
1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3114444, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Decoupled Representation Learning for
Attributed Networks

Hao Wang, Defu Lian, Hanghang Tong, Qi Liu, Zhenya Huang,
and Enhong Chen, Senior Member, IEEE

Abstract—Network representation learning or network embedding, which targets at learning the low-dimension representation of
graph-based data, has attracted wide attention due to its effectiveness on various network-oriented applications in recent years.
Though large efforts have been made on the joint analysis combining node attributes with the network structure, they usually model the
interactions between nodes reflected by network structure and attributes in a coupled way and fail to address the common sparse
attribute issues. To this end, in this article, we comprehensively study the problem of learning attributed network embedding, which
focuses on characterizing different types of interactions among nodes and alleviating the sparse attribute problem as well. Specifically,
we propose a novel DeCoupled Network Embedding (DCNE) model to learn node representations in a unified framework. We first
respectively project both nodes and attributes into a low-dimensional vectorial space. Then, we introduce a novel “decoupled-fusion”
learning process into each graph layer to iteratively generate node embeddings. In particular, we propose two adapted graph
convolution modules to decouple the learning of network structure and attributes respectively, and a fusion module to adaptively
aggregate the information. Next, we adopt a modified mini-batch algorithm to iteratively aggregate the higher-order information of both
nodes and attributes within a multi-task learning framework. Extensive experiments on five public datasets demonstrate that DCNE
could outperform state-of-the-art methods on multiple benchmark tasks. Moreover, several qualitative analyses further indicate DCNE
can learn more robust and representative node embeddings than other comparison methods for attributed networks.

Index Terms—Network embedding, attributed network, sparsity, decoupled and fusion, graph neural network

F

1 INTRODUCTION

N ETWORKS are ubiquitous in our daily lives, such as
social networks, citation networks, road maps, and

protein networks [1], [2]. As one of the most common data
structures in the real world, learning to process network
data becomes the cornerstone in the research community.
Among these studies, one of the fundamental issues is
how to effectively generate the network data representation,
which attracts much attention for a long time [3]–[6].

To achieve this goal, as shown in Fig. 1, network em-
bedding, as a kind of promising techniques, targets at
representing a network in a low-dimensional hidden space,
where each node (i.e., {v1, · · · , v12}) can be assigned with
a vectorial embedding. Generally, the learned node embed-
dings are essential for capturing their relationships which
are originally reflected by their topological structure with
respect to the edge links [7]. In fact, by effectively encoding
the topological characteristics, network embedding can be
directly applied in various downstream applications, such
as node classification [3], [4], link prediction [2], [8], net-
work clustering [9] and social influence analysis [10]–[13].

In the literature, there are many efforts in designing net-
work embedding methods. Traditionally, researchers mainly

• H. Wang, D. Lian (corresponding author), Q. Liu, Z. Huang, and
E. Chen (corresponding author) are with the Anhui Province Key Lab-
oratory of Big Data Analysis and Application, School of Computer
Science and Techonology, University of Science and Technology of
China, Hefei, Anhui, 230026, China. Email: wanghao3@mail.ustc.edu.cn,
{liandefu,qiliuql,huangzhy,cheneh}@ustc.edu.cn

• H. Tong is with the Department of Computer Science, University of
Illinois at Urbana-Champaign. Email: htong@illinois.edu.

explore the effects of local or global network structure and
propose a series of structure-preserved network embedding
algorithms to capture the essential properties [3], [4], [14].
Generally, the basic idea is that nodes with similar struc-
tures should be closer in the embedding space. Along this
line, earlier efforts try to exploit the neighborhood contexts
between nodes for network embedding with random walk
strategy, such as DeepWalk [3] and Node2vec [4]. Later,
LINE [15] and GraRep [16] capture the high order prox-
imity of node, which preserve more global network struc-
tures. Recently, aiming to keep higher-order nonlinear net-
work structure, several deep learning based methods have
been proposed, whose representative ones are SDNE [14],
DNGR [17], etc. Besides the topological structure, nodes
in the network are usually along with informative side
attributes (e.g., category, content), which help identify some
individual properties. Therefore, researchers incorporate
such attributes, following the assumption that nodes with
similar attributes should also be similarly reflected by their
representations [18]–[21]. For instance, TADW [18] and
LANE [19] respectively take the text information and label
distribution in matrix factorization. Then, recent state-of-
the-art studies iteratively generate the node embedding
by aggregating attribute information from its local k-order
neighbors following the message-passing-receiving mecha-
nism, such as GraphSAGE [22] and GAT [23].

Although many previous work has demonstrated the
advanced performance of attributed network embedding
methods, they still have certain limitations for characteriz-
ing the complex interactions between nodes in the sparse
situation. Specifically, 1). sparse attributes: most of the at-

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 06:19:14 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3114444, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

1

2

3

4
5

6
8

9

10

11

12

1

2

3

4
5

6

7

8

9

10
11

12

1

2

3

4

5

6

Attributed network Node embedding Embedding space

1

7

12⋯ : different nodes : different attributes

7

8

9

10

11

12

Fig. 1. A toy example of network embedding.

tributed networks face the sparsity problem of node at-
tributes that the number of valued attributes is extremely
small. As we know, the number of node attributes has an
important impact on network embeddings, which could
enhance the inference of the structural connections between
nodes [18]. Therefore, it’s necessary to generalize node
attributes for alleviating this sparsity issue and improving
the representative ability of embeddings, which has been
ignored by many previous works; 2). complex interactions:
most recent work typically models the interactions between
nodes in a coupled way, where the informative attributes
are utilized by initialization or side information for learning
node embeddings. In other words, they generally assume
that the similarities between nodes reflected by topologi-
cal structure and attribute correlation in the network are
consistent. Therefore, they cannot explicitly distinguish the
different effects of topology structure and node attributes
with regard to node connections. To this end, in this article,
we aim to explore the complex interactions of such two
different properties between nodes via a decoupled manner
and alleviate the sparse attribute issues.

However, there are several technical challenges along
this line. First, in a general network, node attributes are
extremely sparse and endowed with incomplete values in
practical scenarios. It is a challenge how to enhance the
generalization ability of these limited valued attributes for
alleviating the sparse attribute problem. Second, learning
embeddings for attributed networks should consider both
structure similarity and attribute similarity, where they of-
ten show partial consistency in practical networks stated
in [24], [25]. There are two fundamental theories that can
explain such phenomenon, topological similarity, and ho-
mogeneity. Specifically, topological similarity indicates that
nodes sharing similar neighbor contexts tend to establish
link connections [3], [4]. For example in Fig. 1, node v12
connects v9 since they both have similar graph contexts
(v11). Meanwhile, homogeneity indicates that nodes with
similar attributes would be prone to form the edges [26],
e.g., node v10 is linked with node v9 because of owning
similar attributes. In fact, such properties (of node v10 and
v12) are not completely consistent in practical scenarios, and
require us to quantify their different effects. Third, nodes
in the network differently prefer to the properties of their
structure proximity and attribute correlation. For instance,
in Fig. 1, the representation of node v10 will depend more
on its attributes, while node v12 is more inclined to the struc-
tural information around it. Consequently, it’s a nontrivial
problem to adaptively quantify different importances in the
integration of structure and attribute similarity for each
node. Last but not least, it’s also critical to learn attributed
network embeddings in a unified framework by explicitly
distinguishing the differences between interactions of struc-

ture and attributes among nodes.
In our preliminary work [27], we have proposed a Sparse

Attributed Network Embedding (SANE) model to learn the
node embeddings by explicitly modeling the structural and
attribute relationships among nodes. Specifically, we first
projected each node and attribute into a low-dimensional
latent space. Then we introduced a pairwise method to ef-
fectively capture the interactions between nodes and sparse
attributes, and adopted the CBOW model [28] with atten-
tion mechanism to integrate the attributes into the network
structure. In SANE, we have demonstrated the effectiveness
by distinguishing the interactions of network structure and
attributes in a shallow manner, which still has limitations in
capturing the differences between their similarities.

In this article, we further conduct a comprehensive study
of attributed network embedding with addressing all the
above challenges from a new perspective. Specifically, we
propose a novel DeCoupled Network Embedding (DCNE)
model to learn node embeddings in a unified framework.
First, we initialize the network by respectively projecting
both nodes and attributes into a latent space with vectorial
representations to enhance their generalization. Then, we
introduce a novel decoupled process to learn different node
embeddings by two modified graph convolution modules
named N-GAT and A-GAT to capture network structure
and attributes respectively. Especially, N-GAT and A-GAT
hold partial independent parameters but share some as
well to maintain consistency and distinguish the differences.
Furthermore, a subsequent fusion process is performed to
adaptively integrate the structural proximity and attribute
property into a comprehensive embedding for each node.
By iteratively stacking the whole “decoupled-fusion” pro-
cess with multiple layers, the high-order information of
node neighbors and attributes can be aggregated together
for further alleviating the sparsity issue. Finally, a noise-
contrastive estimation method is adopted to jointly learn
DCNE in an end-to-end unified manner. In summary, the
main contributions of this article are listed as follows:
• We study the problem of attributed network embed-

ding from a new perspective, which focuses on dis-
tinguishing the complex interactions among nodes
and alleviating the sparse attribute issues.

• In the technical part, we propose a network embed-
ding model DCNE. We introduce the “decoupled-
fusion” learning process in each graph layer to sep-
arately capture similarities of network structure and
attributes and further generate the node embedding
with regards to the inherent node characteristics.

• Furthermore, we adopt a modified mini-batch algo-
rithm to iteratively aggregate immediate nodes and
attributes to incorporate the higher-order informa-
tion in a joint framework with multi-task learning.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 06:19:14 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3114444, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

• Extensive experiments on publicly available datasets
demonstrate that DCNE could outperform state-
of-the-art methods on the benchmark tasks. More-
over, several qualitative analyses further indicate our
DCNE can generate more robust and representative
node embeddings for the attributed network.

2 RELATED WORK

2.1 Structure-preserved Network Embedding

One of the most popular techniques is structure-preserved
network embedding, which considers the topological rela-
tionship among nodes in the network. To the best of our
knowledge, DeepWalk [3] was the first work to learn net-
work embedding via the skip-gram model [28] by truncated
random walks. It assumed that nodes with similar network
structures would have similar representations. On this ba-
sis, node2vec [4] improved DeepWalk with the weighted
random walk, which can capture the homogeneity and
structure equivalence for different networks. Then, some
work capture the k-order distance relationship between
nodes, such as LINE [15] and GraRep [16]. In particular,
LINE defined both first-order proximity and second-order
proximity of nodes, and preserved both relationships in joint
learning. GraRep further considered the structure informa-
tion of surrounding k-order nodes to enhance node repre-
sentations. In the next generation, aiming to keep higher-
order nonlinear network structures, several deep learning-
based methods have been proposed. For example, Want et
al. [14] proposed a semi-supervised auto-encoder model
SDNE to generate node embeddings by preserving both
global and local network structural information. Similarly,
DNGR [17] adopted a random surfing model to capture the
graph structural information to obtain the PPMI matrix [29],
and utilized the stacked denoising auto-encoder for network
embedding. In recent years, to make the model more robust,
some state-of-the-art work introduces generative adversar-
ial network, such as GraphGAN [30] and ANE [31]. For
instance, GraphGAN [30] designed a generator to learn the
underlying connectivity distribution and the discriminator
to predict the probability of edge existence between node
pairs. Meanwhile, motivated by unsupervised learning in
many fields [32], [33], DGI [34] proposed a general unsuper-
vised approach for graph-structured data representations,
which maximized the mutual information between patch
node embeddings and high-level graph representations.

2.2 Attributed Network Embedding

Besides network topology, nodes in the network are usually
endowed with informative side attributes (e.g., category,
content, and label), which help identify individual proper-
ties. Therefore, researchers attempt to incorporate attribute
information into network embedding. Generally, they as-
sume that nodes with similar attributes would be closer in
the embedding space. From a technical perspective, related
work makes sufficient efforts to fuse different types of
attributes to improve the performance of original structure-
preserved methods. Along this line, some work tried to
incorporate attributes into the factorization models [18],
[35], which plays an important role in network embedding

in the earlier time. For example, TADW [18] first designed
an inductive matrix complement framework to incorporate
the text features of nodes into network representation, and
HSCA [35] further added the regularization with network
homogeneity. Then, as the deep walk based models have
shown superiority, researchers have developed several en-
hanced models by leveraging different attributes, such as
HNE [36], CENE [37] and UPP-SNE [20]. Specifically, CENE
and UPP-SNE respectively exploited the benefits of text
features and social profiles along with nodes to learn infor-
mative node embeddings. In addition, many auto-encoder
models are explored to ensure the robustness [38], [39].
Among them, DANE [38] made the fundamental attempt,
which learned both high-order embeddings of network
structure and attributes, and designed a constraint objective
to ensure their consistency. In recent years, considering the
promising achievement of graph neural networks, several
variants play the dominant role. For example, Hamilton et
al. [22] proposed GraphSAGE, which iteratively generated
node embeddings by sampling and aggregating features
from their local neighborhood. One step further, Velivckovic
et al. [23] considered the different importance of nodes by in-
troducing a self-attention mechanism. To address the model
complexity, [40] proposed a lightweight model Graph-MLP
with a pure multi-layer neural network. Meanwhile, graph
U-Nets [41] proposed pooling and unpooling with the graph
convolution network under the auto-encoder framework
for connection augmentation, to adapt the pooling and up-
sampling operations naturally to the graph data.

2.3 Label-enhanced Network Embedding
In addition to the unsupervised approaches above, several
works differently formulate the network embedding as a
supervised problem, where the node labels are incorpo-
rated to improve the correlation between embedding re-
sults and specific tasks [9], [19], [42], [43]. For example,
TriDNR [42] learned node embeddings by jointly learning
the three different interactions including inter-node rela-
tionship, node-word correlation as well as label-word cor-
respondence. LANE [19] performed the spectral techniques
on matrices of node&node, node&attribute, and node&label
for learning comprehensive node embeddings in a common
space. Though such methods have performed satisfactory
results, many real-world networks suffer from the problem
of limited annotations (small labeled data) since getting
the high-quality labels is labor costing. Thus, many works
try to leverage both labeled and unlabeled data in a semi-
supervised learning framework [6], [44], [45]. For instance,
Kipf et al. [6] proposed a novel variant of convolutional neu-
ral network, namely graph convolutional Network (GCN),
for learning graph-structured data representations, which
could be optimized in a semi-supervised learning manner.
Alone the semi-supervised setting, GMNN [46] combined
a conditional random field with graph neural network to
jointly model the dependency of node labels and embed-
dings, and AM-GCN [25] proposed an adaptive multi-
channel GCN to learn deep correlation information between
topology and attributes. From another perspective, some
work explored how to improve the consistency and robust-
ness of GCN models for enhancing the performance in semi-
supervised node classification. For instance, NodeAug [47]

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 06:19:14 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3114444, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

studied the problem of adapting Data Augmentation tech-
niques to strengthen the GCN by consistency training and
[48] introduced Mixup methods into graph convolution
learning for typical node and graph classification problems.
Wang et al. [49] investigated how to design robust GCNS
that are resistant to the adversarial, and further proposed
ProSup [50] training strategy to supervise embeddings of
all graph layers progressively toward the desired character-
istics. For more detailed network embedding discussions,
please refer to the comprehensive surveys [51]–[53].

In this article, we focus on the unsupervised attributed
network without the supervised label information in the
learning embedding stage, since it’s often difficult for us to
obtain the label information for most attributed networks
in real-world scenarios. Besides, different from existing
methods, we aim to explicitly explore the different complex
interactions of both network structure and attributes among
nodes via a decoupled manner, and jointly alleviate the
sparse attribute issues in a unified framework.

3 PROBLEM DEFINITION

Let G = (V,E, F) denotes a general attributed network.
Specifically, the set V = {v1, v2, ..., v|V |} denotes all nodes
in the network, and E = {ei,j}|V |i,j=1 represents the set of
edges between nodes. Moreover, each edge ei,j is associated
with a corresponding weight wij ≥ 0 indicating the link
strength between node vi and node vj . Generally, the weight
wij on edge ei,j is often defined as a binary value, andwij =
1 indicates that node vi and vj are linked by an edge eij , and
vice versa. Besides, matrix F ∈ R|V |×m collects the node
attributes, where each row fi corresponds to the attribute
vector of node vi with the dimension m.

In the real world, such networks can be specified with
many different types. For example, in a social network,
nodes V can represent users, edges E denote their re-
lationships (e.g., friendship or follow-up), and attributes
F can collect their profiles, such as gender, location, and
profession. In a citation network, nodes V can represent the
papers/articles, edgesE denote reference relationships with
each other, and attributes F can be the titles or words ap-
pearing in the paper. Moreover, as we illustrated in the pre-
vious section, real-world networks usually exist the sparsity
issue for both node structures and attributes, which means
nodes in the network just establish a small number of links
to each other and have extremely incomplete attributes.

Based on the terminologies described above, the goal of
attributed network embedding is to learn an effective way to
represent the network in a low-dimensional hidden space,
where each node is assigned with a dk dimensional vector,
namely node embedding [3]. Specifically, the learned node
embedding needs to preserve the original network property
which can be evaluated by many network-based application
tasks, such as node classification [54], link prediction [8], and
recommendation [55], [56]. Therefore, the key to this goal is
how to effectively integrate both network topological struc-
ture and node attribute information into the target node
embeddings. However, most of the previous work learns the
attributed network embedding in a coupled manner, which
ignores the role of different interactions between nodes.
To the end, we argue that it is worthwhile to distinguish

the similarity of two different properties in a decoupled
manner for fusing node embeddings. Along this line, we
first elaborate the formal problem definition as follows:

Problem 1 (Attributed Network Embedding). Given a general
attributed network G = (V,E, F), we aim to learn a low-
dimensional embedding representation U ∈ R|V |×d(d <<
|V |) for all nodes in the network, and target these learned
node embeddings should satisfy the following properties: 1) the
representations of nodes with the similar network structure
should be more similar; 2) the representations of nodes with
similar attributes should be closer in the embedding space.

4 DECOUPLED NETWORK EMBEDDING

4.1 Framework

In this paper, we propose a novel DeCoupled Network
Embedding (DCNE) model to learn attributed node embed-
dings by jointly exploiting the effects of network topological
structure and attribute correlation in a decoupled manner.
We illustrate the general architecture in Fig. 2, which con-
sists of three main processes including initialization process,
decoupled process, and fusion process. Specifically, we first
initialize the network by respectively projecting both nodes
and attributes into a latent space with vectorial representa-
tions. Then, we decouple the process of learning network
embeddings by designing two modified graph convolution
modules, to learn different node representations that rep-
resent the similarity of network structure and attributes
respectively. Furthermore, we perform an attention network
to adaptively quantify and fuse these two representations.
Besides, the whole “decoupled-fusion” process is conducted
with multiple layers iteratively to aggregate high-order
node and attribute information. At last, we utilize a noise-
contrastive estimation method to jointly learn node embed-
dings in an end-to-end framework. In the following, we will
introduce the technical details of each component.

4.2 Initialization Process

4.2.1 Representation Initialization
Given the attributed network G = (V,E, F), we first
initialize both nodes and attributes of the network in a
principled way. As we mentioned in Section 1, nodes in
the real-world networks not only generally establish a few
links to each other, but also are endowed with incomplete
attributes, which leads to extreme sparsity issues of both
node structures and attributes in the modeling. To alle-
viate this problem, we respectively project all nodes and
attributes into the common vectorial space and establish two
lookup embedding matrices U0 and Z0 for the initialization
representations of both respectively:

U0 ∈ R|V |×m, Z0 ∈ Rm×m, (1)

where |V | and m are the numbers of nodes and at-
tributes, respectively. We initialize node embedding u0i of
node vi with its attributes, and the attribute embedding z0j
of attribute fj with the one-hot encoding. Although we ini-
tialize the network by just specifying both node embedding
and attribute embedding on their own, we can get several

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 06:19:14 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3114444, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

Node-Node

Graph

Node-Attribute

Bipartite

i

i

i

j

Attributed

Network

𝑈0

𝑍0

𝑢𝑖
𝑘−1

𝑧𝑗
𝑘−1

1

2

i
4

5

j

N-GAT Module

ℎ𝑖|𝑛
𝑘

ℎ𝑗 |𝑛
𝑘 𝛼𝑖𝑗 |𝑛

𝑘

i

j ℎ𝑗 |𝑎
𝑘

i

j ℎ𝑗 |𝑎
𝑘

ℎ𝑖|𝑎
𝑘

𝛼𝑖𝑗 |𝑎
𝑘

ℎ𝑖|𝑎
𝑘

A-GAT Module

𝑢𝑖|𝑛
𝑘

𝑢𝑖|𝑎
𝑘

𝑧𝑗
𝑘

𝑢𝑖
𝑘

𝛽𝑛𝑎
𝑘

𝛼𝑗𝑖 |𝑎
𝑘

Network DeCoupled Attribute Network Embedding

Decoupled Process Fusion Process

Multi-task Learning

𝑢𝑖
𝑇

𝑧𝑗
𝑇 𝐿𝑎

𝐿𝑛
i

j

Network Initialization

Fig. 2. DCNE: DeCoupled Network Embedding Framework.

advantages with addressing the sparsity issue. First, differ-
ent from most existing work [18], [22] considering mixture
node initialization, DCNE can facilitate the following decou-
pled network learning process. Second, we can capture and
generalize the similarities of nodes and attributes, even with
no interactions between them before [28].

4.2.2 Network Initialization
As shown in Fig. 1, nodes in the real-world networks would
show inconsistent similarities from their structural prox-
imity and attribute correlation perspectives. To explicitly
distinguish these two properties, in this paper, we aim to
learn general node embeddings by decoupling the unified
network embedding process into two sub-processes includ-
ing structure-level embedding and attribute-level embed-
ding. To start up our modeling, we need first define two
subgraphs from the general attributed network including
node-node graph Gn and node-attribute bipartite Ga.

Specifically, given the attributed network G = (V,E, F),
the node-node graph Gn = (V,E) illustrates the connec-
tions among nodes, where we just identify the nodes
V = {v1, v2, ..., v|V |} as the vertexes, and set edges E =
{ei,j}ni,j=1 with strength weightwij as the same definition in
original attributed network in Section 3. On the other hand,
we also construct the node-attribute bipartite Ga = (V, F)
showing the connections between nodes and attributes. In
particular, we identify both nodes V and attributes F as
the vertexes, and only set the edges to indicate that node
vi endows with the attribute fj . Therefore, in the bipartite
Ga = (V, F), we have two types of vertexes including nodes
and attributes, and the edge link would be just established
between different type nodes, and would not in the same.
In the following, we present how our proposed model
DCNE generates the node embedding through these two
subgraphs via decoupled process and fusion process iteratively.

4.3 Decoupled Process
In the decoupled process, DCNE aims to generate two
different node representations including node2structure em-
bedding and node2attribute embedding, over the node-node
graph and node-attribute bipartite, which can capture both
structure-level and attribute-level similarities of nodes in the
attributed network. Concretely, we propose two modified
graph convolution modules, namely N-GAT and A-GAT, in

the decoupled processes, following the general graph neural
network with message-passing-receiving mechanisms [22].

4.3.1 Capturing Network Structure Similarity
For N-GAT module, our goal is to generate the node2structure
embedding of each node through the node-node graph to
capture the network topology. Our basic assumption is that
nodes with similar structure should be closer with respect
to their learned embeddings in the latent space, please note
that in N-GAT, we just exploit the property of node-node
connections while ignoring the effect of node-attribute cor-
relation temporarily. Mathematically, given a certain node
vi in the node-node graph Gn = (V,E), N-GAT generates its
node2structure embedding uki|n at layer k with the following
message-passing-receiving mechanism as:

(v → e)N-GAT : hki|n =
[
W k−1
c ,W k−1

n

]
uk−1i + bk−1n , (2)

(e→ v)N-GAT : uki|n = σ
(∑

j∈N (i)
αkij|nh

k
j|n

)
. (3)

Specifically, in Eq. (2), the message passing operation
(v → e)N-GAT allows node vi sends its structural message
hki|n to its adjacent nodes from its node embedding uk−1i at
layer k− 1. Here,

[
W k−1
c ,W k−1

n

]
and bk−1n are the trainable

weight and bias parameters to transform the node messages,
and notation [,] denotes the matrix concatenation operation.
It’s worth noting that the weight parameters in N-GAT
consist of two parts, i.e., the exclusive one W k−1

n for itself
and the shared one W k−1

c that also exists in the next graph
module A-GAT. Based on these two types of parameters, the
passing message of each node hki|n can naturally preserve
the consistency between structure property and attribute
correlation, and meanwhile distinguish the special struc-
tural effect without attributes in the network.

Then, in Eq. (3), the message receiving operation (v →
e)|n aggregates all messages from neighbors N (i) of node
vi to update the node2structure embeddings uki|n at layer k.
Here, σ(x) is the activation function ReLU(x) = max(0, x),
andN (i) is the neighbor set of node i (including itself) with
fixed-size samples, which is uniformly sampled to improve
the computational efficiency for model training.

In addition, considering the common phenomenon that
different neighbors would produce inconsistent influences
on node vi. Inspired by [23], we propose an attention net-
work to model the effect from structural passing message
hkj|n of neighbor vj ∈ N (i) by the weight function αkij|n:

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 06:19:14 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3114444, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

αkij|n =
exp

(
LeakyReLU

(
pk

T

n [hkj|n, h
k
i|n]
))

∑
t∈N (i) exp

(
LeakyReLU

(
pkTn [hkt|n, h

k
i|n]
)) , (4)

where pk
T

n is the transposition weight parameters corre-
sponding to the attention network at layer k. All the calcu-
lated attention scores with respect to node vi are normalized
by the softmax function (exp(·)). By Eq. (4), we can assign
greater weights to the neighbors that are more similar to vi,
in order to make them closer in the embedding space.

Moreover, at layer 0, we initialize the node embedding
u0i by looking up the initialized node representation matrix
U0 in Eq. (1). Through Eq. (2) and Eq. (3), N-GAT generates
the node2structure embedding uki|n of each node at layer k with
capturing the similarity of network structure.

4.3.2 Capturing Node Attribute Similarity
Then, in the A-GAT module, our goal turns to generate
the node2attribute embedding of each node through the node-
attribute bipartite to capture the attribute correlation between
nodes in the network. Concretely, we assume that nodes
with similar attributes should be closer with respect to their
learned embeddings in the latent space, Since the node-
attribute bipartite establishes the links by connecting two type
vertexes including nodes and attributes, which is different
from node-node graph, the module A-GAT consists of two
consecutive steps with different directions, i.e., one step to
learn the node2attribute embedding following the direction
from attributes to nodes, and the other step to update the
attribute embedding from nodes to attributes direction.

Mathematically, in the first step, given a certain node
vertex vi in the node-attribute bipartite Ga = (V, F), A-GAT
generates its node2structure embedding uki|a at layer k with
the similar message-passing-receiving architecture as Eq. (2)
and Eq. (3), which is defined as follows:

(v → e)A-GAT : hkj|a = [W k−1
c ,W k−1

a]zk−1j + bk−1a , (5)

(e→ v)A-GAT : uki|a = σ
(∑

j∈N (i)
αkij|ah

k
j|a

)
. (6)

where [W k−1
c ,W k−1

a] and bk−1a are the trainable network
parameters. However, note that both operations in A-GAT
exist some differences as follows. First, it can only generate
the attribute message hkj|a to its adjacent node vertexes
from the neighbor attribute embedding zk−1j at layer k − 1
in the message passing operation (Eq. (5)). Second, it can
only aggregate all messages from neighbor attributes N (i)
of node vi (N (i) only contains the connected attribute
vertexes with respect to node vi) to update the node2attribute
embeddings uki|a at layer k in the message receiving operation
(Eq. (6)). Similarly, the weight parameter

[
W k−1
c ,W k−1

a

]
in

A-GAT also consist of two parts, i.e., the exclusive oneW k−1
a

distinguishing the special attribute effects, and the same one
W k−1
c shared with N-GAT preserving common consistency.

Moreover, we still consider the different effects on node vi
from its attribute neighbor set N (i) with fixed-size samples
according to the weight score αkij|a by a similar attention
network as follows:

αkij|a =
exp

(
LeakyReLU

(
pk

T

a [hkj|a, h
k
i|a]
))

∑
t∈N (i) exp

(
LeakyReLU

(
pkTa [hkt|a, h

k
i|a]
)) . (7)

In the second step, given a certain attribute vertex aj in
the node-attribute bipartite Ga, A-GAT produces its updated
attribute embedding zkj at layer k by an additional similar
architecture, which is defined as follows:

(v → e)A-GAT : hki|a =
[
W k−1
c ;W k−1

a

]
uk−1i + bk−1a , (8)

(e→ v)A-GAT : zkj = σ
(∑

i∈N (j)
αkji|ah

k
i|a

)
, (9)

where uk−1i is the node embedding of neighbor node vi at
last layer k− 1, and N (j) consists of the sampled fixed-size
neighbor nodes holding with attribute aj .

4.4 Fusion Process

After the decoupled process in DCNE, we decompose the
general network embedding to obtain two separate presen-
tations of a certain node including node2structure embedding
and node2attribute embedding. In the fusion process, we ad-
dress the problem of how to generate the comprehensive
node embedding by aggregating them together to make it
satisfy both properties of network structure and attribute
correlation simultaneously at the current layer. In Fig. 1,
we notice that nodes in the attributed network differently
prefer to such both properties. For example, some nodes
like v12 and v9 are more dependent on their topological
position since they are linked directly, while others like
v10 and v9 have the same attributes to show the similar
attribute correlation. Therefore, it is necessary to distinguish
and quantify the dominance of node2structure embedding and
node2attribute embedding in the fusion process. Specifically,
we combine them at layer k to update node embedding uki for
node vi in general as follows:

uki = βki u
k
i|n + (1− βki)uki|a, (10)

where βki is the weight score that balances the node2structure
embedding uki|n and node2attribute embedding uki|a for node vi,
which is implemented by an attention network as:

βki = hk
T

ReLU
(
W k
β [uki|n, u

k
i|a]
)
, (11)

where hk
T

and W k
β are the trainable parameters at layer k.

Therefore, each node can adaptively make a trade-off
between its structural and attribute preferences, so as to
facilitate the embedding process in the next layer k + 1.

Through our decoupled and fusion process in one graph
layer, we can update the node embedding uki of each node
and the attribute embedding zkj of each attribute in an at-
tributed network, where the adjacent structure and attribute
information of immediate neighborhood around nodes can
be aggregated. Then, we continuously stack K these graph
layers with multiple such “decoupled-fusion” processes to
capture the propagation of surrounding K-order structure
and attribute information. Specifically, different from the
intuitive method that simply fusion once at last with the out-
put node embeddings by respectively stacking both N-GAT
and A-GAT with multi-round (message-passing-receiving)
operations, our DCNE with iterative “decoupled-fusion”
graph layers could gain two main advantages for network
embedding as follows. First, it could characterize the com-
plex high-order interactions between nodes and attribute
during the propagation iteratively. Second, it could enhance

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 06:19:14 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3114444, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

the representation ability of nodes and attributes by allevi-
ating the sparsity problem gradually, since our modeling of
nodes and attributes are not totally independent but related
with each other to some extend. Moreover, we denote the
final output of node embedding and attribute embedding at last
graph layer K as U ∈ R|V |×d and Z ∈ R|V |×d for the
concise notations in the subsequent technical parts.

4.5 Model Learning
4.5.1 Joint Learning in a unified framework
DCNE introduces the specific modeling for both nodes and
attributes in an attributed network. Therefore, we propose
a unified framework to jointly learn two tasks including
structure similarity and attribute correlation. Specifically, for
the former task, we utilize the widely used graph-based loss
criterion [22] with negative sampling [27] as:

Ln = log σ(uTi uj) +
∑neg

t=1
Evt∼Pn(v) log σ(−uTi ut), (12)

where uj is the node embedding of the positive node vj that
co-occurs near target node vi on a fixed-length random
walk, ut denotes the node embedding of sampled node vt
for target vi from the noisy distribution Pn(v) [57] with
total number neg. σ(x) is the sigmoid activation function.
Specifically, we calculate the similarity score of both nodes
by inner product with their embeddings. By optimizing
Eq.(12), we can make nodes with similar structure closer
in the embedding space, and vice versa, so as to preserve
the structural property between nodes in the network.

For the latter task, we also define the similar objective
function to learn the attribute correlation as:
La = log σ(uTi zj) +

∑neg

t=1
Eft∼Pa(f) log σ(−uTi zt). (13)

where zj denotes the embedding of positive attribute fj that
node vi owns, and zt is the negative one, sampled from
attribute noisy distribution Pa(f). By Eq. (13), we could
encourage nodes with similar attributes to be closer, while
forcing the others with disparate attributes to be distinct.

Moreover, considering that both learning tasks above
are often not completely independent but exist partially
relevance in many real-world attributed network, the joint
learning objective function of DCNE could be defined as
the following multi-task learning framework combined with
Eq. (12) and Eq. (13):

L = Ln + La + λ||Θ||2, (14)

where Θ denotes all trainable parameters in DCNE, which
are regularized with L2 norm to prevent overfitting. λ
is a balancing hyper-parameter. Please recall that DCNE
shares part of weight parameters (Wc) in N-GAT and A-
GAT (Eq. (2), Eq. (5) and Eq. (8)), which can improve the
model robustness in the learning process. Moreover, since
we optimize the node embeddings in both tasks, which
can capture the correlation between network structure and
attributes, and meanwhile strengthen the ability of model
learning by distinguishing their inconsistency.

4.5.2 Model Optimization with Mini-Batch Training
Considering each part of our DCNE is differentiable, in
most cases, we could utilize the Stochastic Gradient Descent
(SGD) and Adam algorithms [58] to optimize the joint ob-
jective function Eq.(14) in an end-to-end trainable manner.

TABLE 1
Statistics of the datasets

Datasets Nodes# Links# Attributes# Labels#
Cora 2, 708 5, 429 1, 433 7
Citeseer 3, 327 4, 732 3, 703 6
DBLP 60, 744 52, 890 3, 799 4
Facebook 4, 039 88, 234 1, 406 −
BlogCatalog 5, 196 171, 743 8, 189 −

Moreover, since there usually exist large-scale attributed
networks in the real world, the computational complexity
of generating node embeddings for all nodes at the same time
is very high if we directly use the conventional algorithm
(recall Section 4.3 and 4.4), which leads to unsatisfactory
storage and time cost. Therefore, we introduce an adapted
mini-batch training strategy to ensure the efficiency of our
DCNE. Specifically, for nodes in a batch of data, we first
sample the required adjacent nodes and attributes in the
last layer K, where all samples can be treated as nodes to
be computed in the previous layer K − 1. Then we repeat
this process recursively back to the initial layer 0, and in
the end, we construct the subgraph with required nodes
and attributes in the batch. Therefore, we can only generate
the node embeddings from samples in each graph layer
instead of computing the whole graph, which effectively re-
duces the storage requirement and speeds up DCNE for the
large-scale attributed networks. It worth mentioning that
different from the typical solutions that only sample multi-
hops neighborhood nodes in most GNN models [12], [22],
our sampling procedure would consider both high-order
nodes and attributes, which characterizes their complex in-
teractions more effectively. Consequently, more surrounding
information can be utilized to alleviate the sparsity problem.

4.5.3 Time Complexity
In our mini-batch training setting, the time complexity of
DCNE can be fixed at O(CBΠK

k=1(|N k
n | + |N k

a |)), where C
is the number of negative samples,B is the number of nodes
in each batch, and |N k

n | and |N k
a | are the number of sam-

pling neighbors of N-GAT and A-GAT in each graph layer
respectively. Compared with the complexity of ordinary
graph neural network O(CBΠK

k=1(|N k
n |), the complexity of

DCNE is several times that of it, mainly in the aggregation
of attribute information |N k

a | in each layer. In general, we
often set the layer number K=2 to make the trade-off
between computational cost and satisfactory performance
based on previous work [6] and experimental results. Such
time complexity is acceptable for most large-scale attributed
networks, which is proportional to the number of sampling
neighbors, negative samples, and batch size.

5 EXPERIMENTS

5.1 Experimental Dataset and Setup

5.1.1 Datasets
We select five public datasets in our experiments, which
consist of two types of attributed networks including cita-
tion networks (Cora, Citeseer, DBLP) and social networks
(Facebook, BlogCatalog). For the preprocessing of datasets,
we regard them as undirected networks without loss of
generality (Note that our model can adapt both directed and

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 06:19:14 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3114444, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

undirected networks). Moreover, we remove the nodes that
are not connected in the network to ensure the reliability
of experimental results. Table 1 shows the statistics of all
datasets. We list the details of them as follows:

Cora [18] contains 2,708 machine learning papers from
7 categories and 5,429 citation links. Each paper is repre-
sented as a binary vector of 1,433 dimensions indicating the
presence of words, which can be regarded as attributes.

Citeseer [18] contains 3,312 publications of 6 classes
and 4,732 citation links. Each document is represented as
a binary vector of 3,703 dimensions, which are attributes.

DBLP [42] contains 60,744 papers and 52,890 citation
links. Papers come from 4 research areas including database,
data mining, artificial intelligent and computer vision,
which can be treated as the ground-truth labels. We use the
title of each article as node attributes, represented by a 3, 799
dimensional TF-IDF vector.

Facebook [39] is an online social network, which con-
tains 4, 039 nodes and 88, 234 friendship links. The nodes’
attributes are social users’ anonymous profiles, where are
encoded as a 1406 dimensional binary feature vector.

BlogCatalog [39] is constructed with 171, 743 social links
between 5, 196 bloggers on BlogCatalog website, where
node attributes are generated by the description keywords.

5.1.2 Baselines
We compare our DCNE model with several representative
state-of-the-art network embedding algorithms to demon-
strate its’ effectiveness on different tasks. First, we choose
the models that only explore the effect of network struc-
ture including Node2vec, LINE, and SDNE. Second, we
introduce the ones that utilize both structures and attribute
information including TADW, UPP-SNE, GAT, DANE, and
CAN. We also introduce an intuitive model Attri and take
our preliminary SANE model [27] as baselines. Please note
that we do not introduce the (semi-)supervised methods
since DCNE follows the unsupervised manner without in-
corporating node label information. The details of them are
illustrated as follows:

• Attri: Considering the dimensions of node attributes
can be very large, we directly leverage Singular Value
Decomposition (SVD) [18] to reduce the original di-
mensions to 200, as node embeddings.

• Node2vec [4]: Node2vec utilizes the skip-gram
model to learn node embeddings with a biased trun-
cated random walks to explore diverse neighbors.

• LINE [15]: It learns the network embedding by pre-
serving the first-order proximity or second-order prox-
imity of the network structure separately. We utilize
the best of them as the final baseline.

• SDNE [14]: It proposes an auto-encoder to obtain
node embeddings by preserving the global and local
network structure information.

• Node2vec+Attri: It is an improved version of orig-
inal Node2vec model by incorporating the attribute
feature vectors in Attri.

• LINE+Attri: It is an improved version of LINE with
incorporating Attri’s attribute feature vectors.

• TADW [18]: TADW integrates the network structure
and rich text information for learning the fused node
embeddings based on inductive matrix completion.

• UPP-SNE [59]: It constructs node embedding via a
non-linear mapping from attributes and adopt skip-
gram model to jointly learn node embeddings, which
achieves improvement in sparse attribute situation.

• DANE [38]: It utilizes the auto-encoder to learn both
high-order embeddings of network structure and at-
tributes, and combine them to ensure the consistency.

• CAN [39]: It proposes a variational auto-encoder that
embeds nodes and attributes in the same semantic
space with Gaussian distributions.

• GAT [23]: On the basis of GraphSage [22], GAT
utilizes the attention mechanism to capture the dif-
ferent effects between nodes, in order to adaptively
aggregate the features from nodes’ neighbors.

• SANE [27]: We previously propose SANE, which
adopts a pairwise method to capture the interactions
between nodes and attributes. The model is learned
by CBOW model with attention mechanism.

5.1.3 Parameter Setting
in the experiments, there are several hyper-parameters in
our DCNE model that should be specified. First, we set the
number of graph layer in DCNE as K=2 (recall Section 4.4),
where the dimensions of each layer (i.e., node embedding)
are defined as [125, 100]. We make the grid search for
the numbers of sampled neighbors in N-GAT and A-GAT
from the set [50, 40,..., 10]. Second, in the training stage,
we initialize DCNE parameters with Gaussian Distribution
(with a mean of 0 and a standard deviation of 0.01). Then,
we also specify the weight parameters in N-GAT and A-
GAT as the same at the beginning (recall Section 4.3), in
order to obtain a better initialization point. Then, we set
the hyper-parameter λ and negative sample sizes in the
objective function (Eq. (14)) as 0.0001 and 5, respectively.
In addition, we set the initial learning rate of Adam as
0.003 and the mini-batch size as 64. Third, as for baseline
settings, we set their parameters as the same according to
their original papers and tune them to be optimal. Moreover,
to make a fair comparison, we set all the node embedding
dimension size of compared baselines as 100 with the same
as ours. Specifically, we implement all models by Pytorch
platform and run all the experiments independently on a
Linux server with four 2.0GHZ Intel Xeon E5-2620 CPUs
and a Tesla K80 GPU.

5.2 Performance Comparison
As mentioned above, network embedding generally follows
an unsupervised fashion. The results can benefit many
downstream tasks, where the most representative ones in-
clude multi-label node classification and link prediction. We
will evaluate the performance of DCNE by comparing with
baselines on such two benchmark tasks.

5.2.1 Multi-label Node Classification Task
Multi-label node classification is a typical task to evaluate
network embedding performance. Specifically, we would
regard the output node representations by network embed-
ding algorithms as the node features, and then such features
can be applied into the subsequent trainable classifiers to
inference the node labels. We select Core, Citeseer, and

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 06:19:14 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3114444, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

TABLE 2
Results of multi-label node classification on Cora dataset using Micro-F1 metric

Training ratio 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Node2vec 58.48 65.55 67.95 70.12 71.43 72.21 73.06 74.41 75.07 75.25
LINE 41.11 45.96 50.06 52.32 54.46 56.74 57.31 59.62 59.81 60.47
SDNE 47.98 59.38 61.56 65.70 66.30 67.63 68.31 69.02 70.26 70.37

Node2vec + Attri 60.31 67.96 72.26 74.16 74.88 75.44 75.73 76.55 76.98 77.43
LINE + Attri 43.98 53.50 59.07 61.99 64.32 66.04 67.32 68.90 69.48 71.20
TADW 55.72 64.95 70.64 73.53 75.09 76.72 78.07 78.67 79.49 80.40
UPP-SNE 62.78 72.59 75.05 77.66 78.23 78.63 79.38 79.40 80.04 80.27
DANE 61.48 69.13 73.50 75.75 76.88 77.96 78.08 78.67 79.45 79.61
CAN 61.94 68.54 73.41 75.64 76.13 76.90 77.34 77.86 78.19 79.45
GAT 62.39 68.78 73.83 74.87 75.82 76.97 77.68 77.79 78.46 79.59

SANE 70.55 78.78 80.23 82.31 82.50 82.80 83.60 83.64 84.01 84.47
DCNE 73.59 79.09 81.27 82.88 82.98 83.27 83.95 84.15 84.38 84.86

TABLE 3
Results of multi-label node classification on Citeseer dataset Micro-F1 metric.

Training ratio 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Node2vec 40.51 44.05 47.71 49.22 50.48 51.43 52.00 52.54 52.94 53.15
LINE 29.53 34.16 35.74 37.32 38.92 40.33 40.41 41.45 42.50 43.02
SDNE 32.54 36.74 38.62 39.94 41.26 43.89 44.63 44.78 45.74 46.32

Node2vec + Attri 48.02 57.62 60.52 62.27 63.09 64.22 65.16 65.30 66.15 66.36
LINE + Attri 43.28 51.28 56.04 59.26 59.84 61.77 62.46 63.08 63.25 64.07
TADW 46.65 56.38 61.38 64.68 66.87 67.28 67.39 68.65 69.78 70.06
UPP-SNE 55.62 64.40 66.24 66.91 66.98 68.07 68.42 68.44 68.59 68.85
DANE 54.89 60.51 63.52 64.27 65.24 66.09 66.14 66.97 68.15 68.69
CAN 57.64 62.41 64.85 65.90 66.46 67.30 67.70 68.34 68.62 68.74
GAT 60.34 65.87 66.55 68.51 68.93 69.46 69.83 70.15 70.33 70.41

SANE 66.56 70.02 70.96 71.68 71.70 72.20 72.35 72.97 72.98 73.27
DCNE 67.31 70.55 71.27 71.96 72.07 72.32 72.67 73.26 73.49 73.62

TABLE 4
Results of multi-label node classification on DBLP dataset Micro-F1 metric.

Training ratio 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Node2vec 73.12 76.61 77.96 78.65 79.06 79.44 79.65 79.78 79.81 79.85
LINE 65.44 69.04 70.96 72.36 73.12 73.26 73.94 74.20 74.46 74.61
SDNE 63.04 63.31 64.88 65.36 66.82 65.03 68.04 68.71 71.26 71.86

Node2vec + Attri 76.14 78.01 78.56 78.92 79.51 79.79 80.04 80.15 80.39 80.50
LINE + Attri 66.10 71.35 73.69 74.89 76.07 76.78 77.14 77.91 78.02 78.33
TADW 72.42 77.07 79.18 80.35 80.44 80.96 81.23 81.57 81.69 81.79
UPP-SNE 77.13 78.17 78.42 79.30 79.59 79.98 80.05 80.18 80.52 80.62
DANE 76.71 77.72 78.25 78.76 79.07 79.37 79.51 79.61 79.66 79.75
CAN 76.58 77.47 78.16 78.23 78.68 79.23 79.54 79.56 79.69 80.13
GAT 77.85 78.08 79.68 80.75 81.21 81.56 81.87 82.02 82.21 82.27

SANE 80.87 81.94 82.46 82.84 82.95 83.01 83.19 83.21 83.22 83.39
DCNE 81.46 82.25 82.95 83.10 83.13 83.22 83.31 83.45 83.59 83.81

DBLP datasets for this experiment since they supply the
labels for us. To start up the experiments, we first implement
the linear SVM model as the classifier, which corresponds to
many previous work [4], [27], in order to reduce the incon-
sistency of classifier performance. Then, for data partition,
we randomly select the labeled nodes at different ratios as
the training sets and regard the remaining as the test set.
Specifically, the training ratios are varied from 1% to 10% by
gradually increasing 1%. We adopt the Micro-F1 to evaluate
the performance. (We also conduct the experiments with
Macro-F1 and accuracy metrics, but omit it for brevity since
we observe they have the same performance trend with
Micro-F1). We independently repeat the experiments for all
models 10 times, and report the average results using the
Micro-F1 metric in Table 2, Table 3 and Table 4, where the
best results are especially highlighted in boldfaced.

From the results, we can conclude several observations
as follows. First, our DCNE model consistently achieves

significant performance improvements on all datasets, es-
pecially facing the restricted situations that the training data
are extremely fewer. It proves that DCNE can generate more
effective and robust node embeddings than other models for
node classification. Second, the fusion models considering
both network structure and attributes(i.e., Node2vec+Attri,
LINE+Attri, TADW, UPP-SNE, DANE, CAN, and GAT)
outperform the methods with only structure information
(i.e., Node2vec, LINE, and SDNE), which illustrates the
node attributes are essential and effective for learning repre-
sentative node embeddings in practice. Third, by comparing
with the competitive methods GAT and SANE, DCNE still
presents better performances, which demonstrates the ef-
fectiveness of our proposed joint learning framework with
the novel “decoupled-fusion” architecture for network em-
bedding. Consequently, DCNE can alleviate the similarity
inconsistency issue between network structure and attribute
to generate more representative node embeddings .

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 06:19:14 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3114444, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

Node2vec LINE SDNE LINE+Attri TADW UPP-SNE DANE CAN GraphSage SANE DCNENode2vec+Attri

0.65

0.7

0.75

0.8

0.85

0.9

0.95

AUC AP

Cora

0.65

0.7

0.75

0.8

0.85

0.9

0.95

AUC AP

Cora

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

AUC AP

Citeseer

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

AUC AP

Citeseer

0.8

0.85

0.9

0.95

1

AUC AP

Facebook

0.8

0.85

0.9

0.95

1

AUC AP

Facebook

0.6

0.65

0.7

0.75

0.8

AUC AP

BlogCatalog

0.6

0.65

0.7

0.75

0.8

AUC AP

BlogCatalog

Fig. 3. Performance results of all models on link prediction task.

Cora Citeseer
71

76

81

86

M
ic

ro
−

F
1(

%
)

DCNE−A
DCNE−F
DCNE−S
DCNE−D
DCNE

(a) Node Classification

Cora Citeseer
0.9

0.91

0.92

0.93

0.94
A

U
C

DCNE−A
DCNE−F
DCNE−S
DCNE−D
DCNE

(b) Link prediction

Fig. 4. Ablation Study on Node Classification and Link Prediction Task.

5.2.2 Link Prediction Task

Link prediction is another typical task for evaluating net-
work embedding methods, which aims to predict whether
there exists a link between two nodes in the network. We
select two citation networks (Cora, Citeseer) and two social
networks (Facebook, BlogCatalog) for this experiment. To
start up, in each dataset, we randomly remove 30% edges
of the network as test sets, and preserve the connectivity
between the rest of the nodes to learn node embeddings on
the remaining sub-graph. Then, in the testing, we regard
the removed edges as the positive links and randomly
sample an equal number of non-existing links as negative
instances. Our goal is to rank the positive links as the top
before negative ones. In this task, we select the area under
curve (AUC) and average precision (AP) as the metrics for
evaluation. Similarly, we also run all experiments 10 times,
and report the average performances to guarantee fairness.

Fig. 3 shows the overall results on this task. First, our
DCNE achieves the satisfactory results of link prediction
among all methods, which shows that node embeddings
learned by DCNE can better maintain network structure
and infer link relation between nodes. Second, a different
phenomenon, which should be pointed out, is that some
fusion models do not always perform better than meth-
ods only considering structure information. For example,
Node2vec+Attri and LINE+Attri, incorporating attributes,
achieve better results than basic ones Node2vec and LINE
on Cora and Citeseer datasets, but fail on Facebook. This il-
lustrates that just combing network structure and attributes
in a simple way is not capable of characterizing the complex
interactions between them for different kinds of networks
since they may be coupled together as we mentioned before.
Third, comparing with the competitive GAT and SANE,
we find that DCNE consistently outperforms others on all
datasets. The results demonstrate that DCNE, with the novel
”decoupled-fusion” process, can improve the node embed-
ding abilities for different types of networks by adaptively
integrating structure and attribute information together.

5.3 Ablation Study

Furthermore, we verify the effectiveness of each part in
DCNE by ablation study in this part. Specifically, we in-
troduce four simplified versions of DCNE, where the details
are: 1). DCNE-A: It’s the reduction version that removes the
attention mechanism of N-GAT and A-GAT defined in Eq.(4)
and Eq.(7); 2). DCNE-F: It utilizes the average strategy to
combine the node2structure embedding and node2attribute em-
bedding instead of the adaptive attention function (Eq.(11))
in fusion process; 3). DCNE-S: It regards the weight pa-
rameters of N-GAT and A-GAT in each graph layer as the
same, i.e., we remove the parameters W k−1

n and W k−1
a

in DCNE. 4). DCNE-D: Contrary to DCNE-S variant, it
considers the weight parameters completely different, i.e.,
we remove the W k−1

c parameters in DCNE. Here, we adopt
the same experimental settings as before for all methods on
both node classification and link prediction tasks on Cora
and Citeseer datasets. For better illustration, we report the
results of the node classification task at 10% training ratio
and link prediction task of 70% training edges.

Fig. 4 shows the ablation results. We can observe DCNE
achieves the best performance of two tasks on both datasets,
which indicates the effectiveness of each component in
DCNE for network embedding. Specifically, first, comparing
with DCNE-A, DCNE consistently performs better results,
which demonstrates that it’s essential to utilize the attention
mechanism to consider the different importance of adjacent
nodes and attributes. Second, DCNE generates more satis-
factory results than the variant DCNE-F, which verifies the
proposed attentional fusion function can adaptively incor-
porate network structure with node attributes by quantify-
ing their properties. Third, Compared with variants DCNE-
S and DCNE-D, DCNE, sharing parts of the same weight pa-
rameters in N-GAT and A-GAT, can generate better perfor-
mance. It indicates the proposed decoupling process can not
only preserves the consistency between structural property
and attribute correlation, but also distinguishes the special
exclusive effects of them in the embedding fusion process,
so as to learn flexible and representative node embeddings.

5.4 Qualitative Analysis

5.4.1 Sparsity Analysis
As we mentioned before, our DCNE has a superior ability
of learning node embeddings by addressing the sparse node
attribute issues. To this end, we conduct the qualitative
experiments to discuss the sparsity sensitivity on both node
classification and link prediction tasks on Cora dataset (as
the representative one). Specifically, we first remove parts of

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 06:19:14 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3114444, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

30% 40% 50% 80%
58

63

68

73

78

83

Link Ratio Removal

M
ic

ro
-F

1
(%

)

GAT

SANE

DCNE

30% 40% 50% 80%
58

63

68

73

78

83

Attribute Ratio Removal

M
ic

ro
-F

1
(%

)

GAT

SANE

DCNE

(a) Node Classification

30% 40% 50% 80%
0.78

0.83

0.88

0.93

Link Ratio Removal

A
U

C

GAT

SANE

DCNE

30% 40% 50% 80%
0.73

0.78

0.83

0.88

0.93

Attribute Ratio Removal

A
U

C

GAT

SANE

DCNE

(b) Link Prediction

Fig. 5. Sparsity Results of DCNE compared with SANE and GAT, with removing different link ratio and attribute ratio on both tasks.

(a) Node2vec (b) LINE (c) GAT (d) SANE (e) DCNE
Fig. 6. Visualization of network representations learned by different models on the Cora dataset. Points with different colors indicate the nodes with
the corresponding labels. The text marked in figures corresponds to the label name.

network links and node attributes at different ratios respec-
tively (i.e., 30%, 40%, 50%, 80%), and utilize the remaining
attributed network for the evaluation. In particular, for the
link prediction task, we make a little difference compared
with the settings above that we regard the links as the test
edges and consider all the rest as for training. Moreover, we
introduce the competitive GAT and SANE for comparisons,
and report the results in Fig. 5.

From these figures, we can find the performance of GAT
on both two evaluation tasks decreases more dramatically
than SANE and DCNE as the ratios of removed links
and attributes increase. This indicates that GAT is more
sensitive to the sparsity of attributed networks, and cannot
handle the extremely sparse situation (of removing 80%
links or attributes). Meanwhile, DCNE and SANE achieve
more stable results than GAT, with the help of respectively
projecting both nodes and attributes into different vectors
to improve the generalization ability. Furthermore, DCNE
consistently performs the best on both tasks, especially in
extreme sparsity issues (80% removal situation), because
it considers the complex interactions between nodes and
attributes by “decoupled-fusion” processes, and further uti-
lize the high-order nodes and attributes in joint learning,
which can effectively alleviate the sparsity issues.

5.4.2 Embedding Visualization
Here, we demonstrate the representation ability of DCNE by
visualizing its embedding results, so that we can intuitively
observe the relevance between nodes [60]. Specifically, we
randomly sample 150 nodes of each different label from
Cora dataset, and then project their node embeddings,
learned from DCNE, into a two-dimensional space by the
widely used visualization algorithm t-SNE [61]. We also
introduce the results including Node2vec, LINE, GAT, and
SANE for comparison. Besides, we mark the nodes with
their labels using different colors, and present the corre-
sponding name in the center of each label to make the
visualization more intuitive to be observed. Fig. 5.2.2 shows

50 100 150 200 250
76

78

80

82

84

86

d

M
ic

ro
−

F
1(

%
)

GAT
SANE
DCNE

(a) Node Classification

50 100 150 200 250
0.88

0.9

0.92

0.94

d

A
U

C

GAT
SANE
DCNE

(b) Link Prediction

Fig. 7. Results of DCNE with different embedding size on both tasks.

all the embedding visualizations. First, the performance of
Node2vec and LINE is not very satisfactory, since nodes
are all mixed together. This is because both of them only
consider network structure for learning embedding without
attribute effects, and therefore, all the information is cou-
pled. Second, GAT and SANE achieve better visualization
results than Node2vec and LINE, where nodes with the
same labels are easier to be grouped together. It proves that
incorporating the attribute information into the network
structure can effectively enhance the representative ability
of learned node embeddings. Third, DCNE performs the
best by comparing with others, especially with the most
competitive SANE. The distances between nodes with the
same labels are closer to form clusters, while nodes with
different labels are even farther away from each other. We
can conclude that DCNE can generate more effective and
discriminative node embeddings, which explains the reason
that DCNE achieves better performance on node classifica-
tion and link prediction tasks from another perspective.

5.5 Parameter Analysis
5.5.1 The Impact of Embedding Size d
The node embedding size d plays an important role in the
model, since it greatly affects the representation ability of
learned node embeddings. In this experiment, we select
DCNE, SANE, and GAT for model comparison with differ-
ent dimension size settings in the set {50, 100, 150, 200, 250}.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 06:19:14 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3114444, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

TABLE 5
Results of DCNE with different graph layer number on two tasks.

Layer Number Node Classification Link Prediction

K=1 0.8417 0.8642
K=2 0.8486 0.9258
K=3 0.8343 0.8535
K >3 - -

The comparison results are shown in Fig. 7. There are sev-
eral observations. First, the performances of all models raise
as the dimension d increases at the beginning, which means
node embeddings with more dimensions can preserve more
information of the attributed network. However, their per-
formances will decrease when d surpasses about 200, since
node embedding with too large size would introduce more
sparsity and noises to reduce the performance. Moreover,
DCNE performs more stable results compared with others
in different settings, which demonstrates DCNE can gener-
ate more representative and robust node embeddings.

5.5.2 The Impact of Sampled Size Ni
The sampled neighbor size Ni has different impacts on
the effectiveness of training our DCNE. To further analyze
the time efficiency, we fix both the number of sampling
neighbors Ni in both N-GAT and A-GAT to the same sizes
varying from 2 to 70 in the set {2, 5, 15, 35, 55}. Fig. 8 reports
the performance and the corresponding runtime results of
DCNE. From the figures, we observe that as the number
of sampling neighbors Ni increases, the margin of model
performance gradually decreases, and the runtime increases
rapidly on both tasks. Thus, we set the number of sampling
neighbors as 20, in our experiments above, in order to make
the trade-off between model performance and running time.

5.5.3 The Impact of Layer Number K
For graph neural network-based methods, The number of
graph layers K is an important factor for the final eval-
uation performances. Therefore, we conduct the compar-
ative experiments with respect to different layer numbers
to analyze its effect on DCNE, and report the results of
K ≤ 3 in Table. 5 due to the limitation of GPU memory.
From the table, we can find the trend of results on both
node classification and link prediction tasks are similar,
where the performance is improved as the layer number
increases to 2, but gradually decreases when layer number
achieves 3. We argue that a larger number of graph layers,
capturing more high-order information, is beneficial for
model performances. However, an excessive layer number
also could lead to worse results or even worse than the
performance of K=1, since it contains more redundant and
noise information from many overlapping or invalid high-
order neighbors, especially on small-scale datasets like Cora.

5.5.4 The Impact of Initialization for Node Embedding
In the field of deep learning, parameter initialization always
has an important impact on model convergence and per-
formances. From our empirical experiments, we also find
the initialization of node embeddings has more significant
effects than other parameters in DCNE. Consequently, we
set up the initial node embeddings U0 with three different
methods: node attributes, random values, and the matrix

0 15 30 45 60
70

74

78

82

86

90

M
ic

ro
−

F
1(

%
)

Neighbor size
0 15 30 45 60

0

0.02

0.04

0.06

0.08

R
un

tim
e(

s)

(a) Node Classification

0 15 30 45 60
0.89

0.9

0.91

0.92

0.93

A
U

C

Neighbor size
0 15 30 45 60

0

0.02

0.04

0.06

0.08

R
un

ti
m

e(
s)

(b) Link Prediction

Fig. 8. DCNE results with different sampled neighbor sizes on two tasks.

0.25

0.35

0.45

0.55

0.65

0.75

0.85

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

M
ic

ro
-f

1

Training Step

Initialization-attribute
Initialization-1
Initialization-random

Fig. 9. Results of different initialization methods for node embedding.

with all-1 values, and perform the compared results in Fig. 9.
From the figure, we can observe the initialization method
with attributes converges faster and achieves better perfor-
mances than random and all-1 methods. To this result, we
argue the attribute initialization method could start from a
better initial point and have the preliminary discrimination
for node embeddings.

6 CONCLUSIONS

In this paper, we studied attributed network embedding
problem, which focused on distinguishing the complex in-
teractions among nodes and alleviating the sparse attribute
issues. Specifically, we first initialized all the nodes and
attributes with low-dimensional vectors, and further pro-
posed a novel ”decoupled-fusion” process to adaptively
capture and integrate both topology and attribute similari-
ties in networks according to the node characteristics. Then,
we continuously stacked multiple graph layers to iteratively
aggregate the higher-order node and attribute information.
At last, we jointly learned the node embeddings in a uni-
fied multi-task framework based on a modified mini-batch
training strategy. Compared with state-of-the-art baselines
on benchmark evaluation tasks, DCNE demonstrated the
effectiveness and robustness from multiple aspects. In the
future, we will continue to explore the intrinsic mechanism
of attributed network and try to integrate more information
such as node labels into embeddings with efficient manners.

ACKNOWLEDGEMENTS

This research was partially supported by grants from
the National Key Research and Development Program of
China (No. 2020AAA0103800), and the National Natural
Science Foundation of China (No.s 61922073, 61976198 and
U20A20229). Hanghang Tong is partially supported by NSF
(1947135, 2003924 and 1939725). Hao Wang would like to
thank the China Scholarship Council for their support (No.
201906340183).

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 06:19:14 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3114444, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

REFERENCES

[1] Z. Hao, C. Lu, Z. Huang, H. Wang, Z. Hu, Q. Liu, E. Chen, and
C. Lee, “Asgn: An active semi-supervised graph neural network
for molecular property prediction,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2020, pp. 731–752.

[2] D. Du, H. Wang, T. Xu, Y. Lu, Q. Liu, and E. Chen, “Solving link-
oriented tasks in signed network via an embedding approach,”
in Proceedings of the 2017 IEEE International Conference on Systems,
Man, and Cybernetics, 2017, pp. 75–80.

[3] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2014, pp. 701–710.

[4] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, 2016, pp.
855–864.

[5] H. Pei, B. Wei, K. Chang, C. Zhang, and B. Yang, “Curvature regu-
larization to prevent distortion in graph embedding,” in Advances
in Neural Information Processing Systems, vol. 33, 2020, pp. 20 779–
20 790.

[6] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” arXiv preprint arXiv:1609.02907,
2016.

[7] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction
by locally linear embedding,” science, vol. 290, no. 5500, pp. 2323–
2326, 2000.

[8] L. Lü and T. Zhou, “Link prediction in complex networks: A
survey,” Physica A: Statistical Mechanics and its Applications, vol.
390, no. 6, pp. 1150–1170, 2011.

[9] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community
preserving network embedding,” in Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, 2017, pp. 203–209.

[10] Q. Liu, B. Xiang, N. J. Yuan, E. Chen, H. Xiong, Y. Zheng, and
Y. Yang, “An influence propagation view of pagerank,” ACM
Transactions on Knowledge Discovery from Data, vol. 11, no. 3, p. 30,
2017.

[11] X. Wang, Y. Zhang, W. Zhang, X. Lin, and C. Chen, “Bring order
into the samples: A novel scalable method for influence maximiza-
tion,” IEEE Transactions on Knowledge and Data Engineering, vol. 29,
no. 2, pp. 243–256, 2016.

[12] H. Wang, T. Xu, Q. Liu, D. Lian, E. Chen, D. Du, H. Wu, and
W. Su, “Mcne: An end-to-end framework for learning multiple
conditional network representations of social network,” in Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2019, pp. 1064–1072.

[13] H. Pei, B. Yang, J. Liu, and K. Chang, “Active surveillance via
group sparse bayesian learning,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2020.

[14] D. Wang, P. Cui, and W. Zhu, “Structural deep network em-
bedding,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016, pp. 1225–
1234.

[15] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the
24th International Conference on World Wide Web, 2015, pp. 1067–
1077.

[16] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations
with global structural information,” in Proceedings of the 24th ACM
International on Conference on Information and Knowledge Manage-
ment, 2015, pp. 891–900.

[17] S. Cao, W. Lu, and Xu, “Deep neural networks for learning graph
representations,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 30, no. 1, 2016.

[18] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Chang, “Network repre-
sentation learning with rich text information,” in Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence,
2015, pp. 2111–2117.

[19] X. Huang, J. Li, and X. Hu, “Label informed attributed network
embedding,” in Proceedings of the Tenth ACM International Confer-
ence on Web Search and Data Mining, 2017, pp. 731–739.

[20] D. Zhanga, J. Yinb, X. Zhuc, and C. Zhanga, “User profile preserv-
ing social network embedding,” in Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, 2017, pp. 3378–
3384.

[21] X. Huang, J. Li, and X. Hu, “Accelerated attributed network em-
bedding,” in Proceedings of the 2017 SIAM International Conference
on Data Mining, 2017, pp. 633–641.

[22] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Pro-
cessing Systems, 2017, pp. 1025–1035.

[23] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, “Graph attention networks,” arXiv preprint
arXiv:1710.10903, 2017.

[24] T. L. Fond and J. Neville, “Randomization tests for distinguishing
social influence and homophily effects,” in WWW ’10, 2010.

[25] X. Wang, M. Zhu, D. Bo, P. Cui, C. Shi, and J. Pei, “Am-gcn: Adap-
tive multi-channel graph convolutional networks,” in Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2020, pp. 1243–1253.

[26] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather:
Homophily in social networks,” Annual review of sociology, vol. 27,
no. 1, pp. 415–444, 2001.

[27] H. Wang, E. Chen, Q. Liu, T. Xu, D. Du, W. Su, and X. Zhang,
“A united approach to learning sparse attributed network em-
bedding,” in 2018 IEEE International Conference on Data Mining
(ICDM). IEEE, 2018, pp. 557–566.

[28] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient esti-
mation of word representations in vector space,” arXiv preprint
arXiv:1301.3781, 2013.

[29] Y. Li, L. Xu, F. Tian, L. Jiang, X. Zhong, and E. Chen, “Word
embedding revisited: A new representation learning and explicit
matrix factorization perspective,” in Twenty-Fourth International
Joint Conference on Artificial Intelligence, 2015.

[30] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie,
and M. Guo, “Graphgan: Graph representation learning with
generative adversarial nets,” in Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[31] Q. Dai, Q. Li, J. Tang, and D. Wang, “Adversarial network embed-
ding,” arXiv preprint arXiv:1711.07838, 2017.

[32] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bach-
man, A. Trischler, and Y. Bengio, “Learning deep representa-
tions by mutual information estimation and maximization,” arXiv
preprint arXiv:1808.06670, 2018.

[33] M. I. Belghazi, A. Baratin, S. Rajeshwar, S. Ozair, Y. Bengio,
A. Courville, and D. Hjelm, “Mutual information neural estima-
tion,” in International Conference on Machine Learning, 2018, pp. 531–
540.

[34] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D.
Hjelm, “Deep graph infomax,” 2019.

[35] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Homophily, structure,
and content augmented network representation learning,” in Pro-
ceedings of IEEE 16th International Conference on Data Mining, 2016,
pp. 609–618.

[36] S. Chang, W. Han, J. Tang, G.-J. Qi, C. C. Aggarwal, and T. S.
Huang, “Heterogeneous network embedding via deep architec-
tures,” in Proceedings of the 21th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, 2015, pp. 119–128.

[37] X. Sun, J. Guo, X. Ding, and T. Liu, “A general framework for
content-enhanced network representation learning,” arXiv preprint
arXiv:1610.02906, 2016.

[38] H. Gao and H. Huang, “Deep attributed network embedding.” in
IJCAI, vol. 18. New York, NY, 2018, pp. 3364–3370.

[39] Z. Meng, S. Liang, H. Bao, and X. Zhang, “Co-embedding at-
tributed networks,” in Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining, 2019, pp. 393–401.

[40] Y. Hu, H. You, Z. Wang, Z. Wang, E. Zhou, and Y. Gao, “Graph-
mlp: Node classification without message passing in graph,” arXiv
preprint arXiv:2106.04051, 2021.

[41] H. Gao and S. Ji, “Graph u-nets,” in international conference on
machine learning. PMLR, 2019, pp. 2083–2092.

[42] S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, “Tri-party deep net-
work representation,” in Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, 2016, pp. 1895–1901.

[43] T. Huang, L. Zhou, L. Wang, G. Du, and K. Lü, “Attributed
network embedding with community preservation,” in 2020 IEEE
7th International Conference on Data Science and Advanced Analytics
(DSAA). IEEE, 2020, pp. 334–343.

[44] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-
supervised learning with graph embeddings,” arXiv preprint
arXiv:1603.08861, 2016.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 06:19:14 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3114444, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

[45] Z. Meng, S. Liang, J. Fang, and T. Xiao, “Semi-supervisedly co-
embedding attributed networks,” in Advances in Neural Information
Processing Systems, 2019, pp. 6507–6516.

[46] M. Qu, Y. Bengio, and J. Tang, “Gmnn: Graph markov neural
networks,” in International conference on machine learning. PMLR,
2019, pp. 5241–5250.

[47] Y. Wang, W. Wang, Y. Liang, Y. Cai, J. Liu, and B. Hooi, “Nodeaug:
Semi-supervised node classification with data augmentation,” in
Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 207–217.

[48] Y. Wang, W. Wang, Y. Liang, Y. Cai, and B. Hooi, “Mixup for node
and graph classification,” in Proceedings of the Web Conference 2021,
2021, pp. 3663–3674.

[49] Y. Wang, S. Liu, M. Yoon, H. Lamba, W. Wang, C. Faloutsos,
and B. Hooi, “Provably robust node classification via low-pass
message passing,” in 2020 IEEE International Conference on Data
Mining (ICDM). IEEE, 2020, pp. 621–630.

[50] Y. Wang, W. Wang, Y. Liang, Y. Cai, and B. Hooi, “Progres-
sive supervision for node classification,” in Machine Learning and
Knowledge Discovery in Databases, F. Hutter, K. Kersting, J. Lijffijt,
and I. Valera, Eds. Cham: Springer International Publishing, 2021,
pp. 266–281.

[51] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network
embedding,” IEEE Transactions on Knowledge and Data Engineering,
vol. 31, pp. 833–852, 2019.

[52] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A
survey,” IEEE Transactions on Knowledge and Data Engineering, 2020.

[53] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolu-
tional networks: a comprehensive review,” Computational Social
Networks, vol. 6, no. 1, p. 11, 2019.

[54] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad, “Collective classification in network data,” AI Magazine,
vol. 29, no. 3, p. 93, 2008.

[55] Y. Cen, J. Zhang, G. Wang, Y. Qian, C. Meng, Z. Dai, H. Yang,
and J. Tang, “Trust relationship prediction in alibaba e-commerce
platform,” IEEE Transactions on Knowledge and Data Engineering,
vol. 32, no. 5, pp. 1024–1035, 2019.

[56] D. Lian, X. Xie, E. Chen, and H. Xiong, “Product quantized
collaborative filtering,” IEEE Transactions on Knowledge and Data
Engineering, 2020.

[57] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in Advances in Neural Information Processing Systems,
2013, pp. 3111–3119.

[58] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[59] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “User profile preserving
social network embedding,” in IJCAI International Joint Conference
on Artificial Intelligence, 2017.

[60] Y. Luo, X. Qin, C. Chai, N. Tang, G. Li, and W. Li, “Steerable self-
driving data visualization,” IEEE Transactions on Knowledge and
Data Engineering, 2020.

[61] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605,
2008. Hao Wang is currently working toward the Ph.D.

degree in the School of Computer Science and
Technology at University of Science and Tech-
nology of China (USTC). His main research
interests include data mining, representation
learning, network embedding and recommender
systems. He has published several papers in
referred conference proceedings, such as TOIS,
KDD, SIGIR, WSDM, ICDM, IJCAI, and AAAI.

Defu Lian is a professor in the School of Com-
puter Science and Technology, University of Sci-
ence and Technology of China (USTC). He re-
ceived the B.E. and Ph.D. degrees in computer
science from University of Science and Tech-
nology of China (USTC) in 2009 and 2014, re-
spectively. His general research interests include
spatial data mining, recommender systems and
learning to hash. He has published prolifically in
refereed journals and conference proceedings,
e.g., TKDE, TOIS, KDD, IJCAI, AAAI, and WWW.

He has served regularly in the program committees of a number of
conferences, and is reviewers for the leading academic journals.

Hanghang Tong is currently an associate pro-
fessor at Department of Computer Science at
University of Illinois at Urbana-Champaign. Be-
fore that he was an associate professor at
School of Computing, Informatics, and Decision
Systems Engineering (CIDSE), Arizona State
University. He received his M.Sc. and Ph.D. de-
grees from Carnegie Mellon University in 2008
and 2009, both in machine learning. His re-
search interest is in large scale data mining for
graphs and multimedia. He has received several

awards, including SDM/IBM Early Career Data Mining Research award
(2018), NSF CAREER award (2017), ICDM 10-Year Highest Impact
Paper award (2015), and four best paper awards (TUP’14, CIKM’12,
SDM’08, ICDM’06). He has published over 100 refereed articles. He is
the Editor-in-Chief of SIGKDD Explorations (ACM), an action editor of
Data Mining and Knowledge Discovery (Springer), and an associate ed-
itor of Knowledge and Information Systems (Springer); and has served
as a program committee member in data mining, database and artificial
intelligence venues (e.g., SIGKDD, SIGMOD, AAAI, WWW, CIKM).

Qi Liu is a professor at University of Science and
Technology of China (USTC). He received the
Ph.D. degree in Computer Science from USTC.
His general research interest is data mining and
knowledge discovery. He has published prolifi-
cally in refereed journals and conference pro-
ceedings, e.g., TKDE, TOIS, TKDD, TIST, KDD,
IJCAI, AAAI, ICDM, SDM and CIKM. He has
served regularly in the program committees of
a number of conferences, and is a reviewer for
the leading academic journals. Dr. Liu is the

recipient of the KDD 2018 Best Student Paper Award (Research), the
ICDM 2011 Best Research Paper Award, the Special Prize of President
Scholarship for Postgraduate Students, Chinese Academy of Sciences
(CAS), and the Distinguished Doctoral Dissertation Award of CAS.. He
is supported by the Young Elite Scientist Sponsorship Program of CAST
and the Youth Innovation Promotion Association of CAS.

Zhenya Huang recieved the B.E. degree from
Shandong University, in 2014 and the Ph.D. de-
gree from University of Science and Technology
of China (USTC), in 2020. He is currently an
associate researcher of the School of Computer
Science and Technology, USTC. His main re-
search interests include data mining, knowledge
discovery, representation learning and intelligent
tutoring systems. He has published more than
20 papers in refereed journals and conference
proceedings including TKDE, TOIS, KDD, AAAI.

Enhong Chen (SM’07) is a professor and vice
dean of the School of Computer Science at
University of Science and Technology of China
(USTC). He received the Ph.D. degree from
USTC. His general area of research includes
data mining and machine learning, social net-
work analysis and recommender systems. He
has published more than 100 papers in refereed
conferences and journals, including IEEE Trans.
KDE, IEEE Trans. MC, KDD, ICDM, NIPS, and
CIKM. He was on program committees of nu-

merous conferences including KDD, ICDM, SDM. He received the Best
Application Paper Award on KDD-2008, the Best Student Paper Award
on KDD-2018 (Research), the Best Research Paper Award on ICDM-
2011 and Best of SDM-2015. His research is supported by the National
Science Foundation for Distinguished Young Scholars of China. He is a
senior member of the IEEE.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 06:19:14 UTC from IEEE Xplore. Restrictions apply.

