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ABSTRACT
With recent advances in mobile and sensor technologies, a
large amount of efforts have been made on developing intel-
ligent applications for taxi drivers, which provide beneficial
guide and opportunity to improve the profit and work effi-
ciency. However, limited scopes focus on the latent social in-
teraction within cab drivers, and corresponding social prop-
agation scheme to share driving behaviors has been largely
ignored. To that end, in this paper, we propose a compre-
hensive study to reveal how the social propagation affects
for better prediction of cab drivers’ future behaviors. To be
specific, we first investigate the correlation between drivers’
skills and their mutual interactions in the latent vehicle-
to-vehicle network, which intuitively indicates the effects of
social influences. Along this line, by leveraging the classic
social influence theory, we develop a two-stage framework
for quantitatively revealing the latent driving pattern propa-
gation within taxi drivers. Comprehensive experiments on a
real-word data set collected from the New York City clearly
validate the effectiveness of our proposed framework on pre-
dicting future taxi driving behaviors, which also support
the hypothesis that social factors indeed improve the pre-
dictability of driving behaviors.
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1. INTRODUCTION
Recent years have witnessed the growing interests on data-

driven technologies for developing new paradigms of taxi
business. On the one hand, the dramatic expansion of ur-
ban areas results in the urge demand of efficient taxi services,
which cannot be solved by simply increasing the amount of
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cabs or drivers. On the other hand, thanks to the rapid de-
velopment of wireless sensor technologies in mobile environ-
ments, such as GPS, Wi-Fi and RFID, the abundant real-
time trajectories could be promptly collected [40]. There-
fore, through the analysis of trajectory data from taxi drivers,
a variety of intelligent services can be enabled, which will not
only lead to the improvement of work efficiency and profit
of taxi drivers [10], but also help to strike a balance between
the needs of taxi drivers and passengers [33].

In the literature, most of the research efforts on taxi busi-
ness focus on extracting effective transportation patterns,
e.g., the fastest driving route like [32] and [38], sequence of
pick-up points [23] or customers within the shortest driving
distance [10]. However, although the above works can ef-
fectively enhance taxi business, they may still suffer some
defects due to the ignorance of drivers’ behaviors. First, the
case-by-case recommendation are sensitive to the context,
thus frequent update is required, which results in heavy
burden of computation. Second, as drivers tend to be at-
tracted by popular routes, it will be difficult to distribute
the cabs for keeping regional balances. Last but not least,
predictability of taxi route is still limited as individual fac-
tors of taxi drivers have been largely ignored, i.e., neither
the self-learning ability, nor the social sharing scheme are
considered in the system design.

Indeed, though related techniques could highly support
the intellectual services, cab drivers could also rely on them-
selves to well fit the taxi business. For the experienced
drivers who are sensitive to the route and rules, they could
effectively summarize the patterns and regulate the lines.
At the same time, for those inexperienced ones, thanks to
rapid development of intelligent mobile devices and social
network services (SNS), not only offline (e.g., refueling or
lunching) but also online (e.g., forum, or twitter) gatherings
are now available, where driving experience could be shared
within drivers, which results in the “social propagation” of
driving behaviors. For instance, an motivating example be-
low, which summarizes a real post in a online taxi forum 1,
could intuitively illustrate this phenomenon.

A Motivating Story. A new taxi driver, who was unfa-
miliar with the traffic in New York City, posted a question

1http://www.nycitycab.com/forum/Replies.aspx?postid=649
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in online forum to ask for sharing driving experience. Then,
an experienced driver replied with several detailed sugges-
tions on how to drive in Manhattan to avoid the rush hour
or earn more tips. Based on these recommended patterns,
the new driver could better adjust his driving trajectory to
improve the work efficiency.

The true story above indicates that social interactions ex-
isting to influence drivers’ driving behaviors. Intuitively, if
we treat taxi drivers as “social agent” in the mobile social
networks, and simulate how the “social propagation” scheme
functions to interpret their future behaviors, taxi route will
be more predictable, and further social-oriented taxi ser-
vices, e.g., social-based “tutor” or pattern recommendations
could be effectively conducted. Unfortunately, due to the
constraint of user privacy, there is no exposed signal for so-
cial interactions to be observed. Thus, techniques to reveal
latent connections within taxi drivers are required.

To deal with this task, in this paper, we aim at explor-
ing latent vehicle-to-vehicle networks among taxi drivers
based on the analysis of their driving behaviors. To be spe-
cific, we propose a two-stage framework to capture the la-
tent propagation of driving behaviors among taxi drivers.
We assume that the increasing proportion of certain behav-
ior patterns may be caused by stronger influence, and vice
versa. Therefore, sequential driving behaviors with integrat-
ing social propagation could be formulated as time series and
solved as partial ranking tasks. Based on the framework, we
could better model the historical driving behaviors to predict
their future trends, and also discover the latent social con-
nections within taxi drivers. To the best of our knowledge,
we are the first to investigate the impact of social factors on
taxi driving patterns to explain drivers’ behaviors.

Finally, extensive experiments are conducted on a real-
world data set collected from the New York City. The ex-
perimental results clearly verify that our framework can bet-
ter predict driving behaviors of taxi drivers with dramatic
margin outperforming the baselines, which validates the hy-
pothesis that social factors indeed affect the driving pattern
decisions, and also demonstrates the capability of social an-
alytics in intelligent taxi services.

Overview. The rest of this paper is organized as follows.
Section 2 further illustrates the motivation with some intu-
itive statistics. In Section 3, we propose the novel framework
for driving behavior analysis with integrating social factors.
Afterwards, we comprehensively evaluate the performances
in Section 4, and then conduct some further discussion in
Section 5. Related works are summarized in Section 6. Fi-
nally, in Section 7, we conclude the paper.

2. DOES “SOCIAL FACTORS” AFFECT
TAXI DRIVERS?

As we propose the idea of driving behavior propagation
within cab drivers, in this section, we will intuitively dis-
cuss the effects of social propagation with related statistical
analysis to further support our motivation.

2.1 Data Set Description
We conduct our study on a real-world data set collected

from the taxi driving transactions in New York City during
the whole year of 2013, which is provided by NYC Taxi
and Limousine Commission (NYC TLC). This is a large-
scale data set that totally consists of more than 169 million

Table 1: Data Set Description

Data Statistic

Number of Taxis 14,144
Number of Drivers 43,191
Average Num. of Transactions 3,928.86
Average Num. of Passengers 1.68
Average Trip Time 15.05 min
Average Trip Distance 8.86 miles
Average Trip Fare $15.39

(a) (b)

Figure 1: The distribution of transaction amount
and average driving speed of taxi drivers.

transaction records of 43,191 drivers in 14,144 cabs. For each
transaction, we have the spatial and temporal information
for both pick-up and drop-off, as well as fares including tip
and toll. The statistical details are shown in Table 1.

As mentioned above that usually there is no explicit sig-
nal of social interactions. In the following sections, we will
conduct our two-stage framework to reveal the latent so-
cial connections via simulating the driving behavior propa-
gation. However, for the intuitive statistics here, we choose
the heuristic method which is widely used in “ephemeral so-
cial networks”study such as [31] and [39], i.e., co-occurrences
lead connections, and the frequency indicates the strength.
Along this line, if two cabs stop at the same place for a
relatively long time (e.g., more than 10 minutes), we guess
that a short-term communication may occur, which proba-
bly results in social interactions. Therefore, to be the same
with the prior arts like [39], an undirected edge will be built
between two drivers if long-time co-parking happened, and
the frequency will be counted as the link strength.

2.2 Social Effects on Taxi Driver Skill
With the above “ephemeral vehicle-to-vehicle networks”,

we could now discuss about the social effects on taxi drivers.
In details, two questions remain to be answered: 1) if drivers
with similar skills hold stronger connections, and 2) if drivers
with better skills hold stronger influences. To measure cor-

Table 2: Correlations between social link strength
and driving skill of taxi drivers.

Term Transactions Speed Income
3-4 Driver T10 R10 T10 R10 T10 R10

Correlation 0.093 0.018 0.177 0.011 0.094 0.021
Significant* 7 0 9 3 7 2
Positive 0 5 0 2 1 3

*P-Value<0.05
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Table 3: Mathematical Notations

Symbol Description

U = {ui} the set of taxi drivers
wij social connection strength from ui to uj

sti pattern frequency vector of ui in time t
sti,k proportion of k-th pattern in time t
pti,k social influence of k-th pattern in time t
Ni social neighbors of driver ui

Rt
i the pattern of ui that raise in time t

Dt
i the pattern of ui that decrease in time t

relations of driving skills, here we choose three evaluation
metrics, i.e., the transaction amount, the average driving
speed and the total income, to study on this issue. Par-
ticularly, we choose these three metrics since they can be
regarded as the representative symbols of work effectiveness
(i.e., more business), efficiency (i.e., faster trip) and profit
(higher benefits). Specifically, the distributions of further
two metrics are shown in Figure 1, while the curve for total
income is quite similar with the first one.

For better understand the correlation between skill level
and social influence, here for each evaluation metric, the top
10 drivers are ranked, compared with other 10 randomly se-
lected drivers. Afterwards, for each driver, we list his/her
“friends” with two values: connection strength and skill sim-
ilarity (absolute value of difference), and then measure cor-
relation between them. Also, we have P-Value presents the
significance of correlation. Besides, those with positive coef-
ficients, i.e., strong social connection leads to higher differ-
ence, are individually listed as they may violate the assump-
tion that social effects encourage similar driving patterns.

The statistical results are shown in Table 2, in which“T10”
presents the top 10 drivers and “R10” indicates the random
ones for comparison. For each group, we list average correla-
tion, count of significant correlations, and count of positive
correlations. Expectedly, we find that for all the three met-
rics, the top-ranked drivers reflect more significant correla-
tion, and further almost no positive correlation occur. As
random selected drivers reflect no significant correlation be-
tween skill level and social connections, “homogeneity” may
fail to explain this phenomenon. Thus, we may draw the
conclusion that skilled drivers may act as the influential
nodes to share expertise, and stronger connections lead to
better skills via “social learning” scheme, which further sup-
ports our motivation.

3. SIMULATING DRIVING BEHAVIORS
WITH SOCIAL PROPAGATION

As significance of social effects have been revealed, in this
section, we will introduce our two-stage framework to cap-
ture the driving behavior propagation within taxi drivers,
in which the technical solution for social influence modeling
and optimization task will be explained in detail.

3.1 Preliminary and Problem Statement
In this paper, we focus on the social interaction which

affects the driving behaviors. Thus, some other factors, e.g.,
the profit, traffic flow or festivals that may also influence
the routes will be temporally ignored, and more complicated
framework will be studied in future work.

Though we intuitively discover the social factors with in-
troducing heuristic “ephemeral vehicle-to-vehicle networks”,
however, it could hardly summarize the complete social in-
teractions due to the following reasons. First, co-occurrences
do not necessarily means face-to-face communication, thus
they are not adequate clues to reveal latent social connec-
tions. Second, occasional co-occurrences are indeed events
of small probability (� 1%), while majority of interactions
might be neglected. To deal with these challenges, in this
section, we target at formulating social propagation of driv-
ing behaviors within taxi drivers, and then the social inter-
actions could be revealed conversely.

Firstly, to describe the social effects on driving behaviors,
we define the vector si to present the driving behaviors of a
certain taxi driver ui, in which each element corresponds to a
kind of driving patterns. Specially, each pattern here will be
described as a triple contains the information about pick-up
area, drop-off area and pick-up time period, such as (Cen-
tral Park, JFK Airport, 10:00AM-11:00AM ). The details of
extracting these patterns will be introduced in experimental
part. Then, we have si,k to indicate the proportion of k-th
pattern in ui’s driving behaviors, and definitely, the vector
is normalized by

∑
k si,k = 1.

Further, to integrate social factors, we assume that the
driving behaviors could be represented as temporal conse-
quences, and in each round, the effects of social propagation
will be reflected by the fluctuation in next round. Thus,
timestamp information should be introduced into the driv-
ing behavior vectors as sti , which indicates the driving be-
havior of driver ui in t-th round. And intuitively, if we could
accurately reveal the latent social connections, we will pre-
cisely predict drivers’ behavior in the future, i.e., ∆st+1

i will
be well estimated.

At the same time, to describe the social factors within taxi
drivers, i.e., to draw the latent vehicle-to-vehicle network,
similar with traditional social network, we introduce eij to
present the edge from ui to uj , and correspondingly, wij in-
dicates the edge weight, or the influential strength, which
will be estimated during the training stage. What should
be noted is that the social network here is asymmetric and
all edges are directional. Afterwards, we have Ni to present
the entire social “neighbors” of driver ui. Furthermore, dif-
ferent from the traditional social propagation problems, to
integrate drivers’ own opinion into this framework, here we
treat each driver as neighbor of itself, i.e., ui ∈ Ni, and then
introduce wii to measure how the drivers insist their own
habits. Obviously, higher wii indicates less propagation and
more succession, and vice versa.

Along this line, finally, we could now formally define our
research problem as “social-driven behavior prediction” as a
typical time series analysis as follows.

Problem Statement. Given the target group of taxi
drivers U, and for each ui ∈ U, we have corresponding pat-
tern vectors sti during the time period t = 1, 2, ..., T . The
problem of driving behavior prediction is to accurately reveal
weighted social connections wij within each pair of drivers
ui and uj, then the fluctuation of driving behavior vector
∆sT+1

i in T + 1 could be estimated.

Technical details to solve the problem will be introduced in
following subsections, and the mathematical notations used
throughout this paper are summarized in Table 3.
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3.2 Loss Function for Behavior Prediction
With problem defined and notations summarized, now

we turn to formulate the behavior prediction task in de-
tail. Firstly, to describe the social propagation, for each
pattern, we have the accumulated social influence pti,k of
k-th pattern to driver ui, while the technical solution will
be explained in next subsection.

As we assume that fluctuation of driving behavior vec-
tors is due to the social propagation within cab drivers, spe-
cially, for a certain cab driver ii, if k-th pattern is holding
an increasing proportion in round T + 1, we conclude that
the social influence pti,k could be relatively higher, and vice
versa. Following this assumption, as it could be difficult to
exactly estimate the value of sT+1

i,k , here to ease the mod-

eling, we target at predicting whether sT+1
i,k will increase or

decrease in the T + 1 round, and how the increment ∆sT+1
i,k

ranks among all the patterns, which may reflect the rank of
corresponding social influence.

Therefore, the problem defined above could be intuitively
transformed as a partial ranking problem, i.e., rank ∆st+1

i,k

and label the top results in the list as increased. Here, we
define the set of patterns whose frequency are raised in time
t as Rt

i, i.e., ∀r ∈ Rt
i,∆s

t+1
i,r = st+1

i,r − sti,r > 0. Simi-

larly, Dt
i presents set of decreased ones. Then, for each pair

∀〈r, d〉i,t where r ∈ Rt
i and d ∈ Dt

i, the fluctuation is due to
the pairwise ranking of corresponding social influence, i.e.,
pti,d < pti,r.

With the assumption above, finally, we realize that if we
could accurately reveal the latent social interactions, we
could achieve the optimal ranking results of social influence
pt
i . Correspondingly, optimization of the ranking task will

leads to the solution of social connections. Thus, the task
of learning latent social connections wij will be summarized
as a pairwise ranking problem as follows:

Ranking Objective. Finding appropriate wij, so that
for ∀〈r, d〉i,t where r ∈ Rt

i, we will have pti,d < pti,r.

To deal with this task, we formulate the loss function of
pairwise ranking problem as follows:

minwF(w) =
∑
i,t

∑
r∈Rt

i,d∈D
t
i

h(pti,d − pti,r), (1)

where h(γrd) is a loss function to assign a non-negative
penalty according to the difference of social influence γrd =
pti,d − pti,r. Usually, we have the penalty h(γrd) = 0 when

pti,d ≤ pti,r. While for pti,d > pti,r, we have h(γrd) > 0 as loss.
To ease the computation, here we utilize the squared loss
function as follow:

h(x) = max{x, b}2. (2)

In this framework, we have a soft margin parameter b to
tolerate a small error. To ease the computation, here we
simply treat b = 0, and h(x) could be rewritten as∑

r∈Rt
i,d∈D

t
i

h(pti,d − pti,r) =
∑

r,d:pt
i,d

>pti,r

(pti,d − pti,r)2. (3)

3.3 Social Propagation Simulation
As ranking objective is proposed, now we turn to formu-

late the social influence within taxi drivers. Traditionally,
to simulate the propagation, or so-called “social influence”

process, classic models like Independent Cascade or Linear
Threshold model [16] might be selected, in which each nodes
usually has only two statuses, i.e., activated or inactivated.
However, in our task, the proportion of a certain driving
pattern may never jump from 0 to 1 sharply. Thus, here we
adapt the Steady State Spread (SSS) model [1] to simulate
the social propagation, in which each node holds its own ac-
tivating probability. Then, in each round, all the nodes (but
not only activated nodes in IC model) attempt influence
their neighbors, and then influence will be measured not only
by strength of social connections, but also their activating
probabilities. With adapting the formulation by introducing
pattern proportion stI,k instead of activating probability, we
have the equation as follow:

pti,k = 1−
∏
j∈Ni

(1− wji · δt−1
i,j,k), (4)

For δt−1
i,j,k, we design it to present pairwise influential prob-

ability sensitive to the pattern, which is different with the
overall social connection strength wji. Similar with the Sig-
moid function, we have the formulation as follow:

δti,j,k =
1

1 + e
−(st

j,k
−st

i,k
)
. (5)

Based on the formulation, δt−1
i,j,k will be controlled within

[0,1], and the relation between stj,k and sti,k will affect the

influence, i.e., if stj,k > sti,k, we will have δt−1
i,j,k near 1 to

enhance the influence, while for stj,k < sti,k, the pairwise
influence will be impaired.

3.4 Optimization Task
As all the formulations established, we could now optimize

the loss function Equation 1 to estimate latent social factors
wij . To be specific, we approach the latent social factors
wji by first deriving the gradient of F(w) with respect to
wji, and then use a gradient based optimization method to
find proper {w} that minimize F(w). Specially, as defining
γrd = pti,d − pti,r, we have the derivative as follow:

∂F(w)

∂wji
=

∑
t

∑
r∈Rt

i,d∈D
t
i

∂h(γrd)

∂γrd
(
∂pti,d
∂wji

−
∂pti,r
∂wji

), (6)

where h′(x) could be easily achieved as derivation of square
function, while for the social influence model, we have:

∂pti,k
∂wji

=
∏

l∈Nt
i ,l6=j

(1− wli · δt−1
i,l,k) · δt−1

i,j,k. (7)

According to the formulations, finally gradient descent meth-
ods could be exploited to deal with the optimization task.

3.5 Two-stage Framework
Based on the formulations above, we could now formally

define our two-stage framework as follows.

Training Stage. Given a group of taxi drivers U = {ui}
as well as their pattern vectors sti during the time period t =
1, 2, ..., T , in the training stage, we aim at inferring the latent
social connections {wij} within drivers, which achieve the
best explanation for the ranking of driving behavior vector
fluctuation ∆sT+1

i .
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Figure 2: Two-stage framework.

Test Stage. After obtaining the latent connections {wij}
in the training stage, in the test stage, given the taxi drivers
group U = {ui} with their pattern vectors sti during the
certain p-time lag as t = T − p + 1, ..., T − 1, T , we aim
at predicting the driving behavior vector fluctuation ∆sT+1

i

with accurate sign and ranking.

With these definitions, for the training stage, we target at
optimizing the Equation 1 to achieve the latent social con-
nections wij . For the test stage, we could directly calculate
pti,k according to Equation 4 for each pattern of driver ui,
and then rank the propagation to estimate the ranking of
driving pattern proportions, or classify the increment sign.
According to the framework, social interactions will be dis-
covered and social propagation scheme will be simulated,
which will be beneficial for further discussion on intellectual
taxi services.

Based on the definitions above, in training stage, latent
social connections will be revealed to support the social-
driven behavior prediction task in test stage. The data flow
of two-stage framework is summarized in Figure 2.

4. EXPERIMENTS: SOCIAL INFLUENCE
INDEED AFFECTS

To verify our hypothesis that social factors may affect the
driving behaviors of taxi drivers, which result in the change
of pattern frequency, in this section, we conduct extensive
experiments on a real-world data set. And further, some
related discussion will be conducted.

4.1 Experimental Setup
Here, we introduce the data set pre-processing and base-

line algorithms for evaluation.

4.1.1 Data Set Pre-processing
Similar with the statistical analysis in pre-study, our ex-

periments were conducted on the real-world taxi data set
collected from New York City. To generalize the driving
patterns, we first clustered all the pick-up and drop-off lo-
cations in the historical transaction records. Specially, we
conducted a bottom-up hierarchial with minimum variance
criterion until only 30 clusters were left (indeed, the number
of zones doesn’t disturb the results if around 20-50). The

Figure 3: Clustering results of New York City Lo-
cations.

Figure 4: Pattern frequency in each hour, in which
X-axis presents the label of area, and Y-axis presents
the hour.

clustering results are shown in Figure 3. Interestingly, we
find some landmarks have been distinguished, such as the
JFK Airport (i.e., the orange part in the southeastern cor-
ner) and EWR Airport (i.e., the brownish-green part in the
west), as well as some key regions in Manhattan, e.g., the
red region around the Central Park, and the pale green in
Lower Manhattan representing the Wall Street.

After location clustering, we counted pattern frequency in
each hour with respect to different pick-up locations, which
is shown in Figure 4. We could find except for the check
out time around 18:00 PM, in Manhattan downtown (e.g.,
area No. 8 and 13), the peak time usually happen around
midnight when passengers finish their night life. But for the
suburb area (e.g., area No. 3 and 6), the peak time happen
around 8:00 AM for those who take taxi for work. Also, only
a few areas attract most of the taxi transactions, while some
other areas, especially for area No. 25-30, may attract even
completely no transactions.

Furthermore, we generalized the patterns by dividing the
time period into every 2 hours, e.g., 7:00 AM to 9:00 AM,
then 24 hours lead to 12 intervals. Figure 5 shows the most
frequent patterns appear around 8:00 AM, which is the peak
of the morning rush hour. We can see many passengers take
taxi from WTC station to the downtown for work, or return
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Figure 5: Frequent patterns in NYC taxi driving
around 8:00 AM

Figure 6: Frequent patterns in NYC taxi driving
around 6:00 PM

home from JFK Airport after the long-time international
flight. While on the contrary, in Figure 6, which indicates
the most frequent patterns around 6:00 PM, passengers re-
turn home in Queens and Brooklyn after one day’s work. As
Figure 4 shows, due to the imbalance distribution of trans-
action amount with respect to different areas, only the most
frequent patterns are considered in order to reduce the inter-
ference of data sparsity. The sensitiveness of pattern amount
will be discussed in Section 4.3.

4.1.2 Evaluating Metrics
In this paper, we target at discussing the social factors

within taxi drivers which may affect their driving behaviors.
As mentioned above, we assume that accurate estimation
of social propagation leads to better explanation of future
driving behaviors. Thus, here we indirectly validate the pre-
diction results of driving pattern fluctuation to measure the
performance of our framework.

As mentioned in Section 3.5, to predict the pattern change,
we indeed have two tasks, i.e., the binary classification to
distinguish the sign (positive / negative) of pattern incre-
ment, and then ranking the patterns with respect to their
increments. For each task, related metrics will be selected
to measure the performance. For the binary classification
task, typically, we select the common used Precision and
Recall rates for validation.

For the ranking task, similar with the state-of-the-art learn-
ing to rank problems, NDCG and MAP are selected. Spe-
cially, we get NDCG following the equation DCG

iDCG
, in which

iDCG presents the ideal results and DCG will be calculated
based on the formulation as below:

DCG =
∑
i

2ri − 1

log(1 + i)
, (8)

where ri denotes the relevance of result, which is set as re-
versal order in our experiments. Furthermore, when calcu-
lating MAP, we treat the top 10 patterns in ground truths
as “expected results”, and the score will be calculated based
on their ranks in the result list.

Table 4: Overall Performance

SPC Ave Pop VAR

NDCG 0.3502 0.1603 0.2211 0.3619
Improve (%) - +118.46 +58.39 -3.23
P-Value - 0.000 0.000 0.755

MAP@10 0.2128 0.0254 0.1042 0.2018
Improve (%) - +737.79 +104.22 +5.45
P-Value - 0.000 0.000 0.472

Precision 0.1579 0.0134 0.0474 0.0192
Improve (%) - +1078.35 +233.12 +722.39
P-Value - 0.000 0.000 0.000

Recall 0.6892 0.0298 0.4151 0.0875
Improve (%) - +2212.75 +66.03 +687.66
P-Value - 0.000 0.000 0.000

4.1.3 Selected Baselines
As mentioned in preliminary, the prediction task could be

generally regarded as a time-series analysis problem. Thus,
here we exploit three related baselines in our experiments.

1) Personalized Average (Ave). As the basic time-series
analytical tool, we follow the simple assumption that drivers’
pattern ratio will only fluctuate around the average value of
each dimension. Thus, this baseline uses the average value
of previous p intervals (i.e., the selected time lag), to predict
the change of pattern frequency in next time interval.

2) Overall Popularity (Pop). Another heuristic assump-
tion is that drivers will follow the overall popularity to up-
date their own patterns. Based on this assumption, we intu-
itively rank the overall popularity within time lag for ranking
task. For the binary classification, we compare the ranking
with last time lag, and the raising ones will be labeled as
positive, while falling ones as negative.

3) Vector Autoregression (VAR) [20]. Vector Autore-
gRession (VAR) is a classical econometric model to cap-
ture the linear interdependencies among multiple time se-
ries, which suits modeling the autoregression for more than
one evolving variable. As we extracted the driving records
into pattern vectors, it will be appropriate to analyze the
time-series with VAR model. What should be noted is that
there will be one VAR model trained for a certain driver,
and the estimation will also be normalized.

In summary, we select two baselines, i.e., personalized av-
erage and VAR model that are based on time-series estima-
tion, while one more baseline according to the overall popu-
larity, which follows the similar assumption of our framework
that taxi drivers tend to follow suggestions from external
information source. With these baselines, comprehensive
analysis comparing different assumptions will be achieved.

4.2 Overall Results
Here, we show the overall prediction performance of our

approach SPC (Social-aware Pattern-Change prediction)
and other baselines. To be specific, the top 300 patterns
were studied and the time lag was set as 5 months (i.e., we
have transactions in 5 months as training data to predict the
variance of 6th month), while the parameter sensitiveness
will be discussed later. Similarly, to ensure the data quality
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(a) (b) (c) (d)

Figure 7: The verification on robustness with different set of patterns in terms of different metrics, a) NDCG,
b) MAP@10, c) Precision, d) Recall.

(a) (b) (c) (d)

Figure 8: The verification on robustness with different time lag in terms of different metrics, a) NDCG, b)
MAP@10, c) Precision, d) Recall.

with reducing sparsity, we selected top 100 taxi drivers with
the most records in our experiments. Besides, we set the top
20% of results in ranking list as positive, while the detailed
ROC curve will be studied at the end of this section.

The overall results are shown in Table 4. According to the
results, we realize that behavior patterns of cab drivers could
be largely random, as all the performance are relatively poor.
However, we can find that except for the comparison with
VAR on ranking problem, our approach outperforms the
other baselines with dramatic margin, even 20 times better
in some experiments. The performance highly supports our
assumption that with introducing the latent social factors,
drivers’ behaviors could be better explained. The conclu-
sion could also be partially supported by the comparison
between overall popularity and personalized average, as the
former one beats the later on all the metrics, and achieves
a relatively good result in terms of MAP, which indicates
that, especially for the most popular patterns, taxi drivers
will be glad to follow the trend.

Another interesting finding is that for VAR model, it per-
forms truly great in ranking task, but terribly fails for binary
classification. With deep looking of the output of VAR, we
realize that usually VAR predicts the proportion as 0 or neg-
ative, not only for those patterns that the drivers never try
(i.e., no training data), but also for those drivers tried for
once but never reappear. With considering auto correlation,
VAR model indeed “refused” to change. Combined with the
terrible performance on binary classification, we could con-
clude that the ranking list of VAR might be meaningless
as it fails to reveal the real pattern but only maintains the
outmoded ones.

According to the results, we may finally draw the conclu-
sion that the heuristic methods might not be appropriate
to estimate driving patterns of taxi drivers if without con-
sidering additional factors, like financial benefits or running

speed. This phenomenon might further explains why our
model could outperforms the baselines, as we do not “teach
the model” how to predict the change, but intuitively “simu-
late the social propagation scheme”, which is finally proved
as effective. Clearly, except for those intellectual services,
taxi drivers themselves could be the “best learner”.

4.3 Parameter Robustness
As the overall performance has been validated, in this

subsection, we evaluate the sensitiveness of parameters. In
this task, two parameters are concerned, i.e., the amount of
pattern, as well as the time lag.

For the amount of pattern, we conducted our experiments
on four sets of patterns, which contains 200, 300, 500 and 800
patterns separately. The results are shown in Figure 7. We
realize that for the ranking task, the metrics become worse
with more patterns that may be due to the following two
reasons: 1) more patterns results in more sparse data set,
especially when those unpopular ones are studied; 2) more
patterns raise the difficulty of ranking. Interestingly, we find
that for the overall popularity method, the performance dra-
matically deteriorates when patterns increase from 200 to
300, which may further prove our conclusion that drivers
will be glad to follow the popular trend, but for the unpop-
ular ones, it will be difficult to predict. On the other hand,
though data sparsity will also disturb the binary classifi-
cation, the precision and recall rates keep relatively stable
when patterns increase.

For the time lag, similarly, four sets of experiments are
conducted with lag as 3, 4, 5 and 6. The results are shown
in Figure 8. It seems that for our approach as well as over-
all popularity, the time lag does not reflect significant ef-
fect. However, for personalized average and the VAR model,
which are based on time-series estimation, when time lag in-
creases, the performance seems slightly worsen. It is inter-
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Figure 9: ROC Curve of our framework with differ-
ent positive ratio.

esting as for time-series analysis, longer lag is usually better
to catch the trend, but for taxi driving patterns, as proved
above that it might be even a random event, thus time-
dependent rules may suffer the over-fitting problem.

4.4 ROC Curve for SPC
Finally, we discuss about the ROC curve of our approach.

In former experiments, we treated the top 20% of ranking
list as positive. Here we conducted experiments with the
same parameters of overall result, while the threshold fluc-
tuates from 10% to 70% with interval as 10%. The ROC
curve is shown in Figure 9, in which numbers near the line
present the percentage of positive labels. From the figure,
we can clearly find that for any threshold, our framework
could outperform all the baselines in binary classification
task with significant margin. However, we also realize that
the recall may hardly pass 0.8 no matter how we regulate the
threshold, which indicates that social influence from other
taxi drivers or overall popularity may explain at most 80%
for pattern selected, while for 20% left, they may be caused
by other factors, like municipal engineering or festivals.

5. DISCUSSION: POTENTIAL RULES
In this section, we will further conduct discussions on the

estimated social connections for revealing the potential rules
of how taxi drivers connect and how driving patterns spread.

5.1 Social Skills: Quantity v.s. Quality
Firstly, we attempt to discover whether the driving skill

levels will affect the social connections. What should be
noted is that all the connections here are indeed in-edge.
Similar with the statistics in pre-study, average speed and
total income will be selected to measure the skills. Generally,
with some interesting rules found by statistical analysis, we
realize that though the driving skills may not affect how
many connections you have, they can determine who you
will connect to or study from.

When checking the correlation between the amount of con-
nections and two skills, we find it as completely insignificant
by statistical analysis, with P-Value even larger than 0.5 for
all the tests. It may indicate that better skills do not neces-

Table 5: Social Metrics for Pattern Spread Graph

Statistics

Average Edges 327.9122
Average Longest Path 8.5676
Average Max Out-degree 12.5878
Average Density 0.2244

sarily mean more in-edge connections. Clearly, “number” of
“tutors” is not a critical factor.

However, since we treat the drivers themselves as one of
their connections, when we check the correlation between
connection amount and their own position in the ranking
list of connection strength. Indeed, it surprisingly results in
significantly negative correlation (with the Pearson’s coeffi-
cient as -0.17), meaning that for those who have better skills
are even more willing to learn from the others and update
the patterns, while for the ordinary ones, they tend to insist
past patterns and refuse to change.

And finally, we check the correlation between driver’s skill
level, as well as their difference (of rank) with “authorities”,
i.e., “tutors” with top 5 strongest connection strength. We
find a significant correlation with Pearson’s coefficient as
0.323 and P-Value 0.001, which indicates that all the drivers
tend to learn from those top drivers with best skills, and
those with worse driving skills will be more dependent on
shared experience from top drivers.

5.2 Pattern with Profit: Effectiveness v.s.
Efficiency

Then, we discuss about the spread trend of driving pat-
terns. Similar with traditional social spread analysis, we
build one spread graph for each pattern, and for each driver
ui, if the proportion of k-th pattern is increased in time t
compared with t − 1, we defined it as ui is activated in
time t. Further, if ui is activated in t and one of the in-edge
connection uj was activated in t− 1, it is defined as uj suc-
cessfully activates ui in time t and there exists an directed
edge from uj to ui in k-th spread graph. Based on these
definitions, we could draw the pattern spread track similar
with traditional social influence analysis.

Then, we count four metrics to measure the graph struc-
ture of pattern spread, i.e., the amount of edges, which in-
dicates the pattern’s popularity; the longest path, which in-
dicates the depth of spread; the maximal out-degree, which
indicates the width of spread; and finally the density, which
indicates the frequency of spread.

We conduct our study with the same setting of overall
experiments in Section 4.2, i.e., top 300 patterns with time
lag as 5 for 100 drivers. Table 5 shows the average statistics
of this four metrics. With these four metrics, we could now
evaluate the correlation between social spread and pattern
profit. Specially, to measure the profit, we select the average
speed, the average distance and total fare.

The correlation statistics are shown in Table 6. Interest-
ingly, we find that for almost all the pairs, no matter sig-
nificant or not, the co-efficient is negative. In other words,
higher metrics lead to lower social attraction. Indeed, this
phenomenon could be reasonable. Take the “distance” met-
ric as an example since all the correlations are significant,
we can conclude that long-range trip might not be popular
among taxi drivers. Similar conclusion could be drawn for
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Table 6: Correlation within Pattern Spread and
Profit Metrics

Term Edge Long Path Out Degree Density

Speed -0.026 -0.041 -0.040 0.010
P-Value 0.756 0.617 0.631 0.908
Distance -0.202 -0.182 -0.194 -0.280
P-Value 0.014 0.027 0.018 0.001
Fare -0.060 -0.044 -0.066 -0.235
P-Value 0.468 0.597 0.426 0.004

the “fare” metric, it seems that experienced drivers are not
so willing to share patterns with high rewards.

6. RELATED WORK
In this paper, we deeply analyze taxi driving patterns

with considering latent social factors. Indeed, plenty ef-
forts have been made on understanding behaviors of taxi
drivers, and further developing intelligent systems, e.g., rec-
ommending hotspots that are more likely to pick up pas-
sengers quickly [34], planning practically fastest route to
a given destination [33] or route which provides a optimal
sequence of pick-up points [10], and even constructing the
spatio-temporal profitability map for drivers to select profit
locations [22]. On the other hand, for passengers to take
taxi, prior arts may also list location to easily achieve vacant
taxi [34], or support them to share taxi with optimal can-
didate [21]. Besides, though not directly generating recom-
mendation, some other works also focus on the taxi analysis.
For instance, [17] discussed about the comparison of top and
ordinary drivers based on several ranking schemes, while [15]
studied the strategy to pick up passengers with creating tree
structure with highest probability. For the anomaly detec-
tion, historical trajectories maintained for fast distinguish-
ing new trajectories that are isolated [36], and similar way
was also utilized to detect the taxi fraud [11] or outlier tra-
jactories [9]. Further, some applications were designed based
on the taxi driving analysis, e.g., [12] proposed the method
to detect traffic jams by searching the GPS records that
are close together, and [4] constructed a model to automati-
cally determine the capacity of each road segment using taxi
GPS data. Finally, [5] leveraged taxi GPS traces to suggest
nightly bus routes.

Another related topic of this paper is social network anal-
ysis, to be specific, the social influence or spread analysis,
and the location-based social network analysis. Since social
network structures are analyzed for marketing in [7] for the
first time, the social-based “word-of-mouth” effect, has be-
come one of the hottest issue in recent years, and several
prior arts, e.g., [16], [1], and [19] were proposed following [7]
that explicitly represent the step-by-step dynamics of influ-
ence. Among them, Independent Cascade (IC) model [16]
is treated as one of the most widely-studied models with
intuitive simulation and simple computation, which moti-
vated several linear approximation like [29] and [26]. Based
on the definition, some related works targeted at estimat-
ing the influence probability, i.e., the edge strength, like [14]
discussed effectiveness of several heuristic method to reveal
link strength, [24] predicted diffusion probabilities by us-
ing the EM algorithm, and [35] investigated the relation-
ship between the tie strength and information propagation

with several strategies of tie selection. Recently, due to the
complexity of evolving social network, more issues were dis-
cussed, e.g., [28] studied on how to model the implicit social
diffusion with time decay, and [2] discussed about differen-
tiation of social influence and homogeneity, as well as the
effects of weak ties in social spread.

For the location based social network analysis, the ba-
sic issue is whether human mobility indeed reflects social
characteristics. Recent studies showed that human mobility
is highly repetitive and non-random [13], so did [6] which
revealed that 10%-30% of human movement could be ex-
plained by social factors, even more evident on long-ranged
travel. Also, as comparing the social structure between on-
line and offline social network, prior arts [18] announced that
more cohesive communities will be found for offline event-
driven social networks than the ordinary ones. Since social
ties lead to similar mobility patterns and frequent physical
contacts, mobility patterns, in return, shape and impact so-
cial connections like [8] and [25]. For instance, [3] indicated
that the place of gather may benefit community detection.
Also, prior arts like [37] discussed about the homogeneity
and influence in location based network, and [27] further dis-
cussed the dynamic social influence within decision-making
of event participation. Finally, some related work studied
the offline user behaviors in the perspective of ephemeral
social networks, e.g., [39] developed a factor graph model
based framework to infer the likelihood of future encounter,
and [31] recommended offline geo-friends based on pattern-
based heterogeneous information network analysis.

Different from the prior arts, to the best of our knowl-
edge, we are the first to investigate the impact of latent
social factors within taxi drivers, and leverage it to explain
drivers’ future behaviors. Also, to reveal the social connec-
tion strength, we formulate the social influence from differ-
ence patterns in the perspective of pairwise ranking opti-
mization, which is novel compared with related works.

7. CONCLUSION AND FUTURE WORK
In this paper, we investigated the latent social factors

within the latent vehicle-to-vehicle network with simulating
the social-driven behaviors pattern change of taxi drivers.
To be specific, we proposed a social-driven two-stage frame-
work to simulate latent social interactions within taxi drivers,
which could better explain drivers’ future behaviors. A
unique characteristic of our framework is that it can trans-
fer the problem of driving behavior prediction into the form
of partial ranking with social influence, which can be re-
garded as a pairwise ranking problem for optimization. Ex-
tensive experiments conducted on a large-scale real-world
data clearly validate the effectiveness of the proposed frame-
work, which also prove the hypothesis that social factors
indeed affect the driving behaviors of taxi drivers.

As we discussed that though social factors could better ex-
plain the pattern fluctuation at most for around 80%, there
are still some other key factors, e.g., financial profit or traf-
fic environment. In the future, we would like to investigate
these factors with more comprehensive prediction frame-
work. Also, social-oriented taxi services, e.g., social-based
“tutor” or pattern recommendations will be considered. Fi-
nally, we will discover whether similar solutions could be
used for other service-oriented professions.
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