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ABSTRACT
Knowledge tracing (KT), which aims to trace students’ changing
knowledge state during their learning process, has improved stu-
dents’ learning efficiency in online learning systems. Recently, KT
has attracted much research attention due to its critical signifi-
cance in education. However, most of the existing KT methods
pursue high accuracy of student performance prediction but ne-
glect the consistency of students’ changing knowledge state with
their learning process. In this paper, we explore a new paradigm for
the KT task and propose a novel model named Learning Process-
consistent Knowledge Tracing (LPKT), which monitors students’
knowledge state through directly modeling their learning process.
Specifically, we first formalize the basic learning cell as the tuple
exercise—answer time—answer. Then, we deeply measure the learn-
ing gain as well as its diversity from the difference of the present
and previous learning cells, their interval time, and students’ re-
lated knowledge state. We also design a learning gate to distinguish
students’ absorptive capacity of knowledge. Besides, we design a
forgetting gate to model the decline of students’ knowledge over
time, which is based on their previous knowledge state, present
learning gains, and the interval time. Extensive experimental re-
sults on three public datasets demonstrate that LPKT could obtain
more reasonable knowledge state in line with the learning process.
Moreover, LPKT also outperforms state-of-the-art KT methods on
student performance prediction. Our work indicates a potential fu-
ture research direction for KT, which is of both high interpretability
and accuracy.
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1 INTRODUCTION
The recent threats of COVID-19 have triggered the outbreak of
online learning [26], whose various forms (such as intelligent tutor-
ing systems and massive open online courses) play indispensable
roles in minimizing the disruption to education [25, 32]. Knowledge
tracing (KT) [4] is an emerging research area in online learning,
which utilizes machine learning sequence models that are capa-
ble of using educationally related data to monitor the changing
knowledge state of students. In recent decades, KT has been widely
applied and received growing attention from the scientific commu-
nity [17, 30, 34, 37].

Generally, due to the real knowledge state of students at each
learning interaction is hard to be recorded and quantified explicitly,
their performance on exercises is almost the only way to infer their
knowledge state. Therefore, most existing KT models are optimized
by minimizing the cross-entropy log loss of the predicted answers
and students’ actual answers. There is a default assumption that
higher accuracy on future performance prediction is approximately
be considered as equal to better estimations of knowledge state.

Following the above ideas, existing KT models have achieved
impressive results on student performance prediction. For example,
Bayesian Knowledge Tracing (BKT) [4], Performance Factor Analy-
sis (PFA) [29], Deep Knowledge Tracing (DKT) [31] and Exercise-
aware Knowledge Tracing [16]. However, in our experiments, we
have noticed that the only pursuit of high accuracy of future per-
formance prediction could lead to inconsistency between students’
knowledge state and their learning process. For better illustration,
we give a visualization case of the knowledge state traced by DKT
in Figure 1. DKT is a popular model based on RNN or LSTM [10]
for the KT task and has achieved impressive performance [2, 31].
In the figure, while the student is answering 15 exercises on 3 dif-
ferent knowledge concepts, DKT keeps tracing his/her knowledge
state and depicts the changing process. We find one common but
unreasonable observation from the figure, that is once the student
has answered wrongly, DKT argues that his/her knowledge state
on corresponding knowledge concepts will decline. Although such
a downward trend of students’ knowledge state after mistakes may
bring high accuracy of future performance prediction, it is not in
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Figure 1: A toy example of the evolution process of a student’s knowledge states that are traced by DKT, where the student has
answered 15 exercises on 3 knowledge concepts. In the left figure, the color of the heatmap or the number in the small box
refers to the knowledge state of the student after answering the exercise. The red boxes indicate thatDKT thinks the knowledge
state will decline after wrong answers. The right table gives the relations between exercises and knowledge concepts.

line with the cognitive theory, because students can also acquire
knowledge even if they get wrong answers. Previous research has
pointed out that mistakes are seen as natural elements of learn-
ing processes [13] and students can learn from errors and foster
learning progress through a favorable error climate [35].

To this end, we argue that it is valuable to keep the consistency
of students’ learning process in knowledge tracing and give equal
attention to both right and wrong learning interactions, instead of
solely pursuing high accuracy of student performance prediction. In
other words, we should focus more on the quality of the knowledge
tracing results. In this paper, we explore a new paradigm for the
KT task by directly modeling students learning process. However,
there are many challenges to be solved along this line. Firstly, how
to define the learning process and convert it into a proper form for
modeling. Secondly, the learning gain, which represents the knowl-
edge that students acquire in learning, is implicit and changeable in
the learning process. Although Mao [20] applied binary Quantized
Learning Gain (QLG) to instantiate students’ learning gains as High
or Low, such simple instantiation of the learning gain is not enough
to capture its diversity. For instance, students may have different
learning gains even if they have the same performance on the same
exercises. Thirdly, in contrast to the learning gain, students’ knowl-
edge will also decrease over time, which commonly manifests as
forgetting, is also necessary to be considered in the KT task.

To conquer the above challenges, we propose a novel method
named Learning Process-consistent Knowledge Tracing (LPKT),
which reaches our goal to assess the knowledge state of students by
modeling their learning process. Specifically, as the learning pro-
cess can be seen as the learning sequence of students in a timeline,
we first define the basic learning cell in the learning process as a tu-
ple exercise—answer time—answer and adjacent cells are separated
by the interval time. Notably, the learning cell is different from
the learning interaction (i.e., exercise—answer) in that the former
contains the time that students spent on answering the exercise.
Therefore, the learning cell is more capable to reflect the complete
learning process. Then, for measuring the learning gain, which
broadly represents the difference of students’ performance at two
points in time, we compute them directly from the difference of
present and previous learning cells. Besides, to capture the diversity
of learning gains, we also model another two factors, which are the
interval time between two continuous learning cells and students’

related knowledge state respectively. In LPKT, the learning gain
is set to be always positive, so that students can consistently get
knowledge at each learning interaction. Furthermore, considering
that not all learning gains can be transformed as the growth of
students’ knowledge, we design a learning gate in LPKT for con-
trolling students’ absorptive capacity of knowledge. Finally, for
the common phenomenon of forgetting in the learning process,
we design a forgetting gate in LPKT to determine the decrease of
knowledge state over time. Therefore, LPKT realizes a novel way to
assess students’ knowledge state bymodeling their learning process.
Extensive experiments on three public real-world datasets demon-
strate that LPKT gets more reasonable knowledge state in line with
students’ cognitive process. Moreover, LPKT can also significantly
outperform existing KT models on student performance prediction.
Our idea to solve the KT problem by modeling students’ learning
process indicates a potential future research direction, which is of
both high interpretability and high accuracy. We also conduct a
case study to show that LPKT can learn meaningful representations
of exercises automatically.

2 RELATEDWORKS
2.1 Knowledge tracing
Most of the existing knowledge tracing models can be classified into
traditional probabilistic models, logistic models, and deep learning-
based methods. Bayesian Knowledge Tracing (BKT) [4] is a classic
and widely-used probabilistic model for KT, which can be seen
as a special case of the Hidden Markov Model (HMM). Logistic
models are a large class of models based on logistic functions, which
utilizes a logistic function to estimate the probability of knowledge
state [30], such as Performance Factor Analysis (PFA) [29]. DKT
introduces deep learning into KT for the first time [31]. DKT takes
the learning sequence as the input of RNN or its variant LSTM and
represents student knowledge states by the hidden states. Dynamic
Key-Value Memory Networks (DKVMN) [39] introduces memory-
augmented neural networks into KT. It defines a static matrix called
key to store latent knowledge concepts and a dynamic matrix called
value to store and update the knowledge mastery [39]. Exercise-
aware Knowledge Tracing [16] introduces text contents to enhance
the performance on the KT task. Convolutional knowledge tracing
(CKT) [33] applies the convolutional windows to model students’
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individualized learning rates within several continuous learning
interactions. The self-attentive model for knowledge tracing (SAKT)
[27] presents transformer to knowledge tracing directly for the
first time. Pandey and Srivastava [28] presents a relation-aware
self-attention layer that incorporates the contextual information
for knowledge tracing. Ghosh et al. [6] presents a context-aware
attentive knowledge tracing (AKT) model for KT, which utilizes
contextualized representations of both exercises and knowledge
acquisitions and incorporates attention mechanism with cognitive
and psychometric models.

2.2 Learning Gain
The learning gain broadly means the difference between the skills,
competencies, content knowledge, and personal development at
two points in time [22]. Learning gain is different from learning
outcomes in that learning gain compares performance at two points
in time, while learning outcome concentrates on the output level at
a single point in time. For example, students may not benefit from
the exercise even if he/she performs well on it. Luckin et al. [19]
calculated learning gain as LG = post−pre , where pre and post refer
to a student’s pre-test and post-test scores. Normalized Learning
Gain (NLG) [8] is a widely used adjusted measurement: NLG =
post−pre
1−pre , where 1 is the maximum score for pre- and post-tests.

However, NLG can be problematic in certain circumstances, such as
even a small decline in post-test score from the pre-test can result
in a large negative in NLG if the student has high pretest scores.
Mao [20] proposes a qualitative measurement called Quantized
Learning Gain (QLG), which is a binary qualitative measurement
on students’ learning gains from pretest to the posttest:High or Low.
They first split students into three groups based on their scores.
Then, if a student moves from a lower performance group to a
higher performance group, he/she is a High QLG. On the contrary,
he/she will be a Low QLG. But such simple instantiation of the
learning gain is still not enough to capture its diversity.

2.3 Forgetting Effect
In a real learning environment, forgetting is inevitable [21]. The
Ebbinghaus forgetting curve theory indicates that students’ knowl-
edge proficiency may decline due to the forgetting factor [11]. Ne-
dungadi and Remya [24] incorporate forgetting based on the as-
sumption that the learned knowledge decays exponentially over
time [18]. They utilize an exponential decay function to update the
knowledge mastery level. Huang et al. [11] proposes the Knowledge
Proficiency Tracing (KPT) model to model students’ knowledge
proficiency with both learning and forgetting theories, which dy-
namically captures the change of students’ proficiency level over
time. Nagatani et al. [23] make attempts to improve DKT by consid-
ering forgetting effects, but they only extend DKT by incorporating
multiple types of time or counts information.

3 PRELIMINARY
In this section, we formalize the learning process of students and
give a brief introduction to the definition of knowledge tracing.
Besides, we also present some important embeddings in LPKT.

3.1 Problem Definition
In an intelligent tutoring system, supposing there are the set of stu-
dents S = {s1, s2, ..., si , ..., sI }, the set of exercises E = {e1, e2, ...,
ej , ..., e J }, and the set of knowledge conceptsK = {k1,k2, ...,km , ...,
kM }, where each exercise is related to specific knowledge concepts.
The Q-matrix Q ∈ RJ×M , which is consisted of zeros and ones,
indicates the relationship between exercises and knowledge con-
cepts, where Q jm = 1 if knowledge concept km is required for
exercise ej and Q jm = 0 otherwise. Generally, when an exercise is
assigned to the student, he/she spends a certain time on answering
it according to his/her learned knowledge. The learning process
keeps repeating the above answering behavior on different exer-
cises, where there is an interval time between adjacent answering
interaactions. Therefore, we denote the learning process of a stu-
dent as x = {(e1,at1,a1), it1, (e2,at2,a2), it2, ..., (et ,att ,at ), itt },
where the tuple (et ,att ,at ) represents a basic learning cell in learn-
ing process, et is the exercise, att is the answer time the student
spent on answering et , and at represents the binary correctness la-
bel (1 represents correct and 0 for wrong), itt stands for the interval
time between the learning cells.

Problem Definition. Given students’ learning sequence x =
{(e1,at1,a1), it1, (e2,at2,a2), it2, ..., (et ,att ,at ), itt }, the KT task
aims to monitor students’ changing knowledge state during the learn-
ing process and predict their future performance at the next learning
step t + 1, which can be further applied to individualize students’
learning scheme and maximize their learning efficiency.

3.2 Embeddings
In LPKT, to realize our goal of modeling students’ learning pro-
cess, we consider the following elements: exercises, answer time,
answers, interval time, knowledge concepts, and knowledge state.
We define the basic cell of the learning process as a tuple exercise—
answer time—answer and each learning cell is separated by the
interval time. To better understanding the whole structure of LPKT
before presenting its details, we give a simple introduction to the
embeddings of those elements from three categories as below.

3.2.1 Time Embedding. Time embedding refers to the embedding
of answer time and interval time. Generally, the answer time and
interval time are both important elements in the learning process,
which can influence the learning gain and forgetting effects of
students to some degree. Nagatani et al. [23] discretized all time
features by minutes at log2 scale and represented them as one-hot
vectors. Forgetting curve theory was also introduced to model the
decreasing knowledge state of students as time goes on [11, 18].
In LPKT, due to the interval time could be much longer than the
answer time, we discretize the former by the minutes and the latter
by the seconds. Besides, we set all the interval time longer than one
month as one month. Then, we represent the discretized answer
time by an embedding matrix at ∈ Rdat×dk , the discretized interval
time is similarly represented by an embedding matrix it ∈ Rdit×dk ,
wheredat anddit are the number of the discretized answer time and
interval time respectively. Then, att and itt in learning interaction
xt will be represented as the vector att ∈ Rdk and itt ∈ Rdk .

3.2.2 Learning Embedding. Learning embedding is the embedding
of the basic learning cell, which is themain part of students’ learning

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1454



(tanh+1)/2

Forgetting

Learning

Predicting

(tanh+1)/2

Forgetting

Learning

Predicting

(tanh+1)/2

Forgetting

Learning

Predicting

Figure 2: The architecture of the LPKT model.

process and characterizes the knowledge them acquire by answer-
ing exercises. We first represent the exercise set by an embedding
matrix E ∈ RJ×de , where J is the number of exercises and de is the
dimension. Then each exercise et in learning cell xt will be repre-
sented as the vector et ∈ Rde . For the answer at , i.e., 0 or 1, we
expand it to a all-zero or all-one vector at ∈ Rda , da is the dimen-
sion as well. Finally, for getting the learning embedding lt ∈ Rdk of
the basic learning cell (et ,att ,at ), we concatenate et , att , and at
together and apply a multi-layer perceptron (MLP) to deeply fuse
the exercise embeddings, answer time embeddings, and answer
embeddings as follows:

lt =W
T
1 [et ⊕ att ⊕ at ] + b1, (1)

where ⊕ is the operation of concatenating,W1 ∈ R(de+dk+da )×dk

is the weight matrix, b1 ∈ Rdk is the bias term, dk is the dimension.

3.2.3 Knowledge Embedding. Knowledge embedding is served to
store and update the knowledge state of students during the learn-
ing process. In LPKT, the knowledge embedding is initialized as an
embedding matrix h ∈ RM×dk , whereM is the number of knowl-
edge concepts. Therefore, each row of the matrix h represents the
knowledge mastery of the corresponding knowledge concept. At
each learning interaction, the learning gain on each knowledge con-
cept modeled by LPKT is updated into the knowledge embedding,
the forgetting effects are also included in it simultaneously.

The Q-matrix indicates the relations between exercises and
knowledge concepts, which controls the updated row in the knowl-
edge embedding after answering related exercises. For instance,
after answering the exercise ej with knowledge concept km , the
rowm of the student’s knowledge matrix will be updated. Tradition-
ally, if the knowledge concept km is not contained in the exercise
ej , Q jm will be set as 0, which shows students’ performance on
exercise ej has no influence on their knowledge mastery hm on
knowledge concept km . However, manually-labeled Q-matrix may
be deficient because of inevitable errors and subjective bias [15, 36].
In order to make up for possible omissions or mistakes, we define
an enhanced Q-matrix q ∈ RJ×M , where qjm will be set as a small
positive value γ rather than 0 even if km is not in ej . Although this
unified setting is simple as well, as the focus of our paper is on the

learning process modeling part, we leave the exploration to learn
the specific weights in the Q-matrix as future works.

4 THE LPKT MODEL
In this section, we present the LPKT model in detail. As shown
in Figure 2, LPKT is consisted of three modules at each learning
step: (1) learning module, (2) forgetting module, and (3) predicting
module. Specifically, after a student has answered an exercise, the
learning module models his/her learning gains compared with the
previous learning interaction. The forgetting module is utilized to
measure how much knowledge will be forgotten as time goes on.
Then, the learning gains and forgotten knowledge will be taken
advantage of to update the student’s previous knowledge state
for achieving their latest knowledge state. Finally, the predicting
module is proposed to predict the student’s performance on the
next exercise according to his/her latest knowledge state.

4.1 Learning Module
As mentioned in our primary goal to model the learning process
for the KT task, after formalizing the learning process as the basic
learning cell and the interval time, the next problem is to measure
the implicit and dynamic learning gain. Traditionally speaking,
the learning gain can be defined as ‘distance traveled’ [22], which
stands for the difference of students’ performance at two points in
time. For modeling learning gains precisely, we should consider the
differences in students’ performance at two continuous learning in-
teractions of students. In LPKT, we realize the modeling of learning
gain through concatenating students’ previous learning embedding
lt−1 and present learning embedding lt as the basic input element
in LPKT. However, although we can capture the differences in stu-
dents’ performance with two continuous learning embeddings, it
is unable to capture the diversity of learning gains in the learning
process. For example, not all students share the same learning gains
even if they have the same performance on part of overlapped
learning sequences (i.e., the same continuous learning embeddings).
Therefore, we consider two influencing factors of the learning gains
in LPKT, which are the interval time and students’ previous knowl-
edge state respectively. On the one hand, the interval time between
two learning cells is a key element in learning process, which can
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reflect the distinctions of learning gains. Generally, students tend to
acquire more knowledge with shorter interval time, which means
their learning process is compact and continuous. On the other
hand, the previous knowledge state can also influence students’
learning gains, such as students with worse mastery have greater
possibilities of improvement. Therefore, we incorporate the above
two factors into LPKT for modeling the evolution of learning gains.
Specifically, for the interval time, we concatenate itt into the basic
input element in the timeline between the two continuous learn-
ing embeddings. For previous knowledge state, to focus on the
knowledge state on the related knowledge concepts of the present
exercise, we first multiply ht−1 and the knowledge concept vector
qet of present exercise and get the related knowledge state ˜ht−1:

˜ht−1 = qet · ht−1, (2)

where · denotes the element-wise product between vectors. Then
the learning gains lдt will be modeled as follows:

lдt = tanh(WT
2 [lt−1 ⊕ itt ⊕ lt ⊕ ˜ht−1] + b2), (3)

whereW2 ∈ R(4dk )×dk is the weight matrix, b2 ∈ Rdk is the bias
term, tanh is the non-linear activation function.

Considering that not all learning gains can be transformed into
the growth of students’ knowledge completely, we further design
a learning gate Γlt to control the students’ absorptive capacity of
knowledge:

Γlt = σ (WT
3 [lt−1 ⊕ itt ⊕ lt ⊕ ˜ht−1] + b3), (4)

whereW3 ∈ R(4dk )×dk is the weight matrix, b3 ∈ Rdk is the bias
term, σ is the non-linear siдmoid activation function.

Then Γlt will be multipied to lдt to get the actual learning gains
LGt in the t−th learning interaction. Similarly, to focus on the
learning gain of the related knowledge concepts of exercise et , we
multiply LGt by qet to get the related learning gains ˜LGt−1:

LGt = Γlt · ((lдt + 1)/2),

L̃Gt = qet · LGt ,
(5)

due to the output range of tanh function is (−1, 1), we apply a linear
transformation ((lдt + 1)/2 to project the range of lдt from (−1, 1)
to (0, 1). Therefore, the learning gains LGt will be always positive,
which is in line with our assumption that students’ can consistently
acquire knowledge at each learning interaction.

4.2 Forgetting Module
After computing ˜LGt , which plays an enhanced role in students’
knowledge state, the opposite forgetting phenomenon affects how
much knowledge will be forgotten as time goes on. According to the
forgetting curve theory [18], the amount of learned material that is
remembered decays exponentially over time. Nevertheless, a simple
manual-designed exponential decay function is not sufficient for
capturing complex relations between knowledge state and interval
time. For modeling the complex forgetting effects, we design a
forgetting gate Γft in LPKT, which applies a MLP to learn the degree
of loss information in knowledge matrix based on three factors:
(1) students’ previous knowledge state ht−1, (2) students’ present

learning gains LGt , and (3) interval time itt :

Γ
f
t = σ (WT

4 [ht−1 ⊕ LGt ⊕ itt ]) + b4), (6)

whereW4 ∈ R(3dk )×dk is the weight matrix, b4 ∈ Rdk is the bias
term, σ is the non-linear siдmoid activation function.

Then, we can eliminate the influence of forgetting bymultiplying
Γ
f
t to ht−1 and the knowledge state ht after students accomplish

the t−th learning interaction will be updated as follows:

ht = L̃Gt + Γ
f
t · ht−1. (7)

4.3 Predicting Module
Through modeling the learning gain and forgetting effect in the
learning process, we have got students’ knowledge state ht after
the t−th learning interaction. In this part, we will use ht to predict
students’ performance on the next exercise et+1.

In a real learning environment, given et+1 to the student, he/she
will try to solve it by applying his/her knowledge to the correspond-
ing knowledge concepts. Therefore, we use the related knowledge
state ˜ht to infer the student’s performance on et+1 . We first con-
catenate the exercise embedding ˜ht and et+1, then project them
to the output layer by a fully connected network with sigmoid
activation:

yt+1 = σ (WT
5 [et+1 ⊕ ˜ht ] + b5), (8)

whereW5 ∈ R(2dk )×dk is the weight matrix, b5 ∈ Rdk is the bias
term. The output yt+1, which is the range of (0, 1), represents the
predicted performance of the student on next exercise et+1. We
can further set a threshold to determine whether the student can
answer et+1 correctly, that is he/she can get right answer if yt+1 is
greater than the threshold, otherwise, the answer is wrong.

4.4 Objective Function
To learn all parameters in LPKT, we also choose the cross-entropy
log loss between the prediction y and actual answer a as the objec-
tive function:

L(θ ) = −

T∑
t=1

(at logyt + (1 − at ) log(1 − yt )) + λθ | |θ | |
2, (9)

where θ denotes all parameters of LPKT and λθ is the regularization
hyperparameter. The objective function was minimized using Adam
optimizer [12] on mini-batches. More details of settings will be
specified in the part of experiments.

5 EXPERIMENTS
In this section, we first describe the real-world datasets used in
the experiments. Then we conduct experiments with the aim of
answering the following research questions:
• RQ1 Does our proposed LPKT model keep the consistency of
students’ changing knowledge state to their learning process?

• RQ2 Does our proposed LPKT model outperform the state-of-
the-art knowledge model on student performance prediction?

• RQ3How does the learning module, forgetting module, and time
information in LPKT impact the knowledge tracing result?

• RQ4 Can LPKT learn meaningful representations of exercises?
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Statistics Datasets
ASSIST2012 ASSISTchall EdNet-KT1

Students 29,018 1,709 784,309
Exercises 53,091 3,162 12,372
Concepts 265 102 141
Answer Time 26,747 1,326 9,292
Interval Time 29,748 2,839 41,830
Avg.length 93.45 551.68 121.48

Table 1: Statistics of all datasets.

5.1 Datasets
Three real-world public datasets have been used to evaluate the
effectiveness of LPKT. Table 1 shows the statistics of all datasets. A
simple description of all datasets is listed as follows:
• ASSISTments 20121 (ASSIST2012) is collected from the AS-
SISTments [5], an online tutoring system created in 2004. The
data is gathered from skill builder problem sets where students
need to work on similar exercises to achieve mastery, which con-
tains data for the school year 2012-2013 with affect predictions.
We have filtered the records without knowledge concepts.

• ASSISTmentsChallenge2 (ASSISTChall) is utilized in the 2017
ASSISTments data mining competition. Researchers collected it
from a longitudinal study, which tracks students from their use
of ASSISTments blended learning platform in middle school in
2004-2007. In this dataset, students have a much longer learning
sequence than ASSIST2012.

• EdNet-KT13 is the dataset of all student-system interactions col-
lected over 2 years by Santa, a multi-platform AI tutoring service
with more than 780K users in Korea available through Android,
iOS and web [3]. To provide various kinds of actions in a consis-
tent and organized manner, EdNet offers the datasets in four dif-
ferent levels of abstraction. In this paper, we use its simplest form,
i.e., EdNet-KT1, which consists of students’ exercise-solving logs.
If the exercise has more than one knowledge concepts, we only
use the first knowledge concept as its knowledge concept.

5.2 Training Details
Preprocessing. We first sorted all learning records of the student

by the timestamp of answering. Then, we set all input sequences to
a fixed length based on the average sequence length of the dataset.
Specifically, for datasets ASSIST2012 and EdNet-KT1, we set the
fixed lengths to be 100. For ASSISTchall, the fixed lengths were set
as 500. For sequences longer than the fixed length, we cut them
into several unique sub-sequences according to the fixed length.
For the sequences shorter than the fixed length, zero vectors were
used to pad them up to the fixed length.

Training setting. For all datasets, we performed standard 5-fold
cross-validation for all models. Thus, for each fold, 80% of the stu-
dents were split as the training set (80%) and validation set (20%),
the rest 20% were used as the testing set. To set up the training
1https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-
affect
2https://sites.google.com/view/assistmentsdatamining/dataset
3http://ednet-leaderboard.s3-website-ap-northeast-1.amazonaws.com/

process, we randomly initialize all parameters in the uniform dis-
tribution [7]. All the hyper-parameters are learned on the training
set, and the model that performed best on validation set was used
to evaluate the testing set. In LPKT, we added a dropout layer [9]
with a dropout rate of 0.2 to prevent overfitting. Parameter dk , de
are all set to be 128 and da is 50 in our implementation. The small
positive value γ in the enhanced Q-matrix q is 0.03. Our code is
available at https://github.com/bigdata-ustc/EduKTM.

5.3 Baseline Methods
We compare LPKT with several previous methods. For a fair com-
parison, all these methods are tuned to have the best performances.
All models are implemented by Tensorflow [1], and trained on a
cluster of Linux servers with TITAN V100 GPUs. The details of
comparison methods are:
• DKT leverages recurrent neural network to assess student knowl-
edge state [31]. We utilized LSTM in our implementation.

• DKT+ is an extended variant of DKT [38], which attempts to
solve two major problems in DKT. The first problem is that DKT
fails to reconstruct the observed input and the second one is the
predicted performance of DKT across time-steps is not consistent.

• DKVMN takes advantage ofmemory network to get interpretable
student knowledge state [39]. It defines a static matrix called key
matrix to store latent knowledge concepts and a dynamic ma-
trix called value matrix to store and update the corresponding
knowledge state through read and write operations over time.

• SAKT applies the transformer structure to the KT task [27]. It
proposes a self-attentive model for knowledge tracing.

• CKT introduces convolutional windows in CNN to model the
individualized learning rate of students in learning process [33].

• AKT is the context-aware attentive knowledge tracing model
[6]. It uses the two self-attentive encoders to learn context-aware
representations of the exercises and answers. The knowledge
evolution model is referred to the knowledge retriever, which
uses an attention mechanism to retrieve knowledge acquired in
the past that is relevant to the current exercise.

5.4 Knowledge State Visualization (RQ1)
As our primary goal is to model students’ learning process for KT,
we will show that LPKT can capture reasonable knowledge state
of students, which is inconsistent with their learning process. Fig-
ure 3 shows the changing knowledge state traced by LPKT of the
same student in Figure 1. There are several important observations
in the figure. Firstly, our proposed LPKT method can capture the
student’s learning gains from both wrong and right learning inter-
actions. For example, even the student answer exercise e5 and e12
wrongly, LPKT thinks his/her knowledge state on related knowl-
edge concepts (i.e., Addition and Subtraction Intergers and Ordering
Intergers) can also get promotion. We note that after answering ex-
ercise e7 wrongly, his/her knowledge state is reductive, the reason
is that his/her performance on Addition and Subtraction Intergers
is not stable in this stage and LPKT is trying to modify his/her
knowledge state. Secondly, if the student does not practice on some
knowledge concepts, his/her knowledge state on these concepts
will reduce gradually as time goes on. For instance, the student’s
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Figure 3: The evolution process of a student’s (the same student in Figure 1) knowledge states traced by LPKT. In sub-figure
(a), the top part indicates his/her performance at each time step, the answer time and interval time. Sub-figure (b) is the radar
diagram of the student’s knowledge state at the first interaction and the last interaction, his/her maximum and minimum
knowledge state in learning process are also depicted on it.

Methods
ASSIST2012 ASSISTchall EdNet-KT1

RMSE AUC ACC r2 RMSE AUC ACC r2 RMSE AUC ACC r2

DKT 0.4241 0.7289 0.7360 0.1468 0.4471 0.7213 0.6907 0.1425 0.4508 0.6836 0.6889 0.1008
DKT+ 0.4239 0.7295 0.7254 0.1497 0.4502 0.7101 0.6842 0.1308 0.4601 0.6429 0.6733 0.0635
DKVMN 0.4261 0.7228 0.7329 0.1398 0.4503 0.7108 0.6842 0.1302 0.4538 0.6741 0.6843 0. 0913
SAKT 0.4258 0.7233 0.7339 0.1403 0.4626 0.6605 0.6694 0.0822 0.4524 0.6794 0.6862 0.0964
CKT 0.4234 0.7310 0.7365 0.1497 0.4455 0.7263 0.6924 0.1488 0.4519 0.6811 0.6871 0.0984
AKT 0.4100 0.7740 0.7554 0.2035 0.4317 0.7655 0.7141 0.2015 0. 4241 0. 7701 0.7287 0.2059
LPKT 0.4069 0.7772 0.7583 0.2145 0.4153 0.8008 0.7424 0.2609 0.4234 0.7721 0.7300 0.2085

Table 2: Results of comparison methods on student performance prediction. LPKT outperforms all baselines on all datasets.

Methods learning forgetting time RMSE AUC ACC r2

LPKT-L ! ! 0.4112 0.7659 0.7531 0.1980
LPKT-F ! ! 0.4087 0.7734 0.7554 0.2075
LPKT(no time) ! ! 0.4077 0.7759 0.7571 0.2115

LPKT ! ! ! 0.4069 0.7772 0.7583 0.2145

Table 3: Results of ablation experiments on ASSIST2012.

knowledge state on Absolute Value and Addition and Subtraction
Intergers is dropping by degrees after answering exercise e4 and e11
respectively. Thirdly, the general changing process of the student’s
knowledge state is consistent with his/her learning process. At
the first learning interaction, his/her knowledge state is the min-
imum. During the learning process, the student keeps absorbing
new knowledge and his/her knowledge state achieves the maxi-
mum, which can be reflected by the increased areas of the radar
diagram that indicates the student’s knowledge proficiency. At the
last learning interaction, the student’s knowledge state presents a
certain degree of reduction in comparison with the maximum but
is still better than the beginning.

5.5 Student Performance Prediction (RQ2)
Although our goal for proposing LPKT is to get more reasonable
KT, the experimental results on student performance prediction
are still one of the most important metrics for evaluating KT meth-
ods. Therefore, we compare LPKT with all baselines on student

performance prediction and report the average results across five
test folds in Table 2. In order to evaluate the performance of all
models comprehensively, we conduct extensive experiments on all
datasets. For providing robust evaluation results, the performance
was evaluated in terms of Root Mean Squared Error (RMSE), Area
Under Curve (AUC), Accuracy (ACC), and the square of Pearson
correlation (r2) in all experiments. From Table 2, we can see that
LPKT outperforms all other KT methods on all datasets and metrics,
which indicates better results in line with students’ learning pro-
cess are positively related to predicting their future performance
more accurately. In addition, there are also some other important
observations. First, we have noticed that LPKT significantly out-
performs (i.e., improves the AUC by 4.6%) state-of-the-art AKT
model on the ASSISTchall dataset, which suggests that LPKT is
more capable of capturing students’ historical learning informa-
tion in long sequences. Second, in the biggest EdNet-KT1 dataset,
which contains the learning records of 784,309 students, LPKT also
marginally outperforms other methods, which indicates that the
modeling of learning process in LPKT has good adaptability for a
large number of students.

5.6 Ablation Experiments (RQ3)
In this section, we conduct some ablation experiments to further
show how each module in LPKT affects final results. In Table 3,
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Figure 4: Comparison results of the influence of learning sequence length of LPKT and AKT on ASSISTchall.

(a) Exercises clustering results. Randomly selected 100 exercises in the 3162 exercises
of ASSISTchall are clustered into ten concepts. Exercises under the same concept
are labeled in the same color and the number stands for the index of exercises.

Knowledge Concepts Index of  Exercises Knowledge Concepts Index of  Exercises

pattern-finding
13, 17, 18, 19, 20, 22, 28, 
29, 30, 31, 32, 91, 92, 93, 

94, 99, 100

equivalent-fractions-
decimals-percents

47, 49, 51, 52

square-root
33, 34, 35, 36, 37, 

38, 39, 40, 41 subtraction 62, 87, 88, 89, 90, 95, 96, 97, 98

symbolization-
articulation

7, 8, 9, 10
transformations-

rotations
23, 24

point-plotting 1, 2, 3, 5, 25, 26, 27 reading-graph 4, 14, 15, 16

supplementary-angles 58, 73, 74 inducing-functions
11, 12, 21, 42, 43, 44, 45, 

46, 64, 69, 71

evaluating-functions 53, 54, 55, 56, 57, 63 addition 65, 66, 67, 68

transversals 59, 72 isosceles-triangle 60, 61

equation-solving 70, 82, 85, 86 equation-concept 6

interpreting-numberline 79, 80, 81 venn-diagram 75, 76

percent-of 77, 78 percents 83, 84

of-means-multiply 48 rate 50

(b) Manually-labeled knowledge concepts of the above 100 exercises.

Figure 5: Exercises clustering.

there are three variations of LPKT, each of which takes out one
module from the full LPKT. Concretely, LPKT-L refers to LPKT
without considering forgetting, i.e., the forgetting gate is removed.
LPKT-F refers to LPKT without modeling learning gains, where
the basic input element in LPKT is replaced by a single learning
embedding, instead of two continuous learning embeddings. There-
fore, LPKT-L can only measure students’ learning outcomes, rather
than learning gains. LPKT (no time) refers to LPKT that does not
utilize any time information, i.e., the answer time and interval time
are dropped. The result in Table 3 shows some interesting conclu-
sions. First, the common phenomenon of forgetting plays a critical
role in learning process, which can cause the biggest decline of
the predictive results if we do not consider it. Second, modeling

the learning gain indeed performs better than modeling only the
learning outcomes in knowledge tracing, because the learning gain
can better reflect the dynamic changes of students’ knowledge state.
Third, the answer time and interval time are essential and neces-
sary information in the whole learning process, which is harmful
to accurately model the learning process if omitted.

Moreover, we also conduct experiments to evaluate that if LPKT
can better model students’ learning process than the state-of-the-art
KTmethod. Generally, a longer learning sequence represents amore
complete learning process. Therefore, we compare the results of
LPKT and state-of-the-art AKT on student performance prediction
under different learning sequence lengths in dataset ASSISTchall.
Figure 4 indicates the comparison results. Specifically, we set four
different lengths: 200, 100, 20, and 10, respectively. The shorter
the learning sequence, the more incomplete the learning process.
From Figure 4, we can see that the gap between LPKT and AKT
becomes wider (i.e., the reduction of experimental results of LPKT
is less than AKT) as the learning sequence is going shorter. This
observation demonstrates that LPKT is less affected by incomplete
learning sequences so that LPKT indeed better models students’
learning process. In real learning environments, it is hard to get
access to the complete learning sequences of students, therefore
LPKT has more potential application values due to its robustness.

5.7 Exercises Clustering (RQ4)
In LPKT, the embeddings of exercises are randomly initialized. As
LPKT can get students’ knowledge state with high interpretability
and high accuracy, the learned embeddings of exercises should
also show some meanings after training. In Figure 5, we randomly
choose 100 exercises among the 3162 exercises in dataset ASSISTchall
and visualize the embeddings of these exercises utilizing the T-SNE
method [14]. As shown in Figure 5, we can see that the learned
embeddings of exercises in LPKT can be split into 10 concepts and
the clustering results show well meanings. For example, exercises
89, 95, 96, 97 with same concept subtraction are split together and
exercises 53, 54, 55, 57 with same concept evaluating-functions are
also in the same cluster. Although not all the clustering results are
correct, these automatically learned representations of exercises
can serve as meaningful supplements for the educational experts.

6 CONCLUSIONS AND FUTUREWORKS
In this paper, we explored a new paradigm for knowledge trac-
ing through modeling students’ learning process and presented a
novel model named Learning Process-consistent Knowledge trac-
ing (LPKT). Specifically, we first formalized the learning process as
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the basic learning cell and interval time, where the former was the
tuple exercise—answer time—answer. Then we modeled the learning
gain in learning process by capturing the difference in two contin-
uous learning cells. The diversity of learning gains was measured
by students’ related knowledge state and the interval time. We also
designed a learning gate to distinguish students’ absorptive capac-
ity of knowledge. For the common forgetting phenomenon, we
designed a forgetting gate to determine the reduction of students’
knowledge over time. With extensive experiments on three public
datasets, we proved that LPKT can get a more reasonable knowl-
edge state that keeps consistent with students’ cognitive process.
Moreover, LPKT also outperformed state-of-the-art KT method on
student performance prediction. Our work reveals a potential future
research direction for the KT task by modeling students’ learning
process, which is of both high interpretability and high accuracy.

In future, we will keep exploring better ways to model students’
learning process. For example, we may use pre-trained meaningful
representations of exercises, which contain information about the
difficulty. Besides, for measuring the learning gain more precisely,
we can give more attention to related previous learning interac-
tions. Finally, we will study how to automatically learn the specific
weights in the Q-matrix to represent the relation between exercises
and knowledge concepts more precisely.
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