avoid vanishing gradient issue and
be computed efficiently. For easy understanding, we illustrate
ReLU and these two common activation functions in Fig. 4.
In this extended version, we consider integrating ReLU into
our MC-DCNN models to improve the performance of time
series classification.

3.1.3 Pooling Layer

Pooling is also called as subsampling because it usually
subsamples the input feature maps by a specific factor. The
purpose of pooling layer is to reduce the resolution of input
time series, and make it robust to small variations for previous
learned features. The simplest yet most popular method is
to compute average value in each neighborhood at different
positions with or without overlapping. The neighborhood is
usually constructed by splitting input feature maps into equal

−1

0

1

2

−2 −1 0 1 2

ReLU

sigmoid

tanh

Fig. 4 Illustration of non-linearity, sigmoid(·), tanh(·) and ReLU functions.

length (larger than 1) subsequences. Another widely used
method is max pooling which computes the maximum in
the neighborhood in contrast to average pooling. Previous
studies [25, 26] claimed that max pooling is superior to
average pooling for image classification and it also leads
to faster convergence rate by selecting superior invariant
features that improve generalization performance. Hence, to
further improve the performance, in this extended version,
we apply the max pooling strategy in our deep convolutional



6
Yi ZHENG et al. Exploiting Multi-Channels Deep Convolutional Neural Networks for Multivariate Time Series Classification

neural networks.

3.2 Gradient-based Learning of MC-DCNN

The same as traditional MLP, for multi-class classification
task, the loss function of our MC-DCNN model is defined
as: E = −

∑
t
∑

k y∗k(t) log (yk(t)), where y∗k(t) and yk(t) are
the target and predicted values of t-th training example at k-
th class, respectively. To estimate parameters of models, we
utilize gradient-based optimization method to minimize the
loss function. Specifically, we use simple backpropagation
algorithm to train our MC-DCNN model, since it is efficient
and most widely used in neural networks [27]. We adopt
stochastic gradient descent (SGD) instead of full-batch
version to update the parameters. Because SGD could
converge faster than full-batch for large scale data sets [27].

A full cycle of parameter updating procedure includes
three cascaded phases [28]: feedforward pass, backpropaga-
tion pass and the gradient applied.

3.2.1 Feedforward Pass

The objective of feedforward pass is to determine
the predicted output of MC-DCNN on input vectors.
Specifically, it computes feature maps from layer to layer and
stage to stage until obtaining the output. As shown in the
previous content, each stage contains three cascaded layers,
and activation layer is embedded into filter layer in form
of non-linear operation on each feature map. We compute
output feature map of each layer as follows:

zl
j =
∑

i

xl−1
i ∗ kl

i j + bl
j, xl

j = φ(zl
j), xl+1

j = down(xl
j)

where down(·) represents the subsampling function for either
average or max pooling, φ(·) represents the activation
function (either sigmoid(·) or ReLU here), xl−1

i and zl
j denote

the input and output of filter layer, zl
j and xl

j denote the input
and output of activation layer, xl

j and xl+1
j denote the input

and output of pooling layer.
Eventually, a 2-layer fully-connected MLP is concatenated

to feature extractor. Due to feedforward pass of MLP is
standard and the space is limited, more details of MLP can
be referred to [27, 28].

3.2.2 Backpropagation Pass

Once acquiring predicted output y, the predicted error E
can be calculated according to the loss function. By taking
advantage of chain-rule of derivative, the predicted error
propagates back on each parameter of each layer one by one,

which can be used to work out the derivatives of them. We
don’t present backpropagation pass of final MLP for the same
reason of feedforward pass.

For pooling layer in the second stage of feature extractor,
the derivative of xl−1

j is computed by the upsampling
function up(·), which is an inverse operation opposite to the
subsampling function down(·) for the backward propagation
of errors in this layer.

∂E
∂xl−1

j

= up(
∂E
∂xl

j

)

For filter layer in second stage of feature extractor, derivative
of zl

j is computed similar to that of MLP’s hidden layer:

δl
j =

∂E
∂zl

j

=
∂E
∂xl

j

∂xl
j

∂zl
j

= φ
′

(zl
j) ◦ up(

∂E
∂xl+1

j

)

where ◦ denotes element-wise product. Since the bias is a
scalar, to compute its derivative, we should summate over all
entries in δl

j as follows:

∂E
∂bl

j

=
∑

u

(δl
j)u

The difference between kernel weight kl
i j and MLP’s

weight wl
i j is the weight sharing constraint, which means the

weights between (kl
i j)u and each entry of xl

j must be the same.
Due to this constraint, the number of parameters is reduced
by comparing with the fully-connected MLP, Therefore, to
compute the derivative of kernel weight kl

i j, it needs to
summate over all quantities related to this kernel. We perform
this with convolution operation:

∂E
∂kl

i j

=
∂E
∂zl

j

∂zl
j

∂kl
i j

= δl
j ∗ reverse(xl−1

i )

where reverse(·) is the function to reverse the sequence
with respect to each feature map. Finally, we compute the
derivative of xl−1

i as follows:

∂E
∂xl−1

i

=
∑

j

∂E
∂zl

j

∂zl
j

∂xl−1
i

=
∑

j

pad(δl
j) ∗ reverse(kl

i j)

where pad(·) is a function which pads zeros into δl
j from two

ends, e.g., if the size of kl
i j is nl

2, then this function will pad
each end of δl

j with nl
2 − 1 zeros.

3.2.3 Gradients Applied

Once we obtain the derivatives of parameters, it’s time to
apply them to update parameters. To converge fast, we utilize
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decay and momentum strategies [27]. The weight wl
i j in MLP

is updated in this way:

wl
i j = wl

i j + ∆wl
i j

∆wl
i j = momentum · ∆wl

i j − decay · ε · wl
i j − ε ·

∂E
∂wl

i j

where wl
i j represents the weight between xl−1

i and xl
j, ∆wl

i j

denotes the gradient of wl
i j, and ε denotes the learning rate.

The kernel weight kl
i j, the bias term bl

j in filter layer and bl in
MLP are updated similar to the way of wl

i j. The same as [29],
we set momentum = 0.9, decay = 0.0005 and ε = 0.01
for our experiments. It is noted that Ref. [30] claimed that
both the initialization and the momentum are crucial for deep
neural networks, hence, we consider the way of selecting
these values as a part of our future work.

3.3 Pretraining

One challenge of neural networks especially for deep
architectures is how to avoid bad local minima during the
learning process. Many previous studies claimed that a
greedy layer-wise unsupervised initialization could alleviate
the local minima issue and achieve better performance [31,
32]. In this subsection, we consider such a kind of
unsupervised pretraining for our deep neural networks.
Specifically, we first recall conventional pretraining methods
(Auto-Encoder and Denoising Auto-Encoder) and then
explain how to pretrain the CNN with stacked Convolutional
Auto-Encoder (CAE) [33].

3.3.1 Auto-Encoder

Basically, an Auto-Encoder is a three layers artificial neural
network, which is very similar to traditional MLP. The
aim of Auto-Encoder is to learn a transformation from
original space to a lower-dimensional space. Through
the learnt transformation, the compressed low-dimensional
representations could be used as features for many other
tasks. Meanwhile, another usage of Auto-Encoder is to
initialize the neural networks for better performance. By
stacking a series of Auto-Encoders, the constructed deep
architecture could be further fine-tuned in the form of
supervised learning. Suppose the input is x ∈ Rd and the
hidden representation is denoted as h ∈ Rd′ . In an Auto-
Encoder, h = φ(Wx + b) and y = φ(W′h + b′), where
y represents the reconstruction of input x and φ denotes
the activation function. The only constraint here is W′ =

WT . Analogous to traditional neural networks, we could

learn the parameters θ = {W, b, b′} through minimizing the
reconstructed error: E(θ) = ‖x − y‖2.

3.3.2 Denoising Auto-Encoder

The deficiency of conventional Auto-Encoder is that it
may learn the identity transformation if we do not apply
any constraints on it. The common solution for this is
either adding a regularized sparsity to the cost function
or adding random noisy to the inputs. The latter one
named as Denoising Auto-Encoder is more popular due to
its simplicity. Since the only modification is to add a variable
v to each element of inputs. The variable v could follow either
a binomial distribution for binary input or common Gaussian
distribution for continuous value. The learning process of
Denoising Auto-Encoder is identical to that of conventional
Auto-Encoder.

3.3.3 Convolutional Auto-Encoder

The elements in both Auto-Encoder and Denoising Auto-
Encoder are fully connected. Different from these two
models, Convolutional Auto-Encoder (CAE) has a constrain
on the connections, i.e., the weights between two layers
are shared in form of convolution. As is shown, such
a convolution operation could preserve the spatial and
temporal locality. Thus CNN has the advantage of time-shift
invariance. Due to the convolutional and pooling operations,
the pretraining of CNN with stacked CAEs is different from
the other two models. At the same time, the reconstruction
of CAE is also different from formal forward and backward
passes of CNN. For the convolutional encoder, the hidden
feature maps of CAE can be calculated as follows.

h j = φ(z j) = φ(
∑

i

pad(xi) ∗ ki j + b j)

where xi represents the i-th element of input and h j denotes
the j-th filter map after convolution and activation. The
function pad(·) will pad xi with zeros from two ends, e.g., if
the size of kih is n2 then this function will pad each end of xi

with n2−1 zeros. Other symbols have already been explained
in previous sections. After that, h j will be processed
through a pooling layer. Analogous to conventional Auto-
Encoder, the reconstruction of xi should be built based on
h j in a reversed procedure of convolutional encoder. The
convolutional decoder works in form of the equation below.

yi = φ(
∑

j

h j ∗ reverse(ki j) + ci)
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where the reverse(·) has been mentioned before and ci is the
bias term for the reconstruction yi. For the sake of learning
the parameters, we need to minimize the cost function of
CAE: E(θ) =

∑
i ‖xi − yi‖

2. Similar to CNN, by applying the
backpropagation algorithm, the gradient of each parameter
could be obtained and then the parameters will be updated
until final convergence of CAE.

Our MC-DCNN model could include multiple stages.
Hence, to pretrain the deep architecture we require stacking
several CAEs. Recall Fig. 3, the first stage of this model
is pretrained based on CAE at the beginning and then its
hidden representations will be fed into the subsequent CAE
for the second stage as its input. For MC-DCNN with more
stages, the unsupervised pretraining would be performed for
these CAEs one by one following the greedy, layer-wise
fashion. Once the unsupervised pretraining of all CAEs has
been done, then the learnt parameters will be used to initialize
our MC-DCNN model. After that, the supervised learning of
CNN will be performed as shown in Section 3.1 and 3.2.

4 Experiments

We conduct experiments on real-world data sets from two
application domains, and we will demonstrate: (1) The
performance of our MC-DCNN via comparing with baselines
on weakly labeled data (Section 4.1) and well aligned data
(Section 4.2 and 4.3), respectively; (2) The evaluation of
activation functions and pooling strategies (Section 4.4); (3)
The visualization of learnt features (Section 4.5); (4) A brief
discussion (Section 4.6).

To the best of our knowledge, there are many public time
series data sets available, e.g., the UCR Suite [34]. However,
we decide not using the UCR Suite for the following reasons.
First, we focus on the classification of multivariate time
series, whereas most data sets in UCR Suite only contain
univariate time series. Second, data sets in UCR Suite are
usually small and CNN may not work well on such small data
sets [35]. One exception is the Non-Invasive Fetal ECG data
set. In the UCR Suite, there are two data sets related to Non-
Invasive Fetal ECG, both of which were created by recording
the heartbeat information. One corresponds to the heartbeat
data from left thorax and the other corresponds to that from
right. Then, we could combine these two single data sets and
obtain a 2D time series data set. Besides, we also choose two
data sets that are collected from real-world applications. And
we will describe each of these data sets in next subsections.

We consider three approaches as baseline methods for

evaluation: 1-NN (ED), 1-NN (DTW-5%) and MLP. Here, 1-
NN (ED) and 1-NN (DTW-5%) are the methods that combine
Euclidean distance and window constraint DTW 2) [10]
with 1-NN, respectively. Besides these two state-of-the-
art methods, MLP is chosen to demonstrate that the feature
learning process can improve the classification accuracy
effectively. For the purpose of comparison, we record the
performance of each method by tuning their parameters.
Notice that some other classifiers are not considered here,
since it is difficult to construct hand-crafted features for time
series and much previous work have claimed that feature-
based methods cannot achieve the accuracy as high as 1-NN
methods. Moreover, we do not choose the full DTW due to
its expensive time consumption.

4.1 Activity Classification (Weakly Labeled Data)

4.1.1 Data Set

We use the weakly labeled PAMAP2 data set for activity
classification3) [7]. It records 19 physical activities
performed by 9 subjects. On a machine with Intel I5-2410
(2.3GHz) CPU and 8G Memory (our experimental platform),
according to the estimation, it will cost more than a month
for 1-NN (DTW-5%) on this data set if we use all the
19 physical activities4). Hence, without loss of generality,
currently, we only consider 4 activities in our work, which
are ‘standing’, ‘walking’, ‘ascending stairs’ and ‘descending
stairs’. And each physical activity corresponds to a 3D
time series. Moreover, 7 out of these 9 subjects are chosen.
Because the other two either have different physical activities
or have different dominant hand/foot.

4.1.2 Experiment Setup

We normalize each dimension of 3D time series as x−µ
σ

,
where µ and σ are mean and standard deviation of time
series. Then we apply the sliding window algorithm as
shown in Algorithm 1 to extract subsequences from 3D
time series with different sliding steps. Table 1 shows
the number of subsequences of each activity for each
subject when sliding step is set to 8. To evaluate the
performance of different models, we adopt the leave-one-
out cross validation (LOOCV) technique. Specifically,
each time we use one subject’s physical activities as test

2) Following the discoveries in [10], we set the optimal window constraint
r as 5%.

3) http://www.pamap.org/demo.html
4) There are 240,000 and 60,000 samples in training and test sets,

respectively. Each sample includes three components with the length of 256.
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Table 1 The number of subsequences of each activity.

Subject standing walking ascending descending
stairs stairs

1 2,683 2,750 1,922 1,798
2 3,166 4,035 2,104 1,838
3 2,535 3,598 1,235 1,814
4 3,057 3,960 2,023 1,722
5 2,735 3,972 1,722 1,527
6 3,013 3,183 1,598 1,345
7 3,187 4,183 2,141 1,389

Total 20,376 25,681 12,745 11,433

data, and the physical activities of remaining subjects
as training data. Then we repeat this for every
subject. To glance the impact of depths, we evaluate two
kinds of models: MC-DCNN(1)/MC-DCNN(1)-Pre, MC-
DCNN(2)/MC-DCNN(2)-Pre, with respect to 1-stage and 2-
stages non-pretrained/pretrained models.

4.1.3 Experimental Results

To evaluate efficiency and scalability of each model, we get
five data splits with different volumes by setting sliding step
as 128, 64, 32, 16, 8, respectively. In addition, to ensure each
subsequence to cover at least one pattern of time series, we
set the sliding window length L as 256.

Feature-based models have an advantage over lazy
classification models (e.g., k-NN) in efficiency. As shown in
Fig. 5, the prediction time of 1-NN model increases linearly
as the size of training data set grows. In contrast, the
prediction time of our MC-DCNN model is almost constant
no matter how large the training data is.
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Fig. 5 Prediction time of each model on training sets with different size.

We also evaluate accuracy of each model on these five
data splits. Fig. 6 shows the detailed accuracy comparisons
of each subject at different step settings (data splits). From
this figure we can see that for each subject our MC-

DCNN model, particularly the pretrained 2-stages one, is
either the most accuracy one or very close to the most
accuracy one. Especially, for subject 3, the 2-stages MC-
DCNNs lead to much better classification accuracy than other
approaches. We suppose that 2-stages MC-DCNNs may
learn higher level and more robust feature representations
so that it has a good generalization. The average and
standard deviation of accuracy is shown in Table 2. From
the table we can see that our MC-DCNN leads to the
highest average accuracy and the lowest standard deviation.
Especially, the pretrained MC-DCNN is superior to others
including the non-pretrained models, which demonstrates
that such a unsupervised initialization could indeed improve
the performance to some extent. By comparing to 1-stage
MC-DCNN, the 2-stages models perform better at each
sliding step. This is consistent to the statement of previous
studies [36, 37] that deep neural networks trained by simple
back-propagation work better than more shallow ones. On the
other hand, by comparing MC-DCNN with traditional MLP,
the superiority of MC-DCNN demonstrates that the feature
learning process could indeed improve the performance of
classification and the MC-DCNN model can learn good
internal representations.

4.2 Congestive Heart Failure Detection (Well Aligned
Data)

4.2.1 Data Set

The well aligned BIDMC data set was downloaded from
Congestive Heart Failure database5) [16]. Long-term
electrocardiograph (ECG) data was recorded from 15
subjects, each of them suffers severe Congestive Heart
Failure. Different from PAMAP2 data, in BIDMC data
set, each type of heart failure corresponds to a 2D time
series, which was recorded by medical instruments. Table
3 shows the number of subsequences of each type. In this
experiment, we consider four types of heartbeats to evaluate
all the models: ‘N’, ‘V’, ‘S’, ‘r’.

Table 3 The number of subsequences of each heartbeat type.
Type N V S r + Q E
Number 31,563 28,166 5,314 10,353 258 293 5

4.2.2 Experiment Setup

We still normalize each univariate of 2D time series as x−µ
σ

,
where µ and σ are mean and standard deviation of time
series. Different from weakly data, we extract subsequences

5) http://www.physionet.org/physiobank/database/chfdb/
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Fig. 6 Classification accuracy on each subject with different sliding steps.

Table 2 Average and standard deviation of accuracy at different sliding step. Bold numbers represent the best results.
Method Step=128 Step=64 Step=32 Step=16 Step=8

1-NN (ED) 79.05 (0.076) 80.25 (0.089) 80.74 (0.094) 81.74 (0.096) 82.28 (0.103)
1-NN (DTW-5%) 83.46 (0.063) 84.51 (0.070) 84.44 (0.080) 84.16 (0.094) 83.61 (0.104)

MLP 77.89 (0.076) 80.09 (0.098) 82.49 (0.096) 84.34 (0.104) 84.83 (0.115)
MC-DCNN(1) 88.73 (0.057) 90.38 (0.050) 90.28 (0.063) 90.75 (0.062) 90.53 (0.065)

MC-DCNN(1)-Pre 89.37 (0.044) 91.47 (0.027) 90.38 (0.049) 91.11 (0.048) 90.55 (0.071)
MC-DCNN(2) 90.34 (0.031) 91.00 (0.033) 91.14 (0.031) 93.15 (0.019) 93.36 (0.015)

MC-DCNN(2)-Pre 90.94 (0.025) 91.63 (0.032) 92.27 (0.028) 93.22 (0.011) 93.43 (0.013)

centered at aligned marks (red dotted line in Fig. 1). And
each subsequence still has a length of 256. Similar to the
classification of individuals’ heartbeats [15], we mix all data
of 15 subjects and randomly split it into 10 folds to perform
10-folds cross validation. Because as Ref. [15] noted, it can
be able to obtain huge amounts of labeled data in this way
and a unhealthy individual may have many different types
of heartbeats. Similar to the previous experiment, we also
evaluate these models to glance the impact of depths and
pretraining on this data set. Moreover, to determine the
epochs, we separate one third of training data as validation
set. As shown in Fig. 8, we set epoch to 40 and 80 for 1-stage
and 2-stages MC-DCNN models respectively. Since the test
error is stable when epochs are greater than them.

4.2.3 Experimental Results

We show the classification accuracy of each model on
BIDMC data set in Fig. 7. The accuracies of 1-stage and
2-stages non-pretrained MC-DCNN models are 94.67% and
94.65%. After we pretrained the MC-DCNN models, the
MC-DCNN(1)-Pre and MC-DCNN(2)-Pre models improve
the classification accuracies to 95.04% and 95.35%. All
these MC-DCNN models have better performance than other
baseline models, i.e., 1-NN(ED) (93.64%), 1-NN(DTW-5%)
(92.90%) and MLP (94.22%). It is also noted that all of
these learning-based methods including MLP perform better
than distance-based methods. We consider that it may be
due to the precise alignment of each heartbeat signal. For
the well aligned data, these learning-based methods could
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Fig. 7 The box-and-whisker plot of classification accuracy on BIDMC.

capture the potential important information and obtain good
feature representations. Still, MC-DCNN is superior to MLP,
which also demonstrates that the feature learning is beneficial
for improving the classification accuracy. The experimental
result proves that the pretraining process improve the
performance indeed. We do not report the prediction time of
each model on BIDMC data set. Since, the result is similar
to Fig. 5 and it also supports that feature-based models have
an advantage over lazy classification methods such as k-NN
in efficiency.

4.3 Classification of Non-Invasive Fetal ECG (Well
Aligned Data)

4.3.1 Data Set

Another well aligned data set is Non-Invasive Fetal ECG.
For simplicity, we name this data set as NIFE (Non-Invasive
Fetal ECG). Specifically, we combined two univariate time
series data sets and each of them corresponds to the record
of the ECG from left and right thorax. Hence, in this data
set, each type of non-invasive fetal ECG corresponds to a
2D time series. There are 42 types of non-invasive fetal
ECG in the data set and the length of each univariate time
series is 750. The size of the training set is 1,800 and there
are 1,965 samples that can be used to test. Different from
previous two experiments, we do not need normalization
for this data set. Since the creators of this data set had
processed for that and they also separated the training and
test data in the randomized manner. That’s the reason why
we do not consider resampling the data for further cross
validation. Another reason is many researchers in time series
classification directly evaluated their models with the training
and test data but not used the cross validation strategy. Hence,
we follow them and do not apply cross validation here.

4.3.2 Experimental Results

We show the classification accuracy of each model on NIFE
data set in Table. 4.

Table 4 Classification accuracy of each model on NIFE.

Method Precision
1-NN (DTW-5%) 88.19

MLP 95.32
1-NN (ED) 89.62

MC-DCNN(1) 95.93
MC-DCNN(1)-Pre 96.03

MC-DCNN(2) 96.13
MC-DCNN(2)-Pre 96.23

This result is analogous to that of the previous BIDMC
data set. All of the learning-based methods achieve higher
accuracy than that of distance-based methods. As we said,
the reason of such result may be because the ECG data is
aligned precisely. For such well aligned data, these three
learning-based methods may capture the potential important
information and acquire good feature representations. Hence,
the learning-based methods perform better than distance-
based ones. The MC-DCNN models including the pretrained
ones are superior to MLP, which proves that feature learning
can improves the classification accuracy. Moreover, the
pretrained 2-stages MC-DCNN outperforms other models
and achieves the highest accuracy, which not only proves
that 2-stages MC-DCNN is superior to 1-stage model to
some extent but also demonstrates the pretraining can
improve the classification accuracy indeed. Nonetheless, the
improvement of MC-DCNN models is not that remarkable,
especially for MLP, which proves our assumption, i.e.,
with precise alignment time series data (that means without
the time-shift involved), even the traditional MLP could
obtain good feature representations of data and achieve good
classification accuracy.

4.4 Evaluation of Activation functions and Pooling
strategies

We treat the traditional sigmoid(·) function and average
pooling as a default choice for previous experiments. To
further evaluate the effect of activation functions and pooling
strategies, in the following, we conduct several experiments
on PAMAP2 data set. Specifically, we focus on testing the
rate of convergence of the MC-DCNN models integrated with
different activation functions and pooling strategies.

For a better illustration of convergence, we select one
subject from PAMAP2 and show the rate of convergence
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Fig. 9 Training error of 1-stage (left) and 2-stages (right) MC-DCNNs with sigmoid(·), ReLU activation functions and average, max pooling strategies.

of each model in Fig. 9. We consider two activation
functions (i.e., ReLU and sigmoid(·)) and two sorts of
pooling strategies (max and average poolings) here. As the
epoch grows from 1 to 100, for each setting of activation
function and pooling strategy, the training error decreases
with different speed. From this figure, we can see that ReLU
is superior to sigmoid(·) function since the training error
of ReLU converges faster than that of sigmoid(·) for both
1-stage and 2-stages MC-DCNN models. For the pooling
strategy, average pooling converges a little faster than max

pooling but the difference is subtle. By the consideration
of generalization ability that mentioned in previous studies,
we believe that max pooling is a good choice for our study.
Hence, we combine ReLU and max pooling in our MC-
DCNN models.

4.5 Visualization

To visualize the learnt features of MC-DCNN model, we
trained a two-stages MC-DCNN model on the PAMAP2 data
set. Both of the first and the second filter layers contain 20
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kernels in this model. We illustrate the learnt features of
corresponding stage in Fig. 10 and Fig. 11, respectively.

(a)

(b)

(c)

Fig. 10 Visualization of the first filter layer in the model trained on
PAMAP2 data set. a) Channel one 20 filter weights with the length of 5,
b) and c) represent the filter weights in the other two channels, respectively.

For the first filter layer, as shown in Fig. 10, each channel
of MC-DCNN model contains twenty filters with the length
of 5. Moreover, the features of each channel are learnt
independently. From the figure, we can see that different local
patterns (shapes) of time series are captured automatically by
our model. In Fig. 11, we show the learnt features of the
second filter layer in 20 groups of filter planes, each of which
connects to all 20 second filter layer feature maps. Thus,
each channel contains 20× 20 filter weights in total, and over
completed features have been learnt independently. Through
the final MLP layers, the MC-DCNN model could combine
the extracted features from each channel and determine
the importance of each feature for different classes by the
supervised learning. According to the experimental results,
our MC-DCNN, a kind of feature learning method, can
improve the accuracy of classification.

4.6 Discussion

We first discuss the advantages of our method intuitively.
In MC-DCNN, the multi-channels can learn feature
representation for each univariate time series automatically
and individually. Then, the traditional MLP is used to
combine these features and obtain a better representation
for each class. According to the experimental results,
such feature learning and feature combining approaches
improve the classification performance for multivariate time
series. We believe that our model can obtain better feature
representations from each channel for each univariate time
series and also the final feature combining can further

learn the weights for each class, which makes our model
can distinguish different patterns of the different underlying
phenomena effectively and improves the performance finally.

In the following, we discuss the limitations of this study,
and we believe that the discussions will lead to many future
work. First, although we conducted these experiments
with different parameter settings, there are still many other
parameters in our MC-DCNN model. According to the
suggestions of previous studies, some parameters were set
to constants, while this may not be the optimal choice for
our problem; Second, it is time consuming to train the neural
networks since we did not utilize the parallel techniques (e.g.,
speedup by GPU) but implemented all the models in Matlab.
This is also one of the reasons why we only constructed at
most 2-stages MC-DCNN in the experiments. Hence, in the
future work, we plan to study and extend other deep learning
models for multivariate time series classification on more
data sets and parameter settings.

5 Related Work

We first briefly review previous studies of time series
classification methods. Then, we summarize the existing
research interest on feature learning by deep neural networks
and introduce the related pretraining methods at the end
of this section. Many time series classification methods
have been proposed based on different sequence distance
measurements. Among the previous work, some researchers
claimed that 1-NN combined DTW is the current state of
the art [9, 10]. However, the biggest weakness of 1-NN
with DTW model is its expensive computation [10]. To
overcome this drawback, some of the researchers explored to
speed up the computation of distance measure (e.g., DTW) in
certain methods (e.g., with boundary conditions) [10]. While
some of other researchers tried to reduce the computation
of 1-NN by constructing data dictionary [10, 15, 17, 38].
When the data set grows large, all these approaches improve
the performance significantly in contrast to simple 1-NN
with DTW. Though many feature-based models have been
explored for time series classification [6, 39], most of
previous work extracted the hand-crafted statistical features
based on domain knowledge, and achieved the performance
not as well as sequence distance based models.

Feature learning (or representation learning) is becoming
an important field in machine learning community for
recent years [11]. The most successful feature learning
framework is deep neural networks, which build hierarchical
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representations from raw data [12, 13, 40]. Particularly, as a
supervised feature learning model, deep convolutional neural
networks achieve remarkable successes in many tasks such
as digit and object recognition [29], which motivates us to
investigate the deep learning in time series field. In current
literature, there are few studies on time series classification
using feature learning and deep neural networks. Ref.
[41] explored an unsupervised feature learning method with
convolutional deep belief networks for audio classification,
but in frequency domain rather than in time domain. Ref.
[42] proposed a time-delay neural networks (TDNN) for
phoneme recognition. The TDNN can be considered as a
simplified model of CNN, since it only contains one or two
tied connection hidden layers but does not perform pooling
like traditional CNN, which makes it does not have a good
shift invariant ability as well as CNN. Ref. [5] adopted
a special TDNN model for electroencephalography (EEG)
classification. However, their TDNN model only included
a single hidden layer, which is not deep enough to learn good
hierarchical features.

One challenge of neural networks especially for deep
architectures is how to avoid bad local minima during the
learning process. To alleviate this issue, a better initialization
of weights in neural networks is needed, which can further
improve classification performance [31, 32]. For CNN, a
greedy layer-wise unsupervised initialization named stacked
Convolutional Auto-Encoder (CAE) can be used to pretrain
the networks, which has been shown the effectiveness to
improve the classification performance [33]. To the best
of our knowledge, none of existing studies on time series
classification has considered the supervised feature learning
from raw data and also pretraining of networks. Hence, in this
paper, we explore a MC-DCNN model for multivariate time
series classification and intend to investigate this problem
from feature learning view.

6 Conclusion

In this paper, we developed a novel deep learning framework
(MC-DCNN) to classify multivariate time series. Through
learning features from individual univariate time series in
each channel automatically, this model then combines the
outputs of all channels as feature representation at final
layer. After that, a traditional MLP concatenated to the final
layer of feature representation performs the classification.
Meanwhile, we applied an unsupervised initialization to
pretrain CNN and proposed the pretrained version of MC-
DCNN model. Finally, extensive experimental results

on several real-world data sets revealed that the MC-
DCNN model indeed outperformed the competing baseline
methods, and the improvement of accuracy on weakly
labeled data set is significant. We found that the pretrained
models outperform the non-pretrained ones, which shows
the effectiveness of pretraining to improve the classification
performance. We also observed that 2-stages MC-DCNN is
superior to 1-stage model to some extent, which provides
the evidence that deeper architecture could learn more robust
high-level features for improving the classification. We hope
that this study could lead to more future work.
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(a)

Fig. 11 Visualization of the second filter layer in the model trained on PAMAP2 data set. a) Channel one 20 x 20 filter weights with the length of 5, b) and
c) represent the filter weights in the other two channels, respectively.
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(b)

Fig. 11 Visualization of the second filter layer in the model trained on PAMAP2 data set. a) Channel one 20 x 20 filter weights with the length of 5, b) and
c) represent the filter weights in the other two channels, respectively.
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Fig. 11 Visualization of the second filter layer in the model trained on PAMAP2 data set. a) Channel one 20 x 20 filter weights with the length of 5, b) and
c) represent the filter weights in the other two channels, respectively.
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37. Cireşan D, Meier U, Masci J, Schmidhuber J. Multi-column deep

neural network for traffic sign classification. Neural Networks, 2012,

32: 333–338

38. Lines J, Davis L M, Hills J, Bagnall A. A shapelet transform for

time series classification. Proceedings of the 18th ACM SIGKDD

international conference on Knowledge discovery and data mining,

2012, 289–297

39. Nanopoulos A, Alcock R O B, Manolopoulos Y. Feature-based

classification of time-series data. Information processing and

technology, 2001, 0056: 49–61

40. Lee H, Grosse R, Ranganath R, Ng A Y. Convolutional deep

belief networks for scalable unsupervised learning of hierarchical

representations. In: Proceedings of the 26th Annual International

Conference on Machine Learning. 2009, 609–616

41. Lee H, Largman Y, Pham P, Ng A Y. Unsupervised Feature Learning

for Audio Classification using Convolutional Deep Belief Networks.

In: Advances in Neural Information Processing Systems 22, 1096–

1104. 2009

42. Waibel A, Hanazawa T, Hinton G, Shikano K, Lang K J. Phoneme

recognition using time-delay neural networks. Acoustics, Speech and

Signal Processing, IEEE Transactions on, 1989, 37(3): 328–339



Front. Comput. Sci.
19

Yi Zheng received the B.E. degree

in Computer Science and Technology

in 2009 from Harbin Institute of

Technology, Heilongjiang, P.R. China.

He is currently a Ph.D. student in

the School of Computer Science and

Technology at University of Science

and Technology of China (USTC), P.R.

China. His major research interests include time series data

mining and deep learning. He has published several papers in

refereed conference proceedings and journals, such as WAIM’14,

PAKDD’15 and Nature Communications.

Qi Liu is an Associate Researcher

in University of Science and Technol-

ogy of China (USTC). He received

his Ph.D. in Computer Science from

USTC. His general area of research is

data mining and knowledge discovery.

He has published prolifically in refer-

eed journals and conference proceed-

ings, e.g., TKDE, TOIS, TKDD, TIST, SIGKDD, IJCAI, ICDM,

and CIKM. He has served regularly in the program committees of a

number of conferences, and is a reviewer for the leading academic

journals in his fields. He is a member of ACM and IEEE. Dr. Liu is

the recipient of the ICDM’11 Best Research Paper Award, the Spe-

cial Prize of President Scholarship for Postgraduate Students, Chi-

nese Academy of Sciences (CAS) and the Distinguished Doctoral

Dissertation Award of CAS.

Enhong Chen received the PhD

degree in computer science from

USTC, the master’s degree from the

Hefei University of Technology and

the BS degree from Anhui University.

He is currently a professor and the

vice dean of the School of Computer

Science, the vice director of the

National Engineering Laboratory for Speech and Language

Information Processing of USTC, winner of the National Science

Fund for Distinguished Young Scholars of China. His research

interests include data mining and machine learning, social network

analysis and recommender systems. He has published lots of papers

on refereed journals and conferences, including IEEE TKDE, TMC,

KDD, ICDM, NIPS, CIKM and Nature Communications. He was

on program committees of numerous conferences including KDD,

ICDM, SDM. He received the Best Application Paper Award on

KDD’08 and Best Research Paper Award on ICDM’11. He is a

senior member of the IEEE.

Dr. Yong Ge received his Ph.D. in

Information Technology from Rutgers,

The State University of New Jersey

in 2013, the M.S. degree in Signal

and Information Processing from the

University of Science and Technology

of China (USTC) in 2008, and the

B.E. degree in Information Engineering

from Xi’an Jiao Tong University in 2005. He is currently an

Assistant Professor at the University of North Carolina at Charlotte.

His research interests include data mining and business analytics.

He has published prolifically in refereed journals and conference

proceedings, such as IEEE TKDE, ACM TOIS, ACM TKDD,

ACM TIST, ACM SIGKDD, SIAM SDM, IEEE ICDM, and ACM

RecSys.

J. Leon Zhao is Head and Chair Pro-

fessor in the Department of Informa-

tion Systems, City University of Hong

Kong. He was Interim Head and Eller

Professor in Management Information

Systems, University of Arizona. He

holds Ph.D. from Haas School of Busi-

ness, University of California at Berke-

ley. His research is on information technology and management,

with a particular focus on collaboration and workflow technologies

and business information services. He is director of Lab on Enter-

prise Process Innovation and Computing funded by NSF, RGC, SAP,

and IBM among other sponsors. He received IBM Faculty Award in

2005 and was awarded Chang Jiang Scholar Chair Professorship at

Tsinghua University in 2009.


