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Collaborative filtering (CF) models offer users personalized recommendations by measuring the relevance
between the active user and each individual candidate item. Following this idea, user-based collaborative
filtering (UCF) usually selects the local popular items from the like-minded neighbor users. However, these
traditional relevance-based models only consider the individuals (i.e., each neighbor user and candidate
item) separately during neighbor set selection and recommendation set generation, thus usually incurring
highly similar recommendations that lack diversity. While many researchers have recognized the importance
of diversified recommendations, the proposed solutions either needed additional semantic information of
items or decreased accuracy in this process. In this article, we describe how to generate both accurate and
diversified recommendations from a new perspective. Along this line, we first introduce a simple measure of
coverage that quantifies the usefulness of the whole set, that is, the neighbor userset and the recommended
itemset as a complete entity. Then we propose a recommendation framework named REC that considers both
traditional relevance-based scores and the new coverage measure based on UCF. Under REC, we further
prove that the goals of maximizing relevance and coverage measures simultaneously in both the neighbor
set selection step and the recommendation set generation step are NP-hard. Luckily, we can solve them
effectively and efficiently by exploiting the inherent submodular property. Furthermore, we generalize the
coverage notion and the REC framework from both a data perspective and an algorithm perspective. Finally,
extensive experimental results on three real-world datasets show that the REC-based recommendation
models can naturally generate more diversified recommendations without decreasing accuracy compared to
some state-of-the-art models.
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1. INTRODUCTION

Collaborative filtering (CF) is a technique that offers users personalized recommen-
dations based on the wisdom of crowds [Adomavicius and Tuzhilin 2005]. Specifically,
given the historical behavior data (e.g., browsing history, click streams, or item satisfac-
tion expressed in ratings), CF usually recommends a top-N list of items that are most
relevant to the target user’s interests [Su and Khoshgoftaar 2009]. The devised models
in this research area could generally be classified into two categories: matrix factor-
ization models and neighborhood-based models [Koren 2008]. In matrix factorization
models, users and items are projected into the same low latent space and the relevance
between each pair of them is compared directly in this space. For neighborhood-based
methods, e.g., user-based collaborative filtering (UCF), relevance between the user and
an unknown item is measured by the like-minded (relevant) neighbor users’ opinions
on this item.

In this way, these traditional CF models are successful at providing accurate rec-
ommendations that match some of the user’s dominant interests. However, the recom-
mendation set/list maybe monotonous (i.e., the recommended items are highly similar
to each other) and it is hard to cover all of the user’s interests [Zhang and Hurly 2009;
Said et al. 2013]. For instance, suppose Alice is a fan of the Harry Potter book series
and she is also interested in the topic of machine learning. She read many books writ-
ten by J.K. Rowling and another book of Pattern Recognition and Machine Learning.
Using traditional UCF, Alice’s neighbors are all fans of J.K. Rowling, as these neighbor
users need to have a lot of overlapped liked items with Alice. However, her interests for
machine learning would be neglected in this process. Similarly, the matrix factoriza-
tion models are also good at preserving the principal components of Alice’s dominant
interests while neglecting the minor ones [Koren et al. 2009]. Correspondingly, all the
books in the recommendation set are those written by J.K. Rowling without any ma-
chine learning–related reference. Alice will soon get frustrated by such homogeneous
recommendations. Thus, we have reasons to argue that a practical recommender sys-
tem should not only make relevant but also diversified recommendations to improve
overall user satisfaction.

Indeed, the importance of diversified recommendations has been well recognized in
the literature in the past few years. Some argued that accuracy-related metrics are far
from enough for measuring recommendation quality, and diversity should be consid-
ered an important ingredient to user satisfaction [McNee et al. 2006; Boim et al. 2011;
Said et al. 2013]. Others devised various models to improve recommendation diversity.
These models usually followed two steps. They first retrieved a larger candidate recom-
mendation set by traditional CF algorithms and then reranked this candidate set by
diversity-enhancing techniques. For example, Ziegler et al. introduced item category
information to access intralist similarity of the recommendation set and presented
a topic diversification approach to improve recommendation diversity [Ziegler et al.
2005]. A similar approach was proposed in Hurley and Zhang [2011], where the final
recommendation results for each user was formulated as a binary optimization problem
with the tradeoff between diversity and accuracy. In both approaches, the diversity was
measured by the distance-based metrics in this itemset. Nevertheless, these models
relied on additional category information to access item diversity or resulted in accu-
racy reduction during this process, which limits the generality of these models when
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only the user-item preference data are available. Thus we ask the following: Is it pos-
sible to generate both accurate and diversified recommendations that are applicable to
common scenarios even when no semantic data of items is available?

To tackle this problem, in this article, we look at recommendation diversification
from a new perspective. We start from the widely used UCF model and analyze why
it fails to generate diversified recommendations empirically and experimentally. In
fact, during the two steps of UCF, that is, the neighbor set selection and the recom-
mendation set generation, the relevance-based measures only consider individuals in
each set separately without a holistic view to treat elements in this set as a complete
entity. To this end, we first introduce a simple notion of coverage that measures the
usefulness of the whole set. We further design several variants of this measure to
consider different factors when measuring the utility of the whole set. Specifically, we
apply this notion in both stages of UCF and define what it means for neighbor users
to cover users’ interests and the recommended items to cover diversified neighbors.
Then we propose a recommendation framework named REC that not only encourages
traditional relevance-based score but also rewards the new coverage measure. Since
we reward coverage of each user’s interests by selecting a diversified neighbor set and
each diversified neighbor better contributes to the final recommendations, it is natu-
ral that the REC framework brings more diversified recommendations. Furthermore,
we generalize this coverage notion and introduce how to adapt it to various CF mod-
els, including item-based collaborative filtering and matrix factorization models. In
summary, we make the following contributions:

—We introduce a notion of coverage that measures the utility of the whole set in the
two steps of UCF, that is, neighbor set selection and recommendation set generation.
We also design several variants of this measure to consider some important factors
when measuring the utility of the whole set.

—We propose a recommendation framework that encourages both traditional relevance
measure and the new coverage measure based on UCF. We prove that the problem of
maximizing both relevance and coverage is NP-hard and provide efficient algorithms
by exploiting the submodular property.

—We generalize the proposed coverage measure and the whole recommendation frame-
work from both a data perspective and an algorithm perspective. Thus our proposed
measure and the overall framework can be easily adapted to different kinds of data
and various traditional CF models.

—We evaluate our proposed models on three real-world datasets. Experimental results
show that all the proposed models that incorporate the coverage measure increase
diversity results when compared to the traditional CF models. We also provide alter-
natives to further improve diversity with a small loss in accuracy. For example, in
the Douban dataset, the improvement of diversity is 12.7% with only 3.3% loss with
accuracy.

Organization: We discuss the motivations and problem definition in Section 2. In
Section 3, we present the proposed REC model. Then the generalization from both the
data perspective and the algorithm perspective is discussed in Section 4. We conduct
extensive experiments in Section 5, followed by related work in Section 6. Finally, we
offer conclusions and future work in the last section.

2. PROBLEM DEFINITION AND PRELIMINARIES

In this section, we start from the UCF model, which assumes that an active user prefers
the items that are locally popular among the like-minded neighbor users. This model
has been widely studied in CF and shows simplicity, robustness, as well as superiority
in explaining the Word of Mouth phenomenon for decision making [Herlocker et al.
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Table I. Mathematical Notations

Notations Description
U, V Userset, itemset in the recommender system
u, u′ Users in the userset, u (u′) ∈ U
v, v′ Items in the itemset, v (v′) ∈ V
Lu Items that user u likes, Lu⊆V
Ev Users that expressed likeness for item v, Ev ⊆U
Nu Items that user u hasn’t shown likeness
Su The selected neighbor set for user u
Tu top-N recommendations for u (|Tu|=N, Tu⊆ Nu)

1999; Sarwar et al. 2000a; Su and Khoshgoftaar 2009; Said et al. 2013]. Then we
present a preliminary empirical and experimental analysis to show the insufficiency
of UCF in top-N recommendation, which motivates our research. Specifically, for each
user u, given a set of items Lu liked by her, top-N recommendation aims at retrieving a
set of items Tu to u such that |Tu| = N and Lu ∩ Tu = ∅. For ease of explanation, Table I
lists some notations used in this article.

In UCF, there are usually two steps for generating recommendations for each user
u: the neighbor set selection and the recommendation set generation. That is, it first
selects a set of most similar (relevant) users as neighbors for u and then measures the
relevance between her and candidate items based on the neighbors’ past choices. The
commonly used assumptions for these two steps are [Herlocker et al. 1999; Sarwar
et al. 2000a]:

—Neighbor Set Selection: If u′ and u liked many items in common in the past, then
u′ could be a neighbor of u;

—Recommendation Set Generation:If most neighbors in the neighbor set liked item v,
then v is probably in the top-N recommendation set.

In the neighbor set selection step, various relevance-based measures have been pro-
posed. Since the focus of this article is not to devise more sophisticated means to
calculate user similarity, we choose the Jaccard measure, which performs well for the
binary preference data [Das et al. 2007]:

sim(u, u′) = |Lu ∩ Lu′ |/|Lu ∪ Lu′ |. (1)

After that, the neighbor set Su is generated by selecting top K users with the largest
similarities. Then in the recommendation set generation step, the predicted likeness
of user u to item v, denoted as r̂(u, v), is calculated by:

r̂(u, v) =
∑

v∈Nu,u′∈Su

I(u′, v)/|Su|, (2)

where Nu are the items that user u has not shown likeness (Lu ∪ Nu = V and Lu ∩ Nu =
∅). I(u′, v) equals 1 if v ∈ Lu′ and 0 otherwise. Here r̂(u, v) can be seen as measuring
the relevance between user u and item v indirectly based on neighbors’ past choices.
Typically, the recommendation set is generated by sorting r̂(u, v)s in a descending order.
That is, the more popular an item is among the neighbor users the more likely it would
be recommended to the target user.

As can be seen, in both steps of UCF, we need to generate a set of elements, that is,
neighbors and recommendations, respectively. However, using relevance-based mea-
sures in traditional UCF, individuals in each set are considered separately without a
holistic view to be treated as a whole [McNee et al. 2006]. Specifically, in the neighbor
set selection period, only considering the relevance between the active user and each
candidate neighbor separately would lead to incomplete coverage of her interests as
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Table II. Average Coverage Score of UCF (|Su| = 10, |Tu| = 5)

Interest Popularity Popularity Neighbor
coverage of covered of uncovered coverage

Dataset score items items score
MovieLens 82.13% 0.6911 0.5216 93.94%
Douban 61.35% 0.5451 0.4419 83.10%
Ihou 91.90% 0.6792 0.4876 65.17%

some of her minority interests may not be covered by any neighbor. The incomplete
coverage of users’ interests in the neighbor set selection would further influence the
recommendation period, making the final recommendation set contains no items that
are similar to the uncovered interests of the user. Likewise, in the recommendation set
generation step, only recommending the most popular items among neighbors would
lead to incomplete coverage of neighbors. That is, even if we have selected a diversified
neighbor set, each of which covered different interests of u, the final recommendations
would be monotonous if some neighbors contribute nothing.

For further validation, we conduct preliminary experiments on three real-world
datasets. These datasets are from different domains and all contain user-item pref-
erence data (see Table III in Section 5 for detailed statistics). We select neighbors of
each user based on Equation (1) and calculate the percentage of her liked items that
have been covered by the associated neighbor set (Equation (12)). Ideally, the coverage
score equals 1, implying each user’s interests are perfectly covered by her neighbors.
However, this score is far from satisfactory as shown in Table II, with 82.13% for Movie-
Lens and 61.35% for Douban, and thus many users’ interests are neglected since no
neighbor user has preferences for these uncovered items. What is worse, the uncovered
items are less popular than the covered ones, implying that these unpopular items are
harder to be covered in the traditional neighbor set selection period. Notice that these
unpopular items are more valuable in distinguishing the active user’s interests from
other users than those items that are liked by the crowds [Yin et al. 2012]. In this table,
the popularity of an item is proportional to users that liked it: pop(v) = log|Ev |

log|U | .
We further calculate the neighbor coverage score (i.e., the percentage of neighbors

that contribute to the final recommendations, Equation (14)) of the top-five recommen-
dation results for UCF, which are shown in the last column of Table II. We observe
that nearly 20% of the neighbors contribute nothing for the final recommendations in
Douban. For the Ihou data, even though 91.9% of users’ interests have been covered
in the neighbor set selection, there are still one third of the selected neighbors that
do not contribute to recommendation results. This phenomenon implies that even if
we selected a diversified neighbor set and covered most interests of u, we also need to
modify the recommendation set generation step in UCF to get diversified recommen-
dations. As only recommending the local popular items would lead to the incomplete
coverage of neighbors, which also results in the monotonous recommendations for the
active user.

In summary, there are some inherent insufficiency of traditional UCF. The funda-
mental reason is as follows: The relevance-based metrics (similarity and predicted
likeness) in the two UCF steps are designed to treat individuals separately, and this
may not perform the best with respect to the whole set. Please note that similar prob-
lems also exist in other traditional CF models as shown in the Introduction. In this
article, we first focus on UCF for better illustration and then discuss how to solve this
problem for other traditional CF models. Thus, we argue that for both selecting the set
of neighbors and the set of recommendations, the measurements should also consider
the usefulness of the set as a whole rather than a collection of individuals. In this way,
we set up the new goals in these two steps for top-N recommendation:
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Fig. 1. The overall REC framework.

—Neighbor Set Selection: It is ideal that each neighbor is similar with u and that
the whole neighbor set covers as many of u’s interests as possible.

—Recommendation Set Generation: It is ideal that each recommendation is locally
popular among neighbors and that the whole set of recommendations covers as many
neighbors as possible.

3. THE PROPOSED FRAMEWORK

Based on the new goals mentioned above, we first introduce a metric of coverage, which
naturally considers the utility of the whole set by encouraging diversity of individu-
als. This metric utilizes the historical preference data and it is applicable to common
scenarios when no item content is available. We define what it means for neighbors
to cover the user’s interests and for recommendations to cover the selected neighbors.
Accordingly, we propose a two-stage framework named REC for recommendation. The
commonality of these two stages is that, for both the neighbor set selection and the
recommendation set generation, we formulate the new goals mentioned above as op-
timization problems with the dual objectives of maximizing relevance and coverage.
Figure 1 illustrates the overall framework of the REC model. Next we introduce these
two stages in detail and show how the new goals can be achieved.

3.1. Neighbor Set Selection by Interest Coverage

For each active user, we wish to select a representative neighbor set that covers as
many of her interests as possible. Here the interests can be a collection of items that
are liked by the active user or some higher-level representations, for example, the
categories of the items or the hidden topics learned from the item descriptions. Since
it is time- and labor-consuming to get the exact categories of each item, to improve the
generality, we simply refer to the collection of items that the user likes as her interests.

As shown previously, when selecting the neighbor set for user u, we should not only
ensure each neighbor has a relatively large relevance value with u. Also, this neighbor
set should cover as many of u’s interests as possible. In summary, two important
measures are Interest Relevance and Interest Coverage. For each user u, we model the
neighbor set selection quality as follows:

F(Su, u) = αIRel(Su, u) + (1 − α)ICov(Su, u), (3)

where IRel(Su, u) measures the relevance (similarity) between user u and the selected
neighbor set Su. ICov(Su, u) rewards the interest coverage score by Su, and α (0 ≤ α ≤ 1)
is a tradeoff coefficient balancing these two measures.
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The relevance score can be interpreted as the group similarity of the neighbor set
Su to user u. Since the similarity value of each candidate to the active user does not
interfere with other candidates, a simple approach is to sum each candidate’s similarity
with u (Equation (1)) in this group, thus:

IRel(Su, u) =
∑

u′∈S

sim(u′, u). (4)

As discussed before, this score is widely used as the only measure for the neighbor set
selection in traditional CF models [Herlocker et al. 1999; Sarwar et al. 2000a].

For the interest coverage score, it measures the percentage of the user’s interests
that have been covered by the neighbors. A simple form of this measure is defined as:

ICov(Su, u) =
∑

v∈Lu
cov(Su, v)

∑
v∈Lu

1
=

∑
v∈Lu

1[∃u′, u′ ∈ Su&v ∈ Lu′]
|Lu| , (5)

where cov(Su, v) measures the coverage score of item v by neighbor set Su. A simple
idea is to define it as an indicator function that equals 1 if v appears in one of the
neighbors’ interests and 0 otherwise. And the interest coverage score of u is calculated
by averaging all coverage scores of her interests. Though intuitive, this naive definition
suffers from two drawbacks:

—Interest Importance: The active user’s interests for all items are treated equally
above, thus we cannot distinguish the importance of certain items. For example, the
less popular items are more important to reflect the user’s interests than popular
ones.

—Incremental Interest Coverage: The above interest coverage function is too strict,
since if one neighbor has covered an interest v of user u (v ∈ Lu), the coverage score
for cov(Su, v) would never gain even if other neighbors would cover v later. This strong
condition would result in the imbalance of covered times between different interests,
causing some of u’s interests being covered only once or twice. Consider an extreme
case, there exists one virtual user Bob who liked all items in this system. After Bob
has been chosen in the neighbor set for user u, the coverage score is now maximized
and we only need to select other neighbors from candidate users who have the largest
similarities as traditional UCF does. Thus this naive coverage measure is frail and
we have to find an incremental interest coverage function as an alternative.

We now address each of these issues in detail. For better measuring the importance
of each interest, we can simply add a weight to each item:

ICov(Su, u) =
∑

v∈Lu
wv × cov(Su, v)
∑

v∈Lu
wv

=
∑

v∈Lu
wv × 1[∃u′, u′ ∈ Su&v ∈ Lu′]

∑
v∈Lu

wv

. (6)

As to the incremental interest coverage problem, a better idea is to assign a soft
function cov(Su, v) to replace the above strong condition. There are some intuitions
in designing this soft function. First, when no neighbor is selected yet, cov(∅, v)
equals 0. Second, the interest coverage score is nondecreasing as we add more neigh-
bors to the neighbor set: cov(Su ∪ u′, v) ≥ cov(Su, v). That is, when more neighbors
are added, there are higher chances for item v to be covered. Last but not least,
the marginal gain of the coverage score decreases as we add more neighbors to u:
∀A ⊆ B ⊆ U \ u′, cov(A + u′, v) − cov(A, v) ≥ cov(B + u′, v) − cov(B, v). This intuition
refers to that each additional time we see a new neighbor covered item v, the reward
is decreased with the number of neighbors that have already covered this item. Since
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Fig. 2. Interest coverage function comparison, where the left figure shows the strong coverage score and the
right depicts the desired incremental coverage score.

for a larger neighbor set B, the covered times of item v must be no less than those of a
subset set A. Figure 2 draws an ideal shape of the coverage score function of a partic-
ular item, where the left figure depicts the strong coverage function and the right the
desired incremental function. With the increasing of the occurrences in the neighbor
set, the incremental coverage function value would gain slowly while the marginal gain
decreases at the same time (the dashed line). In contrast, the strong coverage function
reaches 1 when this item has been covered by the first time and would never gain any
more, even if it would be covered by other neighbors later. In fact, the phenomenon
of decreased marginal gain is a well-understood fundamental principle of economics,
which is termed as “Law of Diminishing Returns” [Baumol and Blinder 2011]. This phe-
nomenon happens everywhere in our everyday life. For example, Alice will be thrilled
if her parents buy an iPhone 5 as her first smartphone. However, when given another
iPhone 5 later, her satisfaction would decrease compared to the satisfaction from owing
the first iPhone. Similarly, in the interest coverage function, the marginal gain of an
item would decrease as it has been covered by more neighbors.

Actually, there are various functions satisfying the incremental coverage require-
ments (right part of Figure 2). For example, it is easy to truncate part of the sigmoid
functions or use simple linear transformations to meet the requirements. Here we use
a simple incremental coverage function, which is defined as:

cov(Su, v) = cnt(Su, v)
cnt(Su, v) + 1

, (7)

where cnt(Su, v) = ∑
u′∈Su

1[v ∈ Lu′] denotes how many times item v has been covered
by the neighbors. In this coverage function, it reaches 0.5 as only one neighbor covers
this item and 0.9 when it has been covered by 10 neighbors. After that, the coverage
score increases slowly to the limit of 1.

Finally, we propose the following interest coverage function that combines impor-
tance (Equation (6)) and incremental coverage (Equation (7)):

ICov(Su, u) =
∑

v∈Lu
wv × cov(Su, v)
∑

v∈Lu
wv

=
∑

v∈Lu
wv × cnt(Su,v)

cnt(Su,v)+1∑
v∈Lu

wv

. (8)

Since in the real world, it is harder to cover the unpopular items for a traditional
CF as shown in Table II, we simply set wv = 1 − pop(v) = 1 − log|Ev |

log|U | . That is, the more
popular an item v, the smaller the weight of it. This definition is intuitive, e.g., suppose
u liked an item v that is very popular among the crowds, then v is not informative
compared to those unpopular items liked by u.
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According to Equation (8), the interest coverage score ranges in [0, 1). To make the
relevance measure and coverage measure comparable,we normalize the relevance score
as follows: Rel(Su, u) = Rel(Su,u)

C , where C is a constant that sums up the top K users that
have the largest similarity with u. In this article, the similarity between a pair of users
is calculated by Equation (1). Then the value of the relevance score function also ranges
from 0 to 1. It reaches 1 when α =1, meaning only considering the relevance measure
in THE neighbor set selection. At this time, our model degrades to the traditional
neighbor set generation method in UCF.

Note that these two measures characterize different aspects when selecting the
neighbor set. Using the relevance score, each neighbor in a set S should have a large
similarity with user u. Meanwhile, the neighbors are encouraged to be diversified,
such that they can cover most of the user’s interests. In summary, these two measures
can be seen as judging the individual element and the whole group of the neighbor
set, respectively. Then the neighbor set selection can be reformulated as the interest
coverage maximization problem:

Interest Coverage (IntCov) Maximization Problem: Given a set of items Lu
liked by user u, identify a K neighbor set Su that maximizes the quality function:

max
Su∈U,|Su|=K

F(Su, u). (9)

3.1.1. Properties. The IntCov problem has several interesting properties. First, it is
NP-hard as proven in the following theorem.

THEOREM 3.1. The IntCov problem is NP-hard.

PROOF. Consider an instance of the NP-hard weighted maximum coverage prob-
lem, defined by a collection of sets A = A1, A2, . . . , Am over a domain of elements
E = e1, e2, . . . , en and each element is associated with a weight wv. Given a number
K, the task is to find a subset A′ ∈ A such that the total weights of covered elements is
maximized [Hochba 1997]. Next, we show that our IntCov can be reduced to this prob-
lem under a special situation. Consider when α = 0, that is, we only need to maximize
the interest coverage score of the neighbor set. For user u, we define a corresponding
collection of sets A = Lu ∩ Lu1 , Lu ∩ Lu2 , . . . , Lu ∩ Lu|U |−1 . The weight of each item corre-
sponds to wv × cnt(v)

cnt(v)+1 , where cnt(v) denotes how many times item v has been covered
by the selected K sets. Under this situation, maximizing the weighted coverage score
is equal to finding a K element set in A and our problem is reduced to the NP-hard
weighted maximum coverage problem.

Meanwhile, F(Su, u) has some other important properties. First, F(∅, u)=0, that is,
the quality score is zero when we do not select any neighbor for u. Second, F(B, u)≥
F(A, u) if A ⊆ B, as both the relevance and the coverage scores are nondecreasing.
Third, it is submodular, which satisfies the property of diminishing returns: ∀A ⊆ B⊆
U \ u′, F(A + u′) − F(A) ≥ F(B + u′) − F(B). In fact, we have already designed the
coverage score of a particular interest of u, that is, cov(Su, v) as a submodular function.
Next we will prove the submodularity of the neighbor set quality function F.

THEOREM 3.2. The neighbor set quality function F is submodular.

PROOF. First we claim that both IRel(Su, u) and ICov(Su, u) are submodular func-
tions. For any ∀A ⊆ B⊆ U \ u′, IRel(A ∪ u′, u)− IRel(A, u) = sim(u,u′)

C = IRel(B ∪ u′, u)−
IRel(B, u), where C is a constant that sums up the top K users with largest similarity
scores with u. Thus IRel(A∪ u′, u)− IRel(A, u) ≥ IRel(B∪ u′, u)− IRel(B, u) holds true
all the time. We conclude that IRel(S, u) is submodular.
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For each v ∈ Lu, we have cov(A + u′, v) − cov(A, v) = cnt(A+u′,v)−cnt(A,v)
[cnt(A+u′,v)+1]×[cnt(A,v)+1] and

cov(B + u′, v) − cov(B, v) = cnt(B+u′,v)−cnt(B,v)
[cnt(B+u′,v)+1]�[cnt(B,v)+1] . As A ⊆ B, cnt(A + u′, v) − cnt(A, v) ≥

cnt(B + u′, v) − cnt(B, v) and [cnt(A+ u′, v) + 1] × [cnt(A, v) + 1] ≤ [cnt(B + u′, v) + 1] ×
[cnt(B, v) + 1], we have cov(A + u′, v) − cov(A, v) ≥ cov(B + u′, v) − cov(B, v), which
is the defining quality of submodularity. Finally, as submodularity is closed under
nonnegative linear combinations, the interest coverage function ICov (defined in Equa-
tion (8)) is submodular. Thus, function F that linearly combines IRel and ICov satisfies
submodularity.

In conclusion, though maximizing the objective function F(Su, u) is NP-hard, it is a
nonnegative monotone submodular function. Researchers have already shown that a
simple heuristic greedy algorithm can guarantee high performance for maximizing this
kind of functions [Nemhauser et al. 1978]. Furthermore, there are no other efficient
algorithms which can generate better performance guarantee unless P = NP [Feige
1998]. Specifically, this greedy algorithm starts with an empty set and incrementally
constructs the required set S in K steps. Each time it adds a new element u′ to this
set Su which maximizes the marginal gain: u′ = argmaxu′⊆U\Su F(Su ∪ u′, u) − F(Su, u).
Following is the well-known performance guarantee.

THEOREM 3.3 (NEMHAUSER ET AL. [1978] AND CORNUEJOLS ET AL. [1977]). For any
nonnegative monotone submodular function F, let S� be the K element set with the best
performance and S the same size set obtained by greedy algorithm, which selects an
element with maximum marginal gain each time, and then F(S) ≥ (1 − 1

e )F(S�).

3.1.2. Scaling Up IntCov Algorithm. For each user u, the time complexity of IntCov is
O(KM) with naive greedy evaluations, where K denotes the neighbor set size S and M
the number of total users. Inspired by Leskovec et al. [2007], we can further exploit
the submodular property to reduce time complexity for finding candidate neighbors.
In submodular functions, the marginal gain of a new node shrinks as the set becomes
larger, that is, for each candidate neighbor u′, the marginal gain in the current iteration
cannot be larger than that in the previous iteration. Thus, instead of recomputing the
marginal gain of each candidate in every iteration, we do lazy evaluations. We keep
a sorted list recording the marginal gain for each candidate neighbor of u. In every
iteration, we just need to look at the list from the top node, if it is valid then move
it to the neighbor set and go directly to the next step, otherwise recompute the gain
and insert it into the list. This lazy forward method only needs to scan all candidate
neighbors in the first step. In our experiments, from step 2 to K, the recomputation of
the top element in the sorted list will lead to a new value that is not much smaller than
the previous one. Usually simply calculating the top several elements will help us find
a newly added neighbor and thus save computation. The whole algorithm for IntCov is
described in Algorithm 1.

3.2. Recommendation Set Generation by Neighbor Coverage

Following the proposed neighbor set selection criteria, a natural idea for recommenda-
tion set generation is that we should not only recommend items with large predicted
likeness scores by neighbors (Neighbor Relevance) but also ensure each recommended
item better covers different neighbors (Neighbor Coverage), such that each diversified
neighbor better contributes to the final recommendations. In a word, for each user u,
we model the recommendation quality G(Tu, u) as follows:

G(Tu, u) = β · NRel(Tu, u) + (1 − β) · NCov(Tu, u), (10)
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ALGORITHM 1: Overall Flowchart of IntCov Algorithm
Input: user u, neighbor size K
Output: u’s neighbor set Su

1: Initialize S0
u = ∅, C = U \ u, SL = ∅;

2: for each u′ ∈ C do
3: compute δSk(u′) = F(u′, u);
4: SL.insert([u′, δSk(u′)]) with the descending order of δSk(u′)
5: end for
6: [u′, δ(u′)] = SL.pop(); S1

u = S0
u ∪ u′

7: for k = 2; k <= K; k + + do
8: [u′, δ(u′)] = SL.pop()
9: recompute the marginal gain of u′: δSk(u′) = F(S(k−1)

u ∪ u′, u) − F(S(k−1)
u , u)

10: while δSk(u′) < SL.top.values() do
11: SL.insert([u′, δSk(u′)])
12: [u′, δ(u′)] = SL.pop()
13: recompute the marginal gain of u′: δSk(u′)
14: end while
15: Sk

u = S(k−1)
u ∪ u′

16: end for
17: Return Sk

u.

where the relevance score NRel(Tu, u) measures the predicted likeness of the whole
recommendation set Tu to user u, which is the sum of each single recommendation’s
predicted likeness (i.e., Equation (2)):

NRel(Tu, u) =
∑

v∈Tu

r̂(u, v). (11)

The neighbor coverage score NCov measures the percentage of the neighbors that
have contributed to the final recommendations Tu. It can be simply defined as follows:

NCov(Tu, u) =
∑

u′∈Su
cov(Tu, u′)

∑
u′∈Su

1
=

∑
U ′∈Su

1[∃v, v ∈ Tu&v ∈ Lu′]
|Su| , (12)

where cov(Tu, u′) is a binary valued coverage function that equals 1 if neighbor u′ has
contributed to the final recommendation and 0 otherwise. This simple method would
not differentiate neighbors that contribute many recommendations and that contribute
only once or twice. Since if a neighbor has contributed a recommendation v (v ∈ Tu),
the coverage score of the neighbor cov(Tu, u′) turns from 0 to 1 and that score would
never gain even if u′ has covered other recommendations later. Inspired by the idea of
“Incremental Interest Coverage,” we can similarly adapt the strong coverage function
to the Incremental Neighbor Coverage:

cov(Tu, u′) = cnt(Tu, u′)
cnt(Tu, u′) + 1

, (13)

where cnt(Tu, u′) denotes how many recommended items have been covered by the
neighbor u′. Combining Equations (12) and (13), we get the final incremental neighbor
coverage function:

NCov(Tu, u) =
∑

u′∈Su
cov(Tu, u′)

∑
u′∈Su

1
=

∑
u′∈Su

cnt(Tu,u′)
cnt(Tu,u′)+1∑

u′∈Su
1

. (14)

Thus the neighbor coverage score ranges from [0, 1), and it gets larger values as the
neighbors cover more items of the final recommendations. β is a coefficient balancing

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 3, Article 39, Publication date: February 2016.



39:12 L. Wu et al.

NRel and NCov. To make the neighbor relevance score and the neighbor coverage score
comparable, we also normalize the predicted likeness score as follows: NRel(Tu, u) =
NRel(Tu,u)

C , where C is a constant that sums up the top N items with the highest predicted
ratings of u. Then the value of the likeness score function also ranges from 0 to 1.

Similarly, these two measures characterize different aspects of selecting the top-N
recommendation set. Using NRel, each item in set Tu should have a relatively high
predicted ranking. Using NCov, the recommended items should be diversified for cov-
ering different neighbors. In summary, they can be seen as judging the individual
element and the whole group of the recommendation set, respectively. Then the rec-
ommendation set generation step can be reformulated as the neighbor set coverage
problem:

Neighbor Set Coverage (NeiCov) Problem: Given the neighbor set Su for each
user, identify a set of N items that maximize the score:

max
Tu,|Tu|=N

G(Tu, u). (15)

The NeiCov problem shares the same property as the IntCov problem, which is a
nondecreasing submodular function. Users could refer to Section 3.1.1 to get simi-
lar results. Thus we can use the same lazy forward greedy algorithm and scaling up
technique (Algorithm 1) to solve NeiCov. In summary, by pushing the coverage mea-
sure into the two steps of IntCov and NeiCov of the REC framework, the diversity of
recommendations is reached naturally.

4. GENERALIZATION AND DISCUSSION

In the previous section, we detailed the way of incorporating the coverage measure
into the two UCF steps to generate diversified recommendations. The proposed REC
framework is described mainly on a binary user-item preference dataset without any
item content. However, when more kinds of data are available, is it easy to incorporate
the content information, for example, the categories of these items, into the proposed
framework? In addition, though UCF is used by earlier recommender systems, the data
sparsity and scalability issues have limited the widespread usage of this algorithm in
today’s real-world recommender systems. With this in mind, can the coverage measure
and the REC framework also be applied to more advanced CF algorithms, such as item-
based collaborative filtering [Deshpande and Karypis 2004] and matrix factorization
models [Koren et al. 2009]? In this section, we would like to answer these questions.
We would explore the possibility of generalizing the proposed coverage measure and
the whole recommendation framework from both a data perspective and an algorithm
perspective.

4.1. Generalization of Nonbinary Data and Content Information

4.1.1. Generalization of Nonbinary Data. Recall that in the two stages of the REC frame-
work, we formulated the goals in both steps as optimization problems with the dual
objectives of maximizing relevance and coverage. The input of the REC framework is
the binary preference values of users, with 1 standing for likeness and 0 for dislike. For
some websites, users’ preferences for items are expressed as explicit ratings, where the
larger values denote higher appreciation. For ease of explanation, we use rij to denote
user i’s explicit rating for item j. In fact, these explicit ratings can be incorporated into
both the relevance measure and the coverage measure in the REC framework.

Specifically, in the neighbor set selection period, instead of relying on Jaccard simi-
larity to calculate the Interest Relevance (Equation (4)) for a neighbor userset, we can
devise more measures to calculate the similarity between a pair of users, for example,
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the cosine similarity measure:

sim(u, u′) = cos( �r(u, ), �r(u′, )) = < �r(u, ), �r(u′, )>

|| �r(u, )||2F ∗ || �r(u′, )||2F
, (16)

where <,> is the inner product of two vectors. �r(u, ) denotes a V -dimensional vector of
user u’s rating records and the j’s element of this vector is ruj . Also, we can incorporate
the detailed rating values into the Interest Coverage (Equation (8)) measure in the
neighbor set selection. With the interest coverage measure, interest importance is a
necessary factor. One possible solution is to embed the detailed rating values into the
interest importance factor of the interest coverage measure. For each user u, if item v
has a larger rating value than v′ [r(u, v) > r(u, v′)], then interest v must weigh more than
v′ (wv > wv′ ) in u’s opinion. For example, for user u, a simple idea is to set wv ∝ r(u, v).
Note that under this circumstance, the interest importance wv is personalized and
varies among people. In summary, the detailed rating values can be incorporated into
both measures during the neighbor set selection period.

Similarly, in the recommendation set generation period, we can extend the detailed
rating values into the Neighbor Relevance measure (Equation (11)). Specifically, the
predicted likeness r̂u,v of user u to item v can be calculated as:

r̂(u, v) =
∑

u′∈Su

r(u′, v)/|Su|, (17)

where r̂(u, v) equals 0 if user u does not rate item v and the real rating value if u rates v.
Thus, the REC framework can be easily adapted to nonbinary data in both the neighbor
set selection and recommendation set generation period.

4.1.2. Generalization of Content Information. In the previous section, we assumed that no
item information was available and each user’s interests were expressed as the set
of items that he or she likes. In fact, we can also characterize each user’s interests
with some higher representations, for example, the categories of the items. In the
real world, when the categorization of items is available (such as genres and tags),
we can group items into categories and each user’s interests are mapped to the cate-
gories based on the items that he or she likes. Then in the interest coverage measure
of the neighbor set selection period, instead of calculating how many liked items of
u are covered by the neighbor set, we measure how many categories liked by user
u are covered by the neighbor users. Under this circumstance, the interest coverage
score would increase if more of the user’s liked categories are covered by neighbors.
After the neighbor set selection, since the interest coverage measure does not inter-
fere with the neighbor coverage measure, the proposed NeiCov algorithm for recom-
mendation set generation in the REC framework can be applied directly to generate
more diversified recommendations. Thus it is easy to generalize the coverage measure
and the REC framework by characterizing users’ interests with the available item
information.

4.2. Generalization of other CF Models

In traditional CF, there are usually two kinds of approaches: neighborhood-based mod-
els and matrix factorization models (MF) [Koren 2008]. Neighborhood-based models
can be further divided into user-based (UCF) and item-based (ICF) collaborative filter-
ing. We previously detailed how to apply the coverage notion and the REC framework to
UCF. However, the scalability and data sparsity issues limit the applicability of UCF
in today’s real-world recommender systems. Next we would like to discuss several

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 3, Article 39, Publication date: February 2016.



39:14 L. Wu et al.

alternatives to generalize this coverage measure and the whole REC framework to ICF
and MF models.

4.2.1. Generalization of ICF. ICF assumes that a user would probably prefer items that
were liked by him or her in the past. Thus, instead of finding similar users in UCF,
ICF first selects the neighbor itemset of each item and then makes recommendations
based on these item neighbors. Here we present a simple idea to extend the coverage
measure into ICF. In the first step, similarly to ICF, we calculate the neighbors of each
item based on the user-item preference matrix. That is, for each item v, the Jaccard
similarity between it and v′ is calculated as:

sim(v, v′) = |Ev ∩ Ev′ |
|Ev ∪ Ev′ | , (18)

where Ev denotes the users that like v. Then the neighbor itemset of v, denoted as Sv,
is generated by selecting top K items that have the largest similarities to v. After the
neighbor item selection period, for each user u, the predicted likeness of user u to item
v, denoted as r̂(u, v), is calculated by averaging the target user’s preferences over the
item neighbors:

r̂(u, v) =
∑

v∈Nu,v′∈Sv

I(u, v′)/|Sv|, (19)

where I(u, v′) is equal to 1 if v′ ∈ Lu and 0 otherwise.
However, in contrast to ICF, for each user u, instead of selecting the top-ranked can-

didate items that have the largest predicted ratings for recommendation, we consider
the union of items that are neighbors of each item liked by u as the candidate rec-
ommendation set. That is, the candidate recommendation set Cu for each user u can
be denoted as Cu = ∪v∈Lu Sv, where Lu is the items that u likes and Sv is the selected
neighbor itemset of item v by Equation (18). Thus, u’s interests are fully covered by
the candidate recommendation set after the first step of neighbor itemset selection.
During the second step of recommendation set generation, for each user u, our goal
is to generate a recommendation set Tu from the candidate recommendation set Cu.
Instead of recommending the most relevant items that have the largest predicted rat-
ings (Equation (19)), we incorporate the neighbor coverage measure to ensure that the
recommendations cover more of those items that are neighbors of u’s liked items. A
simple form to define the neighbor coverage score for recommendation set generation
is as follows:

NCov(Tu, u) =
∑

v∈Lu
cov(Tu, v)
|Lu| =

∑
v∈Lu

1[∃v′, v′ ∈ Tu&v′ ∈ Sv]
|Lu| , (20)

where Tu⊆Cu is the final recommendation set for u and cov(Tu, v) is an indicator func-
tion that is equal to 1 if at least one recommended item in the recommendation set Tu
is a neighbor item of v and 0 otherwise. This neighbor coverage measure encourages
more of the items that are similar to a user’s interests would contribute to the final
recommendations. By combing both the neighbor relevance (Equation (19)) measure
and the neighbor coverage (Equation (20)) measure, we formulate a similar recom-
mendation quality function that balances maximizing these two measures, which is
introduced in Equation (10) of Section 3.2.

In summary, to incorporate the coverage measure and the REC framework into
the ICF, we could enrich the candidate recommendation set Cu for each user u after
the neighbor selection step, ensuring that the user’s interests to be fully covered
by the candidate recommendation set. Then in the recommendation generation step,
the final recommendation set Tu for each target user u better covers more of the user’s
interests, encouraging diversified recommendations compared to ICF.
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4.2.2. Generalization of MF. To solve the data sparseness problem and improve scala-
bility, various MF models have been proposed. A basic idea of MF is that attributes or
preferences of users are determined by a small number of factors, thus both users and
items can be projected into a low latent space from the historical records [Mnih and
Salakhutdinov 2007; Koren et al. 2009]. That is, given a user-item preference matrix
R|U |∗|V |, MF models try to infer the low latent D-dimensional representations of users
U |U |∗D and items V |V |∗D as accurate as possible. Various models have been proposed to
solve this problem based on the data type of the user-item preference matrix R. For ex-
ample, probabilistic matrix factorization performs well if the preference matrix consists
of ratings [Mnih and Salakhutdinov 2007] and Bayesian personalized ranking model
is suitable for ranking evaluations with a binary preference matrix input [Rendle et al.
2009]. Since we focus on generalizing the REC framework to MF models, we assume
that we have already got the low latent representations of users and items, that is, U
and V , from some state-of-the-art MF models (e.g., probabilistic matrix factorization).
We will introduce how to adapt the results to the REC framework. The basic idea is
that, in the neighbor set selection period, instead of calculating the relevance scores
by using the traditional measure that considers how many overlapped items are liked
by a pair of users in UCF (Equation (1)), we determine the similarity between a pair
of users from the low latent representations of them as:

sim(u, u′) = cos(Uu,Uu′ ) = <Uu,Uu′>

||Uu||2F ∗ ||Uu′ ||2F
, (21)

where Uu is the D-dimensional low latent representation of user u from U |U |∗D. We
adopt the same interest coverage measure as introduced in Equation (8). Then we
follow the similar neighbor set selection step as proposed in IntCov for diversified
neighbor selection and further generate recommendations with NeiCov.

In all, the whole recommendation framework for the generalization of MF is still
based on the two-stage REC framework that consists of neighbor set selection by IntCov
and recommendation set generation by NeiCov. The only difference is that, instead of
calculating the interest relevance measure based on the sparse preference data of users,
we apply the low latent representations of users for better interest relevance measure
calculation. Thus we can take advantage of the reduced latent space representations of
users for better neighbor selection. Indeed, the dimension reduction technique showed
good performance by some previous works when the data are extremely sparse [Liu
et al. 2011; Zhang and Hurley 2009].

Actually, we should notice that another possible way to generalize the REC frame-
work to MF is to extending the coverage measure directly to the low latent repre-
sentations of users and items. However, as the coverage measure is mainly based on
binary inputs in this article, we leave the problem of how to adapt it to any value type
efficiently and effectively in our future research plan.

5. EXPERIMENTAL RESULTS

We evaluate the proposed REC framework on three real-world datasets. Specifically,
we demonstrate: (1) the effectiveness of our models in covering users’ interests and
neighbors, (2) how the accuracy and diversity values change with the controlling pa-
rameters, (3) the efficiency of the proposed models, and (4) the overall performance of
our models compared with baselines. Though we mainly focus on the performance of
the REC related models in this article, we would also give the experimental results
of generalizing the coverage measure to other CF models as introduced in Section 4
when performing overall comparison.
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Table III. General Statistics of the Three Datasets

DataSet Domain Users Items Records Avg items per user Sparsity Categories
MovieLens Movie 6,038 3,533 575,281 95.28 97.30% 18

Douban Book 17,840 36,226 1,000,039 56.05 99.845% 7
Ihou Music 14,793 555 139,307 9.42 98.30% 15

5.1. Data Description

We use the following three datasets for our experiments:
MovieLens-1M Dataset: MovieLens-1M is a publicly available dataset collected by

GroupLens research.1 It contains 1 million movie rating records with ratings ranging
from 1 to 5. There are 18 movie genres and, on average, each movie belongs to 1.65
genres. Since we focus on recommending a set of items that the target user probably
likes, similarly to other works [Liu et al. 2012; Adomavicius and Kwon 2012], we select
ratings that are larger than threshold 3 as the records that are liked by users.

Douban-Book Dataset: Douban2 is a popular social-based website in China that
allows users to rate movies, books, and music. In this experiment, we crawled a large
part of users’ rating history of books through its public APIs. This initial dataset
contains 23,000 users’ book ratings on a scale ranging from 1 to 5 stars. We first take
similar filtering steps as described above and then filter out the users that have fewer
than five rating records. There are seven categories of these books, namely literature,
popularity, culture, life, business&economics, technology, and others. Each book belongs
to one of these categories.

Ihou Dataset: Ihou3 is a popular online karaoke website owned by iFlytek Co., Ltd.,
a leading provider of speech and language technology in China. Users are encouraged
to sing songs in this platform and others can listen to these songs and express their
feelings about the user’s performance. This initial dataset is provided by Ihou and
contains users’ singing records during July 2011 to Sep 2012. To reduce noise, we kept
only users and songs that appeared more than 5 times. This initial dataset has no
category information and nearly all of these songs belong to the popular genre, and we
turn to the original singer as the category of each song.4 We further filter out the singers
that have fewer than 10 songs in this dataset and, finally, get 15 singers (categories)
and 555 songs. Table III shows the details of each dataset.

5.2. Evaluation Metrics and Baselines

5.2.1. Evaluations Metrics. We evaluate the proposed models from two aspects: accuracy
and diversity. The detailed metrics are listed as follows.

Accuracy Metric: We use the widely adopted Precision for measuring the ranking
accuracy of recommendation results in collaborative filtering. Specifically, given the
recommendation set Tu for u, Precu measures the fraction of recommendations that
are really liked by the user:

Preu = |Tu ∩ T Tu|
|Tu| = |Tu ∩ T Tu|

N
,

where T Tu is the itemset that are liked by u in the test data.

1http://www.grouplens.org/node/73.
2http://www.douban.com/.
3http://ihou.com.
4Usually music has quite a broad range of genres, for example, classical and jazz. However, it requires
professional training to sing these and most Chinese prefer to sing popular songs for leisure.
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Diversity Metric: As discussed, each user has unique ranges of interests, with some
focus on a few topics while others may encompass a wide range of interest, thus the
diversification level in the recommendation set should be adapted to u’s own interest
level. As there is no universal standard on how to measure the diversity level of each
recommendation set, we borrow the category information of items for evaluation. For
each user, the diversity level Divu is measured as follows:

Divu = |C(Tu) ∩ C(Lu)|
|C(Lu)| ,

where C(Lu) denotes the categories that u likes in the training data while C(Tu)∩C(Lu)
are the categories that also appear in the recommendation set. Please note that to
improve the generality of our model and make it applicable to common recommendation
scenarios even when no item information is available, the category information is only
used to measure the diversity level of each model in the evaluation process.

These two kinds of metrics characterize different aspects of recommendation quality.
The accuracy metric tries to measure the individual level of recommendation results,
assuming that the recommendation set is good if each element is accurate. However,
even though each recommendation is accurate, the user would feel frustrated if the
recommendations are too similar to each other and lack diversity [McNee et al. 2006].
Thus a more diversified recommendation set that covers different ranges of users’
interests is preferred [Said et al. 2013]. The diversity measure defined above reaches
this goal since it focuses on the whole utility of the recommendation set, regarding it
as a complete entity rather than simple aggregations of individuals under accuracy
metrics.

5.2.2. Baselines. We compare our model with both traditional collaborative filtering
models and some recent representative techniques for diversified recommendations.
For traditional CF models, we choose UCF [Herlocker et al. 1999], ICF [Deshpande and
Karypis 2004], and BPR [Rendle et al. 2009], which are representatives in neighbor-
based models and matrix factorization models in CF. These models are designed to
improve accuracy of recommendation results and perform very well in practice. For the
diversity metric, we implement the TDiv [Ziegler et al. 2005], WDiv [Hurley and Zhang
2011], and AsDiv [Vargas and Castells 2013] models. These three models are designed
to encourage diversity of recommendation results. The details of these benchmarks are
listed as follows:

—UCF: UCF is a typical neighborhood-based method in CF which tries to predict the
target user’s preference by suggestions of other liked-minded users. It can be seen
as a special case of our proposed model when α=β =1.

—ICF: ICF is also a popular neighborhood-based approach in CF. Instead of calculating
user similarities in UCF, it tries to predict the target user’s preference by suggestions
of similar items.

—BPR: This is a popular matrix factorization model that is designed for implicit feed-
backs in recommender system and is suitable for the binary preference data [Rendle
et al. 2009]. This model was directly optimized for ranking and showed good perfor-
mance in many benchmark datasets and competitions. We implemented it with the
MyMediaLite Recommender System Library provided by the authors [Gantner et al.
2011].

—TDiv: This work introduced the intralist similarity to access the topic diversification
level of recommendations and designed a model to balance accuracy and diversity.
In this experiment, for fair comparison with other models in the training process, we
turn to Equation (18) to calculate the similarity between items.
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—WDiv: The authors formulated the tradeoff between diversity and accuracy as a
quadratic optimization problem with binary constraints and proposed models to
solve this problem efficiently.

—AsDiv: It is an adaption of the search result diversification algorithm xQuAD [Santos
et al. 2010]. The authors considered the different aspects of each user’s interests
directly and developed the diversity component by marginalizing the probabilities
over an explicit set of user need aspects.

As to our own two-stage REC framework, the related strategies proposed in this
article include the following:

—ECov: This model considers the equal importance of user interests and strong cover-
age function as shown in Equations (5) and (12).

—EICov: This model considers the equal importance of user interests but with incre-
mental coverage functions as shown in Equations (7) and (14).

—WICov: This model combines both the weighted importance of user interests and
incremental coverage functions as shown in Equations (8) and (14).

Besides, we have briefly introduced how to incorporate the coverage measure into ICF
and matrix factorization models. We would also like to include the following coverage-
based models proposed in the generalization part:

—ICFCov: It is an extension of adapting the coverage measure to ICF as introduced
in Section 4.2.1. The comparison between this method and ICF shows whether it is
effective to incorporate the coverage measure into ICF.

—MFCov: It is an extension of adapting the REC framework to matrix factorization
models as introduced in Section 4.2.2. The latent representations of users are learned
from the baseline BPR directly.

Since we mainly focus on introducing the coverage measure into UCF, in the following
we would first introduce the influence of various parameters in the REC framework
and then compare the various models mentioned above. There are several parameters
in these comparison models, and we will report only the optimal performance with
tuned parameters for fair comparision. For each user, we split the latest 20% of her
records for test and the remaining earlier records for training. As each user has at least
five records, this splitting ensures each user appears at least once in the test data.

5.3. Effectiveness of the Coverage Measure

As discussed in Section 3, the main contribution of our work is to naturally diversify rec-
ommendation results by the coverage measure. Before detailed comparison with other
models, we now investigate whether the proposed REC related models are effective in
selecting neighbors that cover more of users’ interests and generating recommenda-
tions that cover more neighbors.

Figures 3 and 4 show the interest coverage scores and neighbor coverage scores with
different neighbor set size K on the three datasets. The neighbor size ranges from 10
to 100 with an increment of 10. We set the controlling parameters as α = β = 0.5 to
balance relevance and coverage. In each stage, we calculate both the strong coverage
score and the incremental coverage score, where the strong coverage score is shown
with open interior marker and the corresponding incremental coverage score of this
method is shown with the same marker but with solid interior. For simplicity, the strong
coverage score is abbreviated as “Str” and the incremental coverage score as “Inc” in
these two figures.

5.3.1. The Interest Coverage Measure. As depicted in Figure 3, first we observe that with-
out coverage-based measures, both the strong interest coverage value (Equation (5))
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Fig. 3. The interest coverage score comparison with respect to different neighbor set size K.

Fig. 4. The neighbor coverage score comparison with respect to different neighbor set size K.

and incremental interest coverage value (Equation (7)) in UCF are far from satisfactory.
For example, with K=10, the strong coverage score is 0.54 and the incremental cover-
age score is 0.37 for Douban, thus nearly half of users’ interests are not covered. With
the increase of the neighbor set size, the coverage scores of UCF increase but there are
still gaps compared to the proposed models that consider the coverage measure. Second,
when looking at the strong interest coverage scores (open interior in this figure), they
all saturate quickly as we increase the size of neighbor set. For example, in MovieLens
and Ihou, the strong coverage score reaches 1 for all models that consider coverage
measure even when K = 10. As to the sparser Douban data, this score reaches 1 when
K = 30. The reason is that the strong coverage score only considers whether an item
has been covered. If it has been covered, this score would never gain even if it would
be covered later. Thus after reaching the value 1, the remaining neighbors in ECov
are selected from those users that have the largest similarities with the target user
without considering the coverage measure. Third, with the increase of the neighbor set
size, the incremental coverage scores of all models get larger and slowly approach the
perfect score 1 as this measure also takes the covered times into consideration. Please
note that the values of strong coverage score and incremental coverage score cannot be
compared directly. Since even with the same number of selected neighbors, the strong
coverage measure would get much higher score than the incremental measure. Last
but not least, under both interest coverage measures, the WICov performs a little bet-
ter than EICov; ECov ranks third and UCF always has the lowest scores. Thus we
conclude that the incremental coverage measure in EICov is more effective to improve
the coverage score than the pure strong coverage measure in ECov and, considering the
importance of items, further improves performance. The improvement on the sparsest
Douban data is the most prominent. On average, WICov, EICov, and ECov improve the
incremental interest coverage score of UCF over 14%, 23%, and 26%, respectively.
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Fig. 5. The impact of neighbor set size for accuracy of UCF on different datasets.

5.3.2. The Neighbor Coverage Measure. Similarly, we plot the performance of the
strong neighbor coverage score (Equation (12)) and incremental neighbor coverage
value (Equation (13)) in Figure 4. We set the recommendation size N = 5 as commonly
done in top-N recommendation. When we do not consider the coverage measure, the
neighbor coverage scores are quite low as shown in the results of UCF. The strong
neighbor coverage scores are only 0.71 for Douban and 0.65 for Ihou, indicating that
about one third of the neighbors do not contribute for final recommendations. How-
ever, our proposed models can solve this problem to some extent, covering about 90%
neighbors for Douban data and 83% for Ihou data. In fact, if we decrease the con-
trolling parameters to smaller values (α = β = 0.5 in this experiment), the coverage
score would increase as we rely more on coverage measures. We would discuss the de-
tails of the impact of controlling parameters in the next subsection. With the increase
of neighbor size, the neighbor coverage scores of all models decrease. As when more
neighbors are involved, it is harder to cover all of these neighbors. But the models
that consider the coverage measure still get higher coverage scores than UCF under
all situations, indicating the superiority of incorporating neighbor coverage measure
in recommendation process.

5.4. Sensitivity to Controlling Parameters

Before the detailed experiments on the final recommendation quality with different
controlling parameters, we need to select the neighbor set size K. Figure 5 shows the
accuracy results of UCF with different neighbor size on these three datasets. These
three subfigures share the same trends for accuracy. As we increase the neighbor
set size at the beginning, the accuracy increases quickly since more neighbors are
available to provide recommendations. After the K value exceeds 150, the results drop
in all these datasets as we introduce noise when K is rather large. The best K values for
accuracy range between [50, 150] for these datasets. Thus in the following experiments
the neighbor set size is set to be 100.

As discussed, REC diversifies recommendations through IntCov and NeiCov, each
with a controlling parameter, that is, α and β, respectively. In both steps, the larger
the controlling parameters the more we rely on individual values, which is thought to
increase accuracy while deteriorate diversity [Ziegler et al. 2005; McNee et al. 2006;
Said et al. 2012]. To clearly show the balance between accuracy and diversity, Figure 6
presents the accuracy and diversity results of these three datasets on top-five recom-
mendation. The x axis shows the diversity results and the y axis depicts the accuracy.
The controlling parameters are set from α = β = 1 to α = β = 0.1 with a step of 0.1
decrease each time. The UCF results are shown on the left on each figure that do not
change with those parameters. Results with better diversity appear toward the right.
Results that are more accurate appear toward the top.
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Fig. 6. Precision and diversity with regard to control parameters. The x axis shows control parameters (α
and β). For each dataset, the top part shows accuracy and bottom part diversity.

There are several findings. First, when looking at the ECov model, it ranges to
the rightmost of this figure with small values of parameters, indicating it reaches
the highest diversity compared to other REC-related models. However, the accuracy
deteriorates at this time, since there is a downward trend of the ECov curves of all
datasets. On these three datasets, the accuracy results of ECov are worse than UCF
when α = β = 0.7. Looking at EICov and WICov, the EICov curves are usually in
the upper right position of UCF and WICov in the upper position of EICov, indicating
that EICov outperforms UCF on diversity while being comparable in accuracy to UCF.
Considering the weight of interests in WICov further improves both accuracy and
diversity compared to EICov. To summarize, ECov has the largest improvement on Div,
and WICov ranks second, followed by EICov. UCF always ranks last on this metric. For
example, the improvement over UCF on the diversity metric reaches 12.6%, 6.1%, and
7.3% for ECov, EICov, and WICov, respectively, on Douban data with α = β = 0.2.

Combining the results of both accuracy and diversity, we summarize several guide-
lines for selecting models and the controlling parameters. If we put more emphasis
on accuracy, then the WICov model seems to be the best choice as it provides better
accuracy and diversity than pure UCF. On these three datasets, the WICov always has
the largest accuracy values when the controlling parameters (i.e., α and β) are set to
be the same value. The controlling parameters can be set as α = β = 0.2 since this
generates the best results of these two measures with regard to all datasets. On the
densest MovieLens dataset, the improvements of accuracy and diversity are about 0.7%
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Fig. 7. Runtime comparison with different K for each user.

and 3.4%, respectively. On the sparest Douban dataset, the improvements are promi-
nent, with 0.2% for accuracy and 7.3% for diversity. However, if the system values more
on diversity, then ECov model seems to be a better choice as it reaches the highest di-
versity with only a small loss on accuracy. As shown in the figure, when α = β = 0.1,
ECov gets the best individual diversity score of 0.491 on Douban, which has 12.7%
improvement on diversity with only 3.3% loss on accuracy compared to UCF.

5.5. Time Efficiency of REC Framework

In the proposed framework, we discussed how to speed up the REC related framework
and we will compare the actual runtime of these models. The experiments are conducted
on a Core i7 2.94-GHz machine with Windows 8 and 8-GB memory. Figure 7 shows the
time efficiency of the proposed models for each user compared to UCF and some naive
algorithms, including the exhaustive search and the naive greedy algorithm. First, we
observe that the proposed lazy forward algorithm greatly improves the time efficiency
compared to naive algorithms. In fact, REC needs less than 2 s to select neighbors and
generate top-five recommendations on all these datasets even when K = 100. Second,
the actual runtime of all the proposed models divided by that of UCF are far lower
than the neighbor size K due to lazy evaluations. In practice, WICov and EICov cost
about 2 times as much as UCF even when K = 100. However, the ECov model costs
about 2 times as much as UCF when K = 10 and about 5 times when K = 100. This is
because when more neighbors are involved, the lazy forward algorithm in ECov needs
more iterations to find a suitable neighbor to cover the user’s uncovered interests. While
in EICov and WICov, the incremental coverage measure would need fewer steps for
selecting neighbors when the neighbor set is relatively large and thus has less runtime
than ECov. When applied to real applications, the neighborset size is usually chosen
in a relatively small value to avoid noise, and thus our models have comparable time
complexity to UCF.

5.6. Overall Comparison with Other Models

In this section, we compare the overall recommendation results of our models to other
baselines with different recommendation set size. Our models include various REC-
based models and the generalization of adapting the coverage measures and the rec-
ommendation framework into other traditional CF models. The accuracy results are
shown in Figure 8 and those for diversity in Figure 9. For better illustration, all our
proposed models are marked with dashed lines; the traditional CF models are plotted
with black solid lines and the remaining baselines of diversity-enhancing models are
shown by colored solid lines. The largest recommendation set size is set to be 20 as

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 3, Article 39, Publication date: February 2016.



Relevance Meets Coverage: A Unified Framework to Generate Diversified Recommendations 39:23

Fig. 8. The overall accuracy comparison of all models with different recommendation size.

Fig. 9. The overall diversity comparison of all models with different recommendation size.

users are unwilling to receive too many recommendations in the recommender system.
For both metrics, the larger values the better performance.

We first compare the results of our models with regard to other traditional CF mod-
els. Among these three traditional CF models, UCF always outperforms over these
two metrics. In fact, other researchers also observed that UCF performed better with
regard to accuracy when compared to other traditional CF models for top-N recom-
mendation [Gantner et al. 2014]. BPR performs better than ICF on the MovieLens and
Ihou datasets. However, it has worse performance than ICF on the Douban dataset. A
possible reason is that the Douban dataset is very sparse (99.845% sparsity) and the
number of items are larger than that of users in this dataset. In the learning process,
BPR needs to create all pairs between liked items and each unknown item for each user.
These limited available data lower the final accuracy results. Compared to traditional
CF models, all of our REC-based models show comparable accuracy and much better
diversity than UCF under all recommendation set size. For example, our model WIDiv
improves about 12% diversity than UCF with slightly better accuracy on Douban data.
The improvement is even larger when compared to ICF and BPR. Similarly, ICFCov,
which pushes the coverage measure into ICF, shows improvement on the diversity met-
ric with a little loss of accuracy compared to the ICF model on all these three datasets.
As to the MFCov, the experimental results on both accuracy and diversity are much
better than BPR. And the accuracy results are even better than UCF on MovieLens and
Ihou dataset, indicating it is more effective to calculate the relevance between users
with the dimension reduction technique. In summary, the above results show that it
is effective to incorporate the coverage measure into any traditional CF model. The
diversity results are largely improved with comparable performance of accuracy.
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Fig. 10. Jaccard similarity of different models.

We then compare our models with other diversity-enhancing models, that is, TDiv,
WDiv, and AsDiv. Note that all these models need to generate a candidate recommen-
dation list by traditional CF models in the first step. For fair comparison, we choose
the top 50 recommendation results of UCF as the candidate set since UCF outperforms
other traditional CF models. We first observe that all these diversity-enhancing models
increase the diversity results. Among all these models, our models always perform the
best, followed by TDiv on all these three datasets. On average, our models improve
about 2% to 10% diversity over these diversity-enhancing models. Our models also
have better accuracy results than these baselines since they lose a small amount of
accuracy for promoting diversity directly from recommendation candidates. Note that,
in addition to the widely used precision measure for accuracy comparison, we have also
measured the recall values of different models and we found the overall trend for the
performance of various models is the same as the trend of precision measure on these
three datasets. Therefore, for the simplicity of result discussion, we do not report the
detailed results of recall values.

For a better understanding of the correlations of recommendation results, Figure 10
provides the Jaccard similarity of different models with top-five recommendations. The
darker the color between two models the smaller the similarity of recommendation
results between them. It is clear that ICF has a recommendation list that is differs
considerably from the others, followed by BPR. We empirically conclude that tradi-
tional CF models would generate rather dissimilar results based on their different
assumptions. Among all the diversity-enhancing models, AsDiv produced the most dis-
similar results as it needed an additional step to model users’ aspect preference from
predicted preferences learned by traditional CF models. Then it generated recommen-
dations based on users’ aspect preference. The remaining diversity-enhancing models
only needed to balance diversity and the predicted preferences learned from traditional
CF models directly. In contrast, our proposed REC framework implicitly achieves di-
versity by incorporating the coverage function at each step naturally. Thus our models
have about 70% overlap with UCF on these three datasets.

5.7. Case Study

We present the top-five recommendation results of two typical users in Table IV. For
better illustration, we only list the best baselines in the previous experiment (TDiv)
and UCF. We list the user’s category preferences in the training data without details of
each record. We can clearly see that, our REC-related model WIDiv captures the target
user’s interests better and recommends a more diversified recommendation set. Take
the typical user in Douban, for example. From the user’s reading history, this user is a
fan of the Japanese horror manga artist Junji Ito as more than half of his liked books
are written by this author. Meanwhile, we guess this user’s work is closely related to
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web design as he has read many books related to this topic. Our model WIDiv is able to
recommend diversified results by covering the user’s interests for both comic and web
design. However, in UCF, only the user’s major interests for Junji Ito were captured,
and thus UCF can only recommend highly homogeneous recommendations of comics
drawn by Junji Ito. However, in TDiv four books in the recommendation list are comics
written by Junji Ito and only one book pertains to web design.

6. RELATED WORK

We summarize the related work in this section. In general, the related work can be
grouped into the following four categories, namely traditional relevance-based CF mod-
els, results diversification in information filtering, coverage measure and its applica-
tions, and submodular optimization and applications.

Traditional Relevance-Based CF Models: CF suggests personalized recommen-
dations to users based on the wisdom of crowds. This area has enjoyed much attention
from both academia and industry during the past decade [Adomavicius and Tuzhilin
2005; Koren and Bell 2011; Su and Khoshgoftaar 2009; Zhu et al. 2014]. Given the
historical preference data of users, CF models usually recommend a top-N list of items
that are most relevant to the target user’s previous interests. Thus the accuracy met-
rics, such as MAE and RMSE in rating prediction tasks, precision, and recall in ranking
related tasks dominated traditional CF evaluations [Herlocker et al. 1999, 2004; Bell
and Koren 2007b; Sarwar et al. 2000b]. Generally speaking, traditional models in this
area can be classified into two categories: neighborhood-based models and matrix fac-
torization models [Koren 2008; Gu et al. 2010]. Neighborhood-based models tried to
infer the relevance between the active user and each candidate item based on similar
users’ decisions [Breese et al. 1998; Sarwar et al. 2001; Herlocker et al. 1999; Bell
and Koren 2007a]. In contrast, matrix factorization models projected both users and
items into the same low latent space and the relevance between them were directly
comparable in this latent space [Koren et al. 2009; Mnih and Salakhutdinov 2007;
Zheng et al. 2012]. Researchers further combined these two models to improve the
accuracy of recommendation results [Koren 2008]. In a word, traditional CF models
were mainly driven by the accuracy goals and many efforts were devoted to designing
more sophisticated means to calculate the relevance between users and items with the
available sparse preference data.

Result Diversification in Information Filtering: Recently some researchers ar-
gued that accuracy was far from enough for measuring recommendation quality and we
should turn to user-centric means to measure the overall quality of recommendation
results [McNee et al. 2006; Said et al. 2013]. Among them, diversification has been
accepted as an indispensable part for sensing users’ satisfaction in both recommen-
dation and search result presentation [Ziegler et al. 2005; Zhang and Hurley 2008;
Hurley and Zhang 2011; Boim et al. 2011; Drosou and Pitoura 2012; Campochiaro
et al. 2009]. In fact, both of these two applications serve as filtering tasks to mitigate
information overload. Users are more willing to see diversified and informative results
than highly homogeneous results. Most models for result diversification were based on
multiobjective optimization, where the final results were balanced between accuracy
and diversity. In practice, diversity metrics were defined in various means. Users can
refer to Vargas and Castells [2011] for a formal framework that summarized several
state-of-the-art metrics. Some were directly based on the similarity measure, where the
similarity between items was based on the semantic information of items or borrowed
from the user-item preference history. Then the diversity of a recommendation set was
defined as the average intralist dissimilarity of all pairs of items in that set ([Bache
et al. 2013; Ziegler et al. 2005; Hurley and Zhang 2011; Boim et al. 2011]). While others
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argued novel items were a means to enhance diversity [Oh et al. 2011; Yin et al. 2012;
Cremonesi et al. 2011]. Among them, Said et al. [2012] showed that UCF usually gener-
ated recommendations that lack diversity. In addition, there are several works that are
closely related to ours [Ziegler et al. 2005; Hurley and Zhang 2011; Zhang and Hurley
2009; Vargas and Castells 2013]. For instance, Ziegler et al. [2005] introduced an item
category to access intralist dissimilarity of items and presented a topic diversification
model to improve recommendation diversity. Hurley and Zhang [2011] formulated a
binary optimization problem with a control parameter that explicitly tuned the tradeoff
between accuracy and diversity. These two models can be seen as reranking a larger
candidate recommendation set from traditional CF models. Zhang and Hurley [2009],
Vargas and Castells [2013], and Boim et al. [2011] argued that users’ preferences
have different sides, and thus considering the subsets of the target user’s interests
was a natural idea for diversified recommendations. Usually the subsets can be ob-
tained by predefined semantic information of items or some distance-based clustering
algorithms. Then the final diversified recommendations can be achieved by combining
the partial recommendations based on users’ subprofiles. Vargas and Castells [2013]
also claimed that extracting users’ subprofiles in recommender systems is close to
query aspects representation for reducing query redundancy in information retrieval
[Santos et al. 2010]. Our work has explicit distinctions from these works. The diversi-
fied recommendations are reached naturally through the coverage measure and we do
not need any category information of items. Thus our model can be easily applied to
various recommendation scenarios even when no item information is available.

Coverage and Its Applications: The coverage measure has been extensively stud-
ied in document summarization–related tasks. These tasks treated the summarization
problem as finding a low-cost subset that covers as much information in the document
as possible [Lin and Bilmes 2011; Sipos et al. 2012]. Some researchers also extended
this idea for recommending news related tasks with the text information of these items
is available [El-Arini et al. 2009; Yue and Guestrin 2011; Pennacchiotti et al. 2012].
However, in the real world, most typical CF systems do not carry such information, for
example, it is hard to extract the content of music [Adomavicius and Tuzhilin 2005].
This limits the generality of previous works. Recently, Hammer et al. argued that in-
stead of recommending the best sellers, one should maximize the probability that a
customer makes a purchase [Hammar et al. 2013]. They proposed to use the maximum
coverage to select K products that cover the most consumers. However, the recommen-
dations were nonpersonalized and identical for all users. To the best of our knowledge,
we are the first to extend the coverage measure into CF tasks where only user-item
preference data are available.

Submodular Optimization and Its Applications: Our work is also related to
submodular optimization. Submodularity represents an intuitive diminishing returns
property, stating that adding an element to a smaller set helps more than adding
it to a larger set. This property has been widely used in applications such as social
influence maximization [Kempe et al. 2003], outbreak detection [Leskovec et al. 2007],
and document summarization [Lin and Bilmes 2011]. Users can refer to Krause and
Guestrin [2011] for its various applications in optimized information gathering. The
fundamental result of greedy algorithms for maximizing submodular functions goes
back to Nemhauser et al. [1978]. Then Leskovec et al. [2007] proposed to further exploit
the submodularity to do lazy evaluations for further optimization. Though it has been
widely studied, few have attempted to exploit submodularity for recommendation tasks.

Nevertheless, our proposed model is motivated by various previous works. We believe
this new perspective that looks at recommendation opens a door for further research
in this area.
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7. CONCLUSIONS AND FUTURE WORK

In this article, we proposed a unified framework to generate diversified recommen-
dations for top-N recommendation. Specifically, we first showed the insufficiency of
traditional CF models. We argued that most models in this area were driven by the
accuracy metrics that lacked diversity for recommendation results. We then proposed
a coverage measure that considers the usefulness of the whole set. We detailed how
to incorporate the coverage measure into the two steps of UCF for diversified rec-
ommendations. Furthermore, we generalized the coverage measure and the proposed
recommendation framework from both a data perspective and an algorithm perspec-
tive. Experimental results on three real-world datasets showed the superiority of our
proposed models.

In the future, we would like to continue this research from two directions. First, in
this particleaper, the generalization of MF models is still mainly based on the REC
framework, and we would like to explore how to extend the coverage measure to the
low-dimensional representations of users and items from MF models directly. Second,
as diversity is rather subjective, we leave the problem of how to better evaluate the
diversity of recommendations from users’ perspectives as a future research plan.
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