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Abstract
Distributed parallel stochastic gradient descent algorithms are
workhorses for large scale machine learning tasks. Among
them, local stochastic gradient descent (Local SGD) has at-
tracted significant attention due to its low communication
complexity. Previous studies prove that the communication
complexity of Local SGD with a fixed or an adaptive commu-
nication period is in the order of O(N

3
2 T

1
2 ) and O(N

3
4 T

3
4 )

when the data distributions on clients are identical (IID) or
otherwise (Non-IID), where N is the number of clients and
T is the number of iterations. In this paper, to accelerate the
convergence by reducing the communication complexity, we
propose STagewise Local SGD (STL-SGD), which increases
the communication period gradually along with decreasing
learning rate. We prove that STL-SGD can keep the same
convergence rate and linear speedup as mini-batch SGD. In
addition, as the benefit of increasing the communication pe-
riod, when the objective is strongly convex or satisfies the
Polyak-Łojasiewicz condition, the communication complex-
ity of STL-SGD is O(N log T ) and O(N

1
2 T

1
2 ) for the IID

case and the Non-IID case respectively, achieving significant
improvements over Local SGD. Experiments on both convex
and non-convex problems demonstrate the superior perfor-
mance of STL-SGD.

Introduction
We consider the task of distributed stochastic optimization,
which employs N clients to solve the following empirical
risk minimization problem:

min
x∈Rd

f(x) :=
1

N

N∑
i=1

fi(x), (1)

where fi(x) := 1
|Di|

∑
ξ∈Di f(x, ξ) is the local objective

of client i. Di’s denote the data distributions among clients,
which can be possibly different. Specifically, the scenario
where Di’s are identical corresponds to a central problem of
traditional distributed optimization. When they are not iden-
tical, (1) captures the federated learning setting (McMahan
∗Equal contribution.
†The corresponding author.
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et al. 2017; Kairouz et al. 2019; Lyu, Yu, and Yang 2020),
where the local data in each mobile client is independent and
private, resulting in high variance of the data distributions.

As representatives of distributed stochastic optimization
methods, traditional Synchronous SGD (SyncSGD) (Dekel
et al. 2012; Ghadimi and Lan 2013) and Asynchronous
SGD (AsyncSGD) (Agarwal and Duchi 2011; Lian et al.
2015) achieve linear speedup theoretically with respect to
the number of clients. Nevertheless, for both SyncSGD
and AsyncSGD, communication needs to be conducted at
each iteration and O(d) parameters are communicated each
time, incurring significant communication cost which re-
stricts the performance in terms of time speedup. To ad-
dress this dilemma, distributed algorithms with low commu-
nication cost, either by decreasing the communication fre-
quency (Wang and Joshi 2018b; Stich 2019; Yu, Yang, and
Zhu 2019; Shen et al. 2019) or by reducing the communi-
cation bits in each round (Alistarh et al. 2017; Stich, Cor-
donnier, and Jaggi 2018; Tang et al. 2019), become widely
applied for large scale training.

Among them, Local SGD (Stich 2019) (also called Fe-
dAvg (McMahan et al. 2017)), which conducts communica-
tion every k iterations, enjoys excellent theoretical and prac-
tical performance (Lin et al. 2018; Stich 2019). In the IID
case and the Non-IID case, the communication complexity
of Local SGD is respectively proved to beO(N

3
2T

1
2 ) (Wang

and Joshi 2018b; Stich 2019) and O(N
3
4T

3
4 ) (Yu, Yang,

and Zhu 2019; Shen et al. 2019), while the linear speedup
is maintained. When the objective satisfies the Polyak-
Łojasiewicz condition (Karimi, Nutini, and Schmidt 2016),
(Haddadpour et al. 2019a) provides a tighter theoretical
analysis which shows that the communication complexity
of Local SGD is O(N

1
3T

1
3 ). In terms of the communication

period k, most previous studies of Local SGD choose to fix it
through the iterations. In contrast, (Wang and Joshi 2018a)
suggests using an adaptively decreasing k when the learn-
ing rate is fixed, and (Haddadpour et al. 2019a) proposes an
adaptively increasing k as the iterations go on. Nevertheless,
none of them achieve a communication complexity lower
than O(N

1
3T

1
3 ). For strongly convex objectives, if a fixed

learning rate is adopted, Local SGD with fixed communica-
tion period is proved to achieve O(N log (NT )) (Stich and
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Karimireddy 2019; Bayoumi, Mishchenko, and Richtarik
2020) communication complexity. However, the fixed learn-
ing rate results in suboptimal convergence rate O( log TNT ). It
remains an open problem as to whether the communication
complexity can be further reduced with a varying k when the
optimal convergence rate O( 1

NT ) is maintained, to which
this paper provides an affirmative solution.

Main Contributions. We propose Stagewise Local SGD
(STL-SGD), which adopts a stagewisely increasing commu-
nication period , and make the following contributions:
• We first prove that Local SGD achieves O( 1√

NT
) con-

vergence when the objective is general convex. A novel
insight is that, the convergence rate O( 1√

NT
) can be at-

tained when setting k to be O( 1
ηN ) and O( 1√

ηN
) in the

IID case and the Non-IID case respectively, where η is
the learning rate. This indicates that the communication
period is negatively relevant to the learning rate.

• Taking Local SGD as a subalgorithm and tuning its
parameters stagewisely, we propose STL-SGDsc for
strongly convex problems, which geometrically increases
the communication period along with decreasing learning
rate. We prove that STL-SGDsc achieves O( 1

NT ) conver-
gence rate with communication complexities O(N log T )

and O(N
1
2T

1
2 ) for the IID case and the Non-IID case,

respectively.
• For non-convex problems, we propose the STL-SGDnc

algorithm, which uses Local SGD to optimize a regu-
larized objective fγxs(·) inexactly at each stage. When
the Polyak-Łojasiewicz condition holds, the same com-
munication complexity as in strongly convex problems
is achieved. For general non-convex problems, we prove
that STL-SGDnc achieves the linear speedup with com-
munication complexities O(N

3
2T

1
2 ) and O(N

3
4T

3
4 ) for

the IID case and the Non-IID case, respectively.

Related Works
Local SGD. When the data distributions on clients are

identical, Local SGD is proved to achieve O( 1
NT ) con-

vergence for strongly convex objectives (Stich 2019) and
O( 1√

NT
) convergence for non-convex objectives (Wang and

Joshi 2018b) when the communication period k satisfies
k ≤ O(T

1
2 /N

3
2 ). As demonstrated in these results, Lo-

cal SGD achieves a linear speedup with the communica-
tion complexity O(N

3
2T

1
2 ) for both strongly convex and

non-convex objectives in the IID case. In addition, (Haddad-
pour et al. 2019a) justifies that O(N

1
3T

1
3 ) rounds of com-

munication are sufficient to achieve O( 1
NT ) convergence

for objectives which satisfy the Polyak-Łojasiewicz condi-
tion. On the other hand, for the Non-IID case, Local SGD is
proved with a O(1/

√
NT ) convergence rate under a com-

munication complexity ofO(N
3
4T

3
4 ) for non-convex objec-

tives (Yu, Yang, and Zhu 2019; Shen et al. 2019). Mean-
while, for strongly convex objectives, a suboptimal conver-
gence rate of O( k2

µNT ) (Li et al. 2020) is obtained. Beyond
that, when a small fixed learning rate is adopted, (Bayoumi,

Mishchenko, and Richtarik 2020) and (Karimireddy et al.
2019) prove that the communication complexity of Local
SGD is O(N log(NT )) and O(N

1
2T

1
2 ) for the IID case and

the Non-IID case respectively, at the cost of a suboptimal
convergence rate O( log TNT ). For general non-convex objec-
tives, (Haddadpour and Mahdavi 2019) proves a lower com-
munication complexity of O(N

3
2T

1
2 ) for the Non-IID case

under the assumption of bounded gradient diversity. From
the practical view, (Zhang et al. 2016) suggests to commu-
nicate more frequently in the beginning of the training, and
(Haddadpour et al. 2019a) verifies that using a geometrically
increasing period does not harm the convergence notably.

Stagewise Training. For training both strongly convex
and non-convex objectives, stagewisely decreasing the
learning rate is widely adopted. Epoch-SGD (Hazan and
Kale 2014) and ASSG (Xu, Lin, and Yang 2017) use SGD
as their subalgorithm and geometrically decrease the learn-
ing rate stage by stage. They are proved to achieve the op-
timal O(1/T ) convergence for stochastic strongly convex
optimization. For training neural networks, stagewisely de-
creasing the learning rate (Krizhevsky, Sutskever, and Hin-
ton 2012; He et al. 2016) is a very important trick. From a
theoretical aspect, stagewise SGD is proved with O(1/

√
T )

convergence for both general and composite non-convex ob-
jectives (Allen-Zhu 2018; Chen et al. 2019; Davis and Grim-
mer 2019), by adopting SGD to optimize a regularized ob-
jective at each stage and decreasing the learning rate linearly
stage by stage. Stagewise training is also verified to achieve
better testing error than general SGD (Yuan et al. 2019).

Large Batch SGD (LB-SGD). SyncSGD with extremely
large batch is proved to achieve a linear speedup with re-
spect to the batch size (Stich and Karimireddy 2019). Nev-
ertheless, (Jain et al. 2016) shows that increasing the batch
size does not help when the bias dominates the variance. It
is also observed from practice that LB-SGD leads to a poor
generalization (Keskar et al. 2016; Golmant et al. 2018; Yin
et al. 2017). (Yu and Jin 2019) proposes CR-PSGD which in-
creases the batch size geometrically step by step and proves
that CR-PSGD achieves a linear speedup with O(log T )
communication complexity. However, after a large number
of iterations, CR-PSGD essentially becomes GD and loses
the benefit of SGD.

Local SGD with Variance Reduction. Recently, several
techniques are proposed to reduce the communication com-
plexity of Local SGD in the Non-IID case. (Haddadpour
et al. 2019b) shows that using redundant data among clients
yields lower communication complexity. One variant of Lo-
cal SGD called VRL-SGD (Liang et al. 2019) incorporates
the variance reduction technique and is proved to achieve
a O(N

3
2T

1
2 ) communication complexity for non-convex

objectives. SCAFFOLD (Karimireddy et al. 2019) extends
VRL-SGD by involving two separate learning rates, and is
proved to achieve O(log (NT )) and O(N

1
2T

1
2 ) communi-

cation complexities for strongly convex objectives and non-
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Algorithms Objectives Convergence
Rate

Communication
Complexity

Data
Distributions

Extra
Assumptions

Local SGD (Stich 2019) Strongly Convex O( 1
NT

) O(N
1
2 T

1
2 ) IID (1)

Local SGD (Stich and Karimireddy 2019) 1 Strongly Convex O( log T
NT

) O(N log (NT )) IID No
STL-SGD Strongly Convex O( 1

NT
) O(N logT ) IID No

Local SGD (Li et al. 2020) Strongly Convex O( k2

NT
) O(T ) Non-IID (1)

Local SGD (Karimireddy et al. 2019) 1 Strongly Convex O( log T
NT

) O(N
1
2 T

1
2 ) Non-IID No

SCAFFOLD (Karimireddy et al. 2019) 1 Strongly Convex O( log T
NT

) O(log (NT )) Non-IID No
STL-SGD Strongly Convex O( 1

NT
) O(N

1
2T

1
2 ) Non-IID No

Local SGD (Haddadpour et al. 2019a) 2 Non-Convex+PL O( 1
NT

) O(N
1
3 T

1
3 ) IID No

STL-SGD Non-Convex+PL O( 1
NT

) O(N logT ) IID No

STL-SGD Non-Convex+PL O( 1
NT

) O(N
1
2T

1
2 ) Non-IID No

Local SGD (Wang and Joshi 2018b) Non-Convex O( 1√
NT

) O(N
3
2 T

1
2 ) IID (1)

STL-SGD Non-Convex O( 1√
NT

) O(N
3
2T

1
2 ) IID No

Local SGD (Shen et al. 2019) Non-Convex O( 1√
NT

) O(N
3
4 T

3
4 ) Non-IID (2)

Local SGD (Haddadpour and Mahdavi 2019) Non-Convex O( 1√
NT

) O(N
3
2 T

1
2 ) Non-IID (3)

SCAFFOLD (Karimireddy et al. 2019) Non-Convex O( 1√
NT

) O(N
1
2 T

1
2 ) Non-IID No

STL-SGD Non-Convex O( 1√
NT

) O(N
3
4T

3
4 ) Non-IID No

Table 1: A comparison of the results in this paper and previous state-of-the-art results of Local SGD and its variants. Regarding
orders of convergence rate and communication complexity, we highlight the dependency on T (the number of iterations), N
(the number of clients) and k (communication period). Previous results may depend on some extra assumptions, which include:
(1) an upper bound for gradient, (2) an upper bound for the gradient variance among clients and (3) an upper bound for the
gradient diversity, which are shown in the last column.

convex objectives respectively. As SCAFFOLD adopts a
small fixed learning rate, its convergence rate for strongly
convex objectives is O( log TNT ). Nevertheless, these methods
are orthogonal to our study. Combining STL-SGD and vari-
ance reduction to get better performance for the Non-IID
case exceeds the scope of this paper.

Table 1 summarizes the comparison of Local SGD and its
state-of-the-art extensions with STL-SGD. For both strongly
convex objectives and non-convex objectives which satisfy
the PL condition, STL-SGD achieves the state-of-the-art
communication complexity while attaining the optimal con-
vergence rate of O( 1

NT ). It is worth mentioning that Local
SGD with momentum (Yu, Jin, and Yang 2019) or adaptive
learning rate (Reddi et al. 2020) are orthogonal to our study.

Preliminaries
Notations and Definitions
Throughout the paper, we let ‖ · ‖ indicate the `2 norm of
a vector and 〈·, ·〉 indicate the inner product of two vectors.
The set {1, 2, · · · , n} is denoted as [n]. We use x∗ to repre-
sent the optimal solution of (1). ∇f represents the gradient

1Although these studies prove lower communication complex-
ity, a suboptimal O( log T

NT
) convergence rate is proved due to the

small fixed learning rate.
2The adaptive variant of Local SGD proposed in (Haddadpour

et al. 2019a) has the same order of communication complexity as
Local SGD.

of f . E indicates a full expectation with respect to all the ran-
domness in the algorithm (the stochastic gradients sampled
in all iterations and the randomness in return).

The data distributions on different clients may not be
identical. To quantify the difference of distributions, we de-
fine ζ∗f := 1

N

∑N
i=1 ‖∇fi(x∗)‖2 = 1

N

∑N
i=1 ‖∇fi(x∗) −

∇f(x∗)‖2, which represents the variance of gradients
among clients at x∗. Some literatures assume that the vari-
ance of gradients among clients is bounded by a constant
ζ2 (Shen et al. 2019) or the norm of stochastic gradients is
bounded by a constantG2 (Yu, Yang, and Zhu 2019; Li et al.
2020). Note that both ζ2 andG2 are larger than ζ∗f . When the
data distributions are identical, we have ‖∇fi(x∗)‖2 = 0,
thus it holds that ζ∗f = 0.

Due to the space limitation, all proofs are deferred to the
full version of our paper3. To state the convergence of algo-
rithms for solving (1), we introduce some commonly used
definitions (Chen et al. 2019; Haddadpour et al. 2019a).
Definition 1 (ρ-weakly convex). A non-convex function
f(x) is ρ-weakly convex (ρ > 0) if

f(x) ≥ f(y) + 〈∇f(y), x− y〉 − ρ

2
‖x− y‖2, ∀x, y ∈ Rd.

Definition 2 (µ-Polyak-Łojasiewicz (PL)). A function f(x)
satisfies the µ-PL condition (µ > 0) if

2µ(f(x)− f(x∗)) ≤ ‖∇f(x)‖2, ∀x ∈ Rd.
3https://arxiv.org/abs/2006.06377.
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Assumptions
Throughout this paper, we make the following assump-
tions, all of which are commonly used and basic assump-
tions (Stich 2019; Yu, Yang, and Zhu 2019; Li et al. 2020;
Chen et al. 2019; Allen-Zhu 2018).
Assumption 1. fi(x) is L-smooth in terms of i ∈ [N ] for
every x ∈ Rd:

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd, i ∈ [N ].

Assumption 2. There exists a constant σ such that

Eξ∼Di‖∇f(x, ξ)−∇fi(x)‖2 ≤ σ2, ∀x ∈ Rd, ∀i ∈ [N ].

Assumption 3. If the objective function is non-convex, we
assume it is ρ-weakly convex.
Remark 1. Note that if f(x) is L-smooth, it is L-weakly
convex. This is because Assumption 1 implies−L2 ‖x−y‖

2 ≤
f(x)−f(y)−〈∇f(y), x−y〉 ≤ L

2 ‖x−y‖
2 (Nesterov 2018).

Therefore, for anL-smooth function, we can immediately get
that the weakly-convex parameter ρ satisfies 0 < ρ ≤ L.

Review: Synchronous SGD with Periodically
Averaging (Local SGD)
To alleviate the high communication cost in SyncSGD, the
periodically averaging technique is proposed (Stich 2019;
Yu, Yang, and Zhu 2019). Instead of averaging models in
all clients at every iteration, Local SGD lets clients update
their models locally for k iterations, then one communica-
tion is conducted to average the local models to make them
consistent. Specifically, the update rule of Local SGD is

xit =

{
1
N

∑N
j=1(x

j
t−1 − η∇f(x

j
t−1, ξ

j
t−1)), if t% k = 0,

xit−1 − η∇f(xit−1, ξ
i
t−1), else,

where xit is the local model in client i at iteration t. There-
fore, when each client conducts T iterations, the total num-
ber of communications is T/k. The complete procedure of
Local SGD is summarized in Algorithm 1. Different from
previous studies (McMahan et al. 2017; Stich 2019; Yu,
Yang, and Zhu 2019), Algorithm 1 returns x̃ = 1

N

∑N
i=1 x

i
t

for a randomly chosen t ∈ {0, 1, · · · , T − 1}. In practice,
we can determine t at first to avoid redundant iterations.

Although several studies have analysed the convergence
of Local SGD, they assume that the objective f(x) is µ-
strongly convex or non-convex. (Khaled, Mishchenko, and
Richtárik 2019) focuses on general convex objectives while
they use the full gradient descent. Besides, most of the ex-
isting analysis relies on some stronger assumptions, includ-
ing bounded gradient norm (i.e., ‖∇fi(x, ξ)‖2 ≤ G2) (Stich
2019; Li et al. 2020) or bounded variance of gradients
among clients (Shen et al. 2019). Here, we give a basic con-
vergence result of Local SGD for the general convex objec-
tives without these assumptions.
Theorem 1. Suppose Assumptions 1 and 2 hold, f(x) is
convex and η ≤ 1

6L . If we set k ≤ min{ 1
6ηLN ,

1
9ηL} and

k ≤ min{ σ√
6ηLN(σ2+4ζ∗f )

, 1
9ηL} for the IID case and the

Non-IID case respectively, we have

Ef(x̃)− f(x∗) ≤ 3‖x0 − x∗‖2

4ηT
+
ησ2

N
. (2)

Algorithm 1 Local-SGD(f , x0, η, T , k)
Initialize: xi0 = x0, ∀i ∈ [N ].

1: for t = 1, ..., T do
2: Client Ci does:
3: Uniformly sample a mini-batch ξit−1 ∈ Di and calcu-

late a stochastic gradient∇fi(xit−1, ξit−1).
4: if t divides k then
5: Communicate with other clients and update: xit =∑N

j=1
1
N (xjt−1 − η∇f(x

j
t−1, ξ

j
t−1)).

6: else
7: Update locally: xit = xit−1 − η∇fi(xit−1, ξit−1).
8: end if
9: end for

10: return x̃ = 1
N

∑N
i=1 x

i
t for the randomly chosen t ∈

{0, 1, · · · , T − 1}.

Algorithm 2 STL-SGDsc(f , x1, η1, T1, k1)

1: for s = 1, 2, ..., S do
2: xs+1 = Local-SGD(f , xs, ηs, Ts, max{bksc, 1}).
3: Set ηs+1 = ηs

2 , Ts+1 = 2Ts and

ks+1 =

{√
2ks, Non-IID case,

2ks, IID case.

4: end for
5: return xS+1.

Remark 2. If we set η =
√

N
T , we have Ef(x̃) − f(x∗) ≤

‖x0−x∗‖2+σ2

√
NT

, which is consistent with the result of mini-
batch SGD (Dekel et al. 2012).

Local SGD with Stagewise Communication
Period

To further reduce the communication complexity, we pro-
pose STagewise Local SGD (STL-SGD) in this section with
the following features.
• At the beginning, STL-SGD employs Algorithm 1 as a

subalgorithm in each stage.
• Instead of using a small fixed learning rate or a gradually

decreasing learning rate (e.g. η1
1+αt ), STL-SGD adopts a

stagewisely adaptive scheme. The learning rate is fixed at
first, and decreased stage by stage.

• The communication periods are increased stagewisely.
We propose two variants of STL-SGD for strongly convex
and non-convex problems, respectively.

STL-SGD for Strongly Convex Problems
In this subsection, we propose the STL-SGD algorithm for
strongly convex problems, which is denoted as STL-SGDsc

and summarized in Algorithm 2. At each stage, the learning
rate is decreased exponentially. In the meantime, the number
of iterations and the communication period are increased ex-
ponentially. Specifically, at the s-th stage, we set ηs =

ηs−1

2
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and Ts = 2Ts−1. The communication period ks is set as
ks = 2ks−1 and ks =

√
2ks−1 for the IID case and the

Non-IID case respectively.
Below, let xs denote the initial point of the s-th stage.

Theorem 2 establishes the convergence rate of STL-SGDsc.
Theorem 2. Suppose f(x) is µ-strongly convex. Let η1 ≤
1
6L and T1η1 = 6

µ . We set k1 = min{ 1
6η1LN

, 1
9η1L
}

and k1 = min{ σ√
6η1LN(σ2+4ζf )

, 1
9η1L
} for the IID

case and the Non-IID case respectively. Under Assump-
tions 1 and 2, when the number of stages satisfies S ≥
log(N(f(x0)−f(x∗))

η1σ2 ) + 2, we have the following result for
Algorithm 2:

Ef(xS+1)− f(x∗) ≤
9η1σ

2

2SN
. (3)

Defining T := T1 + T2 + · · ·+ TS , we have

Ef(xS+1)− f(x∗) ≤ O
(

1

NT

)
. (4)

Remark 3. Theorem 2 claims the following properties of
STL-SGDsc:
• Linear Speedup. To reach a solution xS+1 with

Ef(xS+1) − f(x∗) ≤ ε, the number of iterations is
O( 1

Nε ), which indicates a linear speedup.
• Communication Complexity for the Non-IID Case. For

the Non-IID case, we set ks+1 =
√
2ks for Algorithm 2.

Therefore, the total communication complexity is T1

k1
+

· · ·+ TS
kS

= T1

k1
(1+2

1
2 + · · ·+2

s−1
2 ) = O(T1

k1
· ( TT1

)
1
2 ) =

O(N
1
2T

1
2 ), where the last equality holds because T

1
2
1

k1
=

O(
√
T1η1N) = O(N

1
2 ).

• Communication Complexity for the IID Case. If the
data distributions on different clients are identical, we set
ks+1 = 2ks for Algorithm 2. Thus, the total communica-
tion complexity is T1

k1
+ · · ·+ TS

kS
= S T1

k1
= O(N log T ).

STL-SGD for Non-Convex Problems
In this subsection, we proceed to propose the variant of STL-
SGD algorithm for non-convex problems (STL-SGDnc).
Different from Algorithm 2, which optimizes a fixed ob-
jective during all stages, STL-SGDnc changes the objective
once a stage is finished. Specifically, in the s-th stage, the ob-
jective is a regularized problem fγxs = f(x)+ 1

2γ ‖x−xs‖
2,

where xs is the initial point of the s-th stage and γ is a con-
stant that satisfies γ < ρ−1. fγxs(x) is guaranteed to be con-
vex due to the ρ-weak convexity of f(x). In this way, the
theoretical property of Algorithm 1 under convex settings
still holds in each stage of STL-SGDnc. Other parameters
are set in two different ways (Option 1 and Option 2) for
non-convex objectives satisfying the PL condition and oth-
erwise, which are detailed in Algorithm 3.

In Option 1, we set ηs, Ts and ks in the same way as
in Algorithm 2. Here we analyse the theoretical property of
STL-SGDnc with Option 1 for non-convex objectives that
satisfy the PL condition.

Algorithm 3 STL-SGDnc(f , x1, η1, T1, k1)

1: for s = 1, 2, ..., S do
2: Let fγxs(x) = f(x) + 1

2γ ‖x− xs‖
2.

3: xs+1 = Local-SGD(fγxs , xs, ηs, Ts, max{bksc, 1}).
4: Option 1: Set ηs+1 = ηs

2 , Ts+1 = 2Ts and

ks+1 =

{√
2ks, Non-IID case,

2ks, IID case.

5: Option 2: Set ηs+1 = η1
s+1 , Ts+1 = (s+ 1)T1 and

ks+1 =

{√
s+ 1k1, Non-IID case,

(s+ 1)k1, IID case.

6: end for
7: return xS+1.

Theorem 3. Assume f(x) satisfies the PL condition defined
in Definition 2 with constant µ. Suppose Assumptions 1, 2
and 3 hold and f(x) is weakly convex with constant ρ ≤ µ

16 .
Let η1 ≤ 1

12Lγ
, T1η1 = 6

ρ . Set k1 = min{ 1
6η1LγN

, 1
9η1Lγ

}
and k1 = min{ σ√

6η1LγN(σ2+4ζf )
, 1
9η1Lγ

} for the IID case

and the Non-IID case respectively. When the number of
stages satisfies S ≥ log N(f(x0)−f(x∗))

η1σ2 + 2, Algorithm 3
with Option 1 returns a solution xS+1 such that

Ef(xS+1)− f(x∗) ≤ O
(

1

NT

)
, (5)

where T = T1 + T2 + · · ·+ TS .

Remark 4. As the result of Theorem 3 is the same as that of
Theorem 2, properties stated in Remark 3 all hold here.

Option 2 is employed for the non-convex objectives
which do not satisfy the PL condition. Instead of increas-
ing the communication period geometrically as in Option 1
of Algorithm 3, we let it increase in a linear manner, i.e.,
ks = sk1. Meanwhile, we increase the stage length linearly,
that is Ts = sT1, while keeping Tsηs a constant.

Theorem 4. Suppose Assumptions 1, 2 and 3 hold. Let η1 ≤
1

6Lγ
and T1η1 = 3

ρ . Set k1 = min{ 1
6η1LN

, 1
9η1L
} and k1 =

min{ σ√
6η1LN(σ2+4ζf )

, 1
9η1L
} for the IID case and the Non-

IID case respectively. Algorithm 3 with Option 2 guarantees
that

E‖∇f(xs)‖2 ≤ O
(

1√
NT

)
, (6)

where s is randomly sampled from {1, 2, · · · , S} with prob-
ability ps = s

1+2+···+S .

Remark 5. STL-SGDnc with Option 2 has the following
properties:

• Linear Speedup: To achieve E‖∇f(xS)‖2 ≤ ε, the total
number of iterations when N clients are used is O( 1

Nε2 ),
which shows a linear speedup.
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Figure 1: Training objective gap f(x)− f(x∗) w.r.t the communication rounds for logistic regression on a9a and MNIST.

Algorithms a9a (IID) a9a (Non-IID) MNIST (IID) MNIST (Non-IID)

SyncSGD 100683 (1×) 90513 (1×) 32664 (1×) 22021 (1×)
LB-SGD 7620 (13.2×) 12221 (7.4×) 7011 (4.7×) 7740 (2.8×)
CR-PSGD 5434 (18.5×) 5772 (15.7×) 6788 (4.8×) 7029 (3.1×)
Local-SGD 184 (547.2×) 10068 (9.0×) 289 (113.0×) 2642 (8.3×)
STL-SGDsc 61 (1650.5×) 4417 (20.5×) 79 (413.5×) 1518 (14.5×)

Table 2: Communication rounds to reach 10−4 objective gap in convex problems. We also show the speedup of these algorithms
compared with SyncSGD.

• Communication Complexity for the Non-IID case: Al-
gorithm 3 with Option 2 sets ks =

√
sk1. Thus, the

communication complexity is T1

k1
+ T2

k2
+ · · · + TS

kS
=

T1

k1
(1 +

√
2 + · · ·+

√
S) = O(T1

k1
( TT1

)
3
4 ) = O(N

3
4T

3
4 ).

• Communication Complexity for the IID case: As ks =
sk1, the communication complexity is T1

k1
+ T2

k2
+ · · · +

TS
kS

= T1

k1
S = O(T1

k1
( TT1

)
1
2 ) = O

(
N

3
2T

1
2

)
.

Experiments

We validate the performance of the proposed STL-SGD al-
gorithm with experiments on both convex and non-convex
problems. For each type of problems, we conduct experi-
ments for both the IID case and the Non-IID case. Exper-
iments are conducted on a machine with 8 Nvidia Geforce
GTX 1080Ti GPUs and 2 Xeon(R) Platinum 8153 CPUs.

To simulate the Non-IID scenarios, we divide the training
data and make the distributions of classes different among
clients. Similar to the setting in (Karimireddy et al. 2019),
at first, we randomly take s% i.i.d. data from the training
set and divide them equally to each client. For the remaining
data, we sort them according to their classes and then assign
them to the clients in order. In our experiments, we set s =
50 for convex problems and s = 0 for non-convex problems.

We compare STL-SGD with SyncSGD, LB-SGD, CR-
PSGD (Yu and Jin 2019) and Local SGD (Stich 2019). We
show the comparison of these algorithms in terms of the
communication rounds. The investigation regarding conver-
gence is included in the full version of this paper3, which
validates that STL-SGD can achieve similar convergence
rate as SyncSGD.

Convex Problems
We consider the binary classification problem with logistic
regression, i.e.,

min
θ∈Rd

1

n

n∑
i=1

log(1 + exp(−yixTi θ)) +
λ

2
‖θ‖2, (7)

where (xi, yi), i ∈ [n] constitute a set of training examples,
and λ is the regularization parameter. It is notable that (7)
is strongly convex when λ > 0, and we set λ = 1/n. We
take two datasets a9a and MNIST from the libsvm website4.
a9a has 32, 561 examples and 123 features. For MNIST,
we sample a subset with 11, 791 examples and 784 features
from two classes (4 and 9). Experiments are implemented on
32 clients and communication is handled with MPI5.

SyncSGD, LB-SGD and Local SGD are implemented
with the decreasing learning rate ηt = η1

1+αt as sug-
gested in (Stich 2019; Li et al. 2020) and we tune
α in {10−2, 10−3, 10−4} for the best performance. For
STL-SGDsc, we set η1T1 = 1

λ . The initial learning rate
for all algorithms is tuned in {N,N/10, N/100}. The
communication period k and the batch size B for LB-
SGD are tuned in {100, 200, 400, 800, 1600} for the IID
case, and {10, 20, 40, 80, 160} for the Non-IID case. The
scaling factor of batch size ρ for CR-PSGD is tuned in
{1.001, 1.01, 1.1}. We report the largest k, B and ρ which
do not sacrifice the convergence for all algorithms.

Figure 1 shows the objective gap f(x) − f(x∗) with
regard to the communication rounds. We can observe
that STL-SGDsc converges with the fewest communication
rounds for both the IID case and the Non-IID case. Although

4https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
5https://www.open-mpi.org/
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Figure 2: Training loss w.r.t the communication rounds for ResNet18 and VGG16 on CIFAR10.

Algorithms ResNet18 (IID) ResNet18 (Non-IID) VGG16 (IID) VGG16 (Non-IID)

SyncSGD 7644 (1×) 5390 (1×) 13622 (1×) 15092 (1×)
LB-SGD 3000 (2.5×) 3180 (1.7×) − (−) − (−)
CR-PSGD 1797 (4.3×) 1937 (2.8×) − (−) − (−)
Local-SGD 755 (10.1×) 1235 (4.4×) 1245 (10.9×) 3986 (3.8×)
STL-SGDnc-2 470 (16.3×) 1158 (4.7×) 696 (19.6×) 2732 (5.5×)
STL-SGDnc-1 434 (17.6×) 954 (5.6×) 602 (22.6×) 2179 (6.9×)

Table 3: Communication rounds to reach 99% training accuracy in non-convex problems. We run all algorithms for 200 epochs,
where an epoch indicates one pass of the dataset. LB-SGD and CR-PSGD can not achieve 99% training accuracy on the VGG16
neural network until the end of training.

the initial communication period of STL-SGDsc may need
to be set smaller than Local SGD in the the IID case, the to-
tal number of communication rounds of STL-SGDsc is still
significantly lower, which validates that the communication
complexity of STL-SGDsc is much lower than Local SGD.
As shown in Table 2, to achieve 10−4 objective gap, the
communication rounds of STL-SGDsc is almost 1.7-3 times
fewer than Local SGD.

Non-Convex Problems
We train ResNet18 (He et al. 2016) and VGG16 (Simonyan
and Zisserman 2014) on the CIFAR10 (Krizhevsky, Hinton
et al. 2009) dataset, which includes a training set of 50,000
examples from 10 classes. 8 clients are used in total.

For our proposed algorithm, we denote STL-SGDnc with
Option 1 and Option 2 as STL-SGDnc-1 and STL-SGDnc-
2 respectively. The learning rates of SyncSGD, LB-SGD,
CR-PSGD and Local-SGD are all set fixed as suggested in
their convergence theory (Ghadimi and Lan 2013; Yu and
Jin 2019; Yu, Yang, and Zhu 2019). The initial learning rate
for all algorithms is tuned in {N/10, N/100, N/1000}. The
basic batch size at each client is 64. The first stage length
of STL-SGDnc is tuned in {20, 40, 60} epochs. The param-
eter γ in STL-SGDnc is tuned in {100, 102, 104}. We tune
the communication period k in {3, 5, 10, 20} and the batch
size B for LB-SGD in {192, 320, 640, 1280}. For ease of
implementation, we increase the batch size in CR-PSGD
with B = ρB once an epoch is finished, and ρ is tuned
in {1.1, 1.2, 1.3}. B stops growing when it exceeds 512 as
suggested in (Yu and Jin 2019). We show the largest k andB
which can maintain the same convergence rate as SyncSGD
for all algorithms.

The experimental results of training loss regarding com-
munication rounds are presented in Figure 2 and the commu-
nication rounds to achieve 99% training accuracy for all al-
gorithms are shown in Table 3. As can be seen, STL-SGDnc-
1 and STL-SGDnc-2 converge with much fewer communi-
cations than other algorithms. In spite of the same order of
communication complexity as Local SGD, the performance
of STL-SGDnc-2 is better as the benefit of the negative rele-
vance between the learning rate and the communication pe-
riod. STL-SGDnc-1 converges with the fewest number of
communications, as it uses a geometrically increasing com-
munication period.

Conclusion

We propose STL-SGD, which adopts a stagewisely increas-
ing communication period to reduce the communication
complexity. Two variants of STL-SGD (STL-SGDsc and
STL-SGDnc) are provided for strongly convex objectives
and non-convex objectives respectively. Theoretically, we
prove that: (i) STL-SGD maintains the convergence rate
and linear speedup as SyncSGD; (ii) when the objective is
strongly convex or satisfies the PL condition, while attaining
the optimal convergence rate O( 1

NT ), STL-SGD achieves
the state-of-the-art communication complexity; (iii) when
the objective is general non-convex, STL-SGD has the same
communication complexity as Local SGD, while being more
consistent with practical tricks. Experiments on both convex
and non-convex problems demonstrate the effectiveness of
the proposed algorithm.
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