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ABSTRACT
As one of the most important forms of psychological behaviors,
micro-expression can reveal the real emotion. However, the existing
labeled micro-expression samples are limited to train a high per-
formance micro-expression classifier. Since micro-expression and
macro-expression share some similarities in facial muscle move-
ments and texture changes, in this paper we propose a micro-
expression recognition framework that leverages macro-expression
samples as guidance. Specifically, we first introduce two Expression-
Identity Disentangle Network, named MicroNet and MacroNet, as
the feature extractor to disentangle expression-related features for
micro and macro expression samples. Then MacroNet is fixed and
used to guide the fine-tuning of MicroNet from both label and
feature space. Adversarial learning strategy and triplet loss are
added upon feature level between the MicroNet and MacroNet, so
the MicroNet can efficiently capture the shared features of micro-
expression and macro-expression samples. Loss inequality regu-
larization is imposed to the label space to make the output of Mi-
croNet converge to that of MicroNet. Comprehensive experiments
on three public spontaneous micro-expression databases, i.e., SMIC,
CASME2 and SAMM demonstrate the superiority of the proposed
method.
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1 INTRODUCTION
Micro-expressions are discovered by Ekman and Friesen in the
process of examining filmed interview of a psychotic patient [3].
With films played in slow motion mode, they found that the patient
was showing a very brief sad face between a long period false
smile in order to hide her suicidal tendency. Compared to large-
intensity and long duration characteristics of macro-expressions,
micro-expressions are very brief and subtle facial expressions which
normally occur when a person either deliberately or unconsciously
conceals his or her genuine emotions [3, 4]. It always takes human
beings lots of time to perceive and recognize them. Thus developing
micro-expression recognition systems becomes necessary.

There are lots of efforts devoted to micro-expression recognition,
which fall into two main kinds: handcraft feature methods [7–9,
15, 20, 22, 35] and deep feature methods [5, 12, 17, 19, 21, 30, 34,
40]. However, though easily implementing and embracing good
geometric or spatiotemporal interpretations, handcraft features are
not robust in the micro-expressions identification and classification,
due to micro-expression’s short duration and low intensity. As for
deep networks, though powerful, they are limited by the scarcity
of micro-expression databases. Only enough data can we use to
implement efficient deep network with good generalization ability.

On the contrary, there are large amounts of macro-expression
databases, each of which consists of vast labeled training samples.
Macro-expression is voluntary facial expressions, and covers a large
face area. Macro-expression is also characterized by high intensi-
ties, in terms of facial muscle movements and texture changes. By
contrast, micro-expression is characterized by rapid facial move-
ments and covers restricted facial area, it conveys hidden emotions
that determine true human feelings and state-of mind. Although
macro-expression has longer duration and higher intensity than
micro-expression, these two expressions share some similarities in
facial muscle movements and texture changes. Figure 1 shows a
comparison between micro and macro expressions. We can obvi-
ously find that the surprise from micro-expression and from macro-
expression both have raised eyebrows and opened eyes. And for
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Figure 1: Here we give examples of micro-expression and
macro-expression, where the above three rows are from
CASME2 database and the below three rows are from CK+
database, both with surprise, disgust and happiness ex-
pression labels. Nine frames are chosen from each micro-
expression or macro-expression video that change from on-
set to apex frame for each row.

the disgust, micro and macro-expression both show that the upper
lip is slightly raised and the brows are slightly lowered, produc-
ing some wrinkling across the bridge of nose. For the happiness,
micro and macro-expression both show that the lip corners are
raised obliquiely in a slight smile, and there’s also a deepening of
the naso-labial fold that goes from outer corners of the nostrils
down to the lip corners. Thus, how to take advantage of the macro-
expression databsets for micro-expression recognition has become
an important direction of the research.

In order to address problems mentioned above, we propose a
micro-expression recognition framework that leverages macro-
expression as guidance. Since subjects in macro-expression and
micro-expression databases are different, Expression-Identity Dis-
entangle Network (EIDNet) is introduced as feature extractor to
disentangle expression-related features for expression samples.
Specifically, we pretrain two EIDNets with micro and macro expres-
sion databases separately, named MicroNet and MacroNet. Then
MacroNet is fixed and used to guide the fine-tuning of MicroNet
from both label space and feature space, named Macro-to-Micro
Network (MTMNet). By adversarial learning and triplet loss that
added upon feature level between MicroNet and MacroNet, the
MicroNet can learn shared representation from macro-expression
samples. Furthermore, the loss inequality regularization is imposed
in the label space to calibrate the output values of the MicroNet.
Thus the proposed method can exploit patterns involved in the
macro-expression samples to improve micro-expression recogni-
tion performance.

2 RELATEDWORK
2.1 Micro-Expression Recognition
Micro-expression recognition methods can be categorized into two
main kinds as handcrafted feature methods [7–9, 15, 20, 22, 35] and
deep feature methods [5, 12, 17, 19, 21, 30, 34, 40].

Histogram of Oriented Gradient (HOG), Histogram of Optical
Flow (HOOF) and Local Binary Pattern-Three Orthogonal Planes
(LBP-TOP) based methods are the most prevailing handcraft feature
methods. Li et al. [15] used feature difference for micro-expression
spotting and adopted a variant of HOG for micro-expression recog-
nition. For optical flow based methods, Liu et al. [22] proposed the
Main Directional Mean Optical-flow (MDMO) method to describe
micro-expressions and showed its superiority against LBP-TOP and
HOOF features. Liong et al. [20] adopted a Bi-Weighted Oriented
Optical Flow (Bi-WOOF) based feature extractor, while Happy et
al. [7] proposed a fuzzy HOOF method, which ignored the subtle
motion magnitudes and only take the motion direction into consid-
eration. Le et al. [13] used LBP-TOP and sparsity constraints to learn
significant temporal and spectral structures of micro-expressions.
Huang et al. [8, 9] used LBP-TOP to extract the appearance and
motion features on horizontal and vertical projections. Wang et al.
[35] adopted a pruned LBP descriptor using six neighbors around
every point.These methods greatly enhance the performance of
micro-expression recognition, but due to micro-expression’s short
duration and low intensity, these methods are not robust.

Many researchers turn to the deep learning method as the micro
expression databases gradually developed. Kim et al. [12] proposed
two-phases method that used Convolutional Neural Network (CNN)
to extract expression embeddings and adopted long short termmem-
ory recurrent neural network (LSTM-RNN) to do recognition. Liong
et al. [5] proposed a CNN framework with optimal flow between the
apex frame and onset frame as input features. Li et al. [17] used only
apex frame passing through a deep neutral network to get features.
Since standard CNNs are limited by their weakness in representing
part-global relation, Nguyen et al. [34] adopted the newly proposed
framework CapsuleNet [30] to recognize micro-expressions. Peng
et al. [28] explored the underlying joint formulation for Motion
MAGnification (MAG) and Time InterpolationModel (TIM) and pro-
posed a consolidated framework for revealing the spatial-temporal
information in micro-expression clips. Khor et al. [11] presented a
Dual-Stream Shallow Network (DSSN) which robustly learns deep
micro-expression features by exploiting a pair of shallow CNNs
with heterogeneous motion-based inputs. Ling et al. [40] proposed
a two-stream two-block variant of Inception network to learn a
robust feature representation from horizontal and vertical optimal
flow features. Motivated by the observation that deep CNN archi-
tectures do not perform well under limited micro-expression data,
Liong et al. [19] aimed to put up with a compressed deep architec-
ture with optimal flow features as inputs. Nevertheless, these deep
learning methods suffer from insufficient training samples.

Due to the lack of large-scale micro-expression datasets, there
have been a fewworks embracing the ideas of usingmacro-expression
images or action unit information to assist micro-expression recog-
nition. Sun et al. [32] proposed a knowledge transfer technique
that distilled and transferred multi-knowledge from action unit
for micro-expression recognition. Sun et al. pretrained a teacher



network on action unit recognition, and transferred it to a stu-
dent network by penalizing the difference between the features of
teacher network and the features of student network. Since teacher
and student network did different tasks, making their features sim-
ilar forcibly would cause that student network lose some domain
specific information. Peng et al. [27] adopted transfer learning pro-
tocols to train a micro-expression recognition network pretrained
on macro-expression database. Since they did not take the gap be-
tween micro-expression and macro-expression images into account,
transfer learning did not achieve the desired effect. Jia et al. [10] and
Ben et al. [1] extracted LBP-TOP features from micro-expression
images and LBP features from macro-expression images. Jia et al.
used singular value decomposition to achieve macro-to-micro trans-
formation model, while Ben et al. employed coupled metric learning
algorithm to model the shared features between micro-expression
and macro-expression samples. These two methods used different
extractors for macro and micro expression images, therefore, they
can’t effectively encoder the common features of macro and mi-
cro expression. Liu et al. [21] used Expression Magnification and
Reduction (EMR) to reduce the gap between micro and macro ex-
pression. This preprocessing caused micro and macro expression
visually similar, but this can’t guarantee the similarity of micro
and macro expression features, thus directly training on a fusion of
micro and macro expression database can’t generate appropriate
expression-related features. While, in this paper we use adversarial
learning strategy and triplet loss to model the shared features of
micro-expression and macro-expression images.

2.2 Feature Disentanglement
Feature disentanglement technique aims to disentangle different
kinds of features from original inputs for specific uses, it boosts
the model performance since more domain related features are
provided. We focus on related disentangle works in expression
recognition areas in this section. There are two main directions: 1)
disentangle facial expression apart from pose or head motions. 2)
disentangle facial expression apart from identity. Li et al. [18] pro-
posed a self-supervised disentangle auto-encoder for distinguishing
AU-related features from motion-related features. Tran et al. [33]
proposed a disentangled representation learning-generative adver-
sarial network (DR-GAN) for learning facial expression apart from
pose variances. Using the feature representation produced by the
multi-scale contractive convolutional network (CCNET), Rifai et al.
[29] trained a Contractive Discriminative Analysis (CDA) feature
extractor to learn a representation separating out the emotion-
related factors from the others. We are among the first to introduce
feature disentanglement technique in micro-expression recognition.
We obtain expression embeddings apart from identity embeddings,
and thus efficiently leverage macro-expression images.

Compared with related work, our contributions are two-folds: 1)
We propose a well-designed deep learning framework for micro-
expression recognition by leveraging macro-expression databases
as guidance. 2) We use Expression-Subject Disentanglement Net-
work (EIDNet) to disentangle expression-related features apart
from subject-related features from micro-expression and macro-
expression images, and thusmake the assistance ofmacro-expression
more effectively.

3 METHOD
Our goal is to train a deep network for micro-expression recognition
task with macro-expression databases as guidance. As shown in
Figure 2, the training process can be splited into two phases. Firstly,
a micro Expression-Identity Disentangle Network (MicroNet) is pre-
trained on themicro-expression training setDI = {x

(i )
N ,x

(i )
E ,y

(i ) }M1
i=1,

where x (i )N , x (i )E are neutral and expression images of the same video
from a micro-expression database, y (i ) ∈ {0, 1, · · · ,L − 1} is the ex-
pression label andM1 is the number of videos. Simultaneously, a
macro Expression-Identity Disentangle Network (MacroNet) is pre-
trained on themacro-expression training setDA = {x

(j )
N ,x

j
E ,y

(j ) }M2
j=1,

where x (j )N , x (j )E are neutral and expression images of the same video
from a macro-expression database, y (j ) ∈ {0, 1, · · · ,L − 1}, is the
corresponding expression label. Secondly, pretrained MicroNet is
fine tuned on the micro and macro expression mixed training set
Dtrain = {x

(k )
anc ,x

(k )
pos ,x

(k )
neд ,y

(k ) }Mk=1 with MacroNet as assistance,
where x (k )anc , x

(k )
neд are micro-expression images with different labels,

while x (k )pos is macro-expression image with the same label as x (k )anc

and y (k ) is the corresponding expression label of x (k )anc . Finally, we
can use the fine-tuned MicroNet to make a better prediction.

3.1 The Expression-Identity Disentangle
Network

The whole structure of EIDNet is shown on the left of figure 2. The
inputs of each EIDNet are pairs of images derived from the same
video, consisting of a neutral facial image xN and an expression fa-
cial image xE . EIDNet mainly consists of four parts, named feature
extraction, expression reconstruction, identity classification and ex-
pression classification. In feature extraction, EIDNet learns the fea-
tures by respectively extracting the identity-related and expression-
related features from two images through the two-branches encoder
E. In expression reconstruction, decoder Dr integrates the iden-
tity features of neutral facial image and the expression features of
expression facial image and uses them to reconstruct the expres-
sion facial image, ensuring that these two features are sufficient
to represent the input expression image. Due to the differences
from micro-expression and facial expression recognition problems,
expression classifier De is added for the encoder to learn some
domain specific information. We also introduce a identity classifier
Ds and make the encoder E to extract expression-related feature
that is easily recognized by the expression classifier De but difficult
for identity classifier Ds to recognize.

3.1.1 Feature Extraction. We adopt a two-branches encoder to get
expression-related features and identity-related features. EIDNet
encodes the neutral facial image xN and the expression facial im-
age xE by the encoder and gets their embeddings, [f eN , f

s
N ] and

[f eE , f
s
E ], separately. To our understanding, neutral facial image

only embraces identity information while expression facial image
embraces both identity and expression information. Since these two
images are from the same identity, their identity-related features,
i.e., f sN and f sE should be similar, as shown in Eq (1):

Lsim =∥ f
s
E − f sN ∥2 (1)
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Figure 2: The framework of our micro-expression recognition model. First we pretrain two EIDNets with micro-expression
andmacro-expression databases separately, namedMicroNet andMacroNet. Secondly, MacroNet is fixed and used to guide the
fine-tuning of MicroNet from both label and feature space, named MTMNet.

3.1.2 Expression Reconstruction. In our method, we introduce a
reconstruction loss. We believe that if we can reconstruct the origi-
nal expression facial image xE from concatenating f eN and f sE , the
expression-related features f eE actually conveys enough expression
information of xE . We introduce a decoder Dr in the EIDNet to
accomplish reconstruction. The expression reconstruction loss is:

Lr ec =∥xE − Dr ([f eE , f
s
N ])∥2 (2)

3.1.3 Identity Classification. Sincewewant the extracted expression-
related features contain no information of identity, expression-
related features would have poor performance on identity classi-
fication task. It means the learned expression-related features are
not discriminative for identity classifier Ds . Adversarial learning
is introduced to accomplish this. Specifically, E and Ds play an ad-
versarial game where E tries to minimize the divergence of feature
distributions for different subject so that Ds has difficulty classi-
fying the subject of expression-related features f eE . Thus we use
the cross-entropy between predicted class distribution Ds ( f

e
E ) and

ground truth subject label s as the adversarial training objective:

min
Ds

max
E
Ls = min

Ds
max
E
−

M∑
m=1

1[s=m] log(Ds ( f
e
E )) (3)

3.1.4 Expression Classification. Since our goal is to produce pre-
trained feature extractor network for Macro-to-Micro Network,
adopting expression classifier De can help to force features more
suitable for their own domains, i.e., micro-expression and macro-
expression recognition tasks. We conduct expression classification

in EIDNet by adding expression classifier De after the encoder
branch producing expression-related features. The Cross Entropy
loss is used:

Lc = −

L∑
l=1

1[y=l ] log(De ( f
e
E )) (4)

where y is the expression label of xE , and De ( f
e
E ) is predicted

expression class distribution.
We train EIDNet to extract expression-related features by the

losses described above, thus the overall loss of EIDNet is:

LEID = min
E,De

max
Ds
Lc + λ1,1Lr ec + λ1,2Lsim − λ1,3Ls (5)

where λ1,1, λ1,2 and λ1,3 are the hyperparameters controlling loss
coefficients.

3.2 Macro-to-Micro Network
After pretraining MicroNet and MacroNet as described in the above
section, in theMacro-to-MicroNetwork (MTMNet), we fixMacroNet
and use it to guide the fine-tuning of MicroNet from both label and
feature space, as shown on the right of Figure 2. Since all micro-
expression images have corresponding macro-expression images
with the same expression label, triplet term is adopted. We intro-
duce adversarial learning to efficiently model the shared features
of micro-expression and macro-expression. Expression classifier is
used to control recognition accuracy of MicroNet and a new loss
inequality regularization term is introduced to guide classification
loss between MicroNet and MacroNet.



3.2.1 Guidance in Feature Space. MacroNet is fixed while MicroNet
is further trained. Triplet inputs will be used, which consist of
a micro-expression anchor xanc , a same label macro-expression
positive xpos and a different label micro-expression negative xneд .
For every triplet, the anchor and negative will be passed through
the MicroNet and the positive will be passed through the MacroNet.
Three corresponding expression embeddings can be get: f eanc , f epos
and f eneд . The triplet loss is introduced at the feature level:

Ltr i =max {∥ f eanc − f epos ∥2−∥ f
e
anc − f eneд ∥2 +m, 0} (6)

wherem is the hyperparameter to guide the margin between these
two distances.

An adversarial learning protocol is added between MicroNet and
MacroNet. Since micro-expression anchor and macro-expression
positive in one triplet have the same label, we hope that by adopting
adversarial learning, their expression embeddings can show similar
distributions. The fixed MacroNet offers expression embeddings
of macro-expression images which are tagged as true labels; while
MicroNet acts as the generator to give expression embeddings of
micro-expression images which are regarded as false labels. We
introduce a discriminator D to identify these two embeddings. Our
MicroNet aims to generate micro-expression embeddings that the
discriminator can not distinguish from macro-expression embed-
dings with same expression labels; while the discriminator aims to
distinguish between these two kinds of embeddings. Through ad-
versarial learning, MicroNet can be fine tuned to model the shared
features of micro-expression and macro-expression images. The
objective of our adversarial learning is thus as:

min
MicroNet

max
D
Ef epos∼P (f

e
pos )

logD ( f epos )

+ Ef eanc∼P (f eanc ) log{1 − D ( f eanc )} (7)
As shown in Goodfellow et al.’s work [6], the above equation can
not been optimized directly, thus the loss of discriminator is defined
as:

LD = − logD ( f epos ) − log{1 − D ( f eanc )} (8)
It is better to minimize − logD ( f eanc ) instead of minimizing log{1−
D ( f eanc )} in order to avoid flat gradients, thus the adversarial loss
of MicroNet is defined as:

Ladv = − logD ( f eanc ) (9)

3.2.2 Guidance in Label Space. The classification loss is used to
control recognition accuracy:

Lcls = −

L∑
l=1

1[y=l ] log(De ( f
e
anc )) (10)

wherey is the expression label of xanc , andDe ( f
e
anc ) is predicted

expression class distribution.
Up to now, the guidance of macro-expression merely happens

in feature space. There is a lack of guidance in label space. During
training, we jointly trainMicroNet andMacroNet by assuming these
two networks produce similar outputs. For that purpose, we think
about adding a regularization term in the loss function to penalize
the differences of two networks. Motivated by Wang et al. ’s work
[36], we introduce a regularization method called loss inequality
regularization (LIR). This method is based on the assumption that
secondary feature is more informative than the primary feature.

Database SMIC[16] CASME2[37] SAMM[2] 3DB-combined
Subjects 16 24 28 68

Emotions

Negative 70 88 92 250
Positive 51 32 26 109
Surprise 43 25 15 83
Total 164 145 133 442

Table 1: 3-class sample distribution of all databases for CDE
task.

In our case, macro-expression images are more informative than
micro-expression images. The basic idea is to penalize the violation
of this constraint, the LIR loss is defined as:

LLIR =max {Lcls − Lcls ′ , 0} (11)
where Lcls ′ is the cross entropy between the result of classifier
onto positive feature f epos and the true label of positive images y.

Thus the overall loss of MTMNet is:
LMTM = Lcls + λ2,1Ltr i + λ2,2Ladv + λ2,3LLIR (12)

where λ2,1, λ2,2 and λ2,3 are the hyperparameters controlling loss
coefficients.

4 EXPERIMENTS
4.1 Experiments Condition
As the micro-expression community always uses CASME2 [37],
SMIC [16] and SAMM [2] databases as evaluation standards for
recognition tasks [24, 31], we adopt this custom in our paper.

The CASME2 dataset has 249 micro-expressions from 26 subjects,
with the average age of 22.03 years old at 200 fps. The resolution
of the samples is 640 × 480 pixels and the resolution of face area is
around 280 × 340 pixels. The CASME2 dataset includes five micro-
expression classes, i.e., happiness, surprise, disgust, repression and
others.

The SMIC dataset contains 164 micro-expression samples from
16 participants. The frame rate is 100 fps. The resolution is 640 ×
640 pixels, and the resolution of the face area is around 190 × 230
pixels. There are three micro-expression types in the SMIC dataset,
including negative, positive and surprise.

The SAMM dataset contains 159 micro-expression clips from 32
participants at 200 fps. These participants are from 13 races and the
average age is 33.24 years old. The resolution of the samples is 2040
× 1088 pixels and the resolution of face area is around 400 × 400
pixels. Seven micro-expression types are included in the SAMM
dataset. They are happiness, surprise, disgust, repression, angry,
fear and contempt.

We mainly conduct two experiments on these databases. First,
we test our proposed framework on the CASME2, SMIC and SAMM
databases separately. Second, we test our framework on Compos-
ite Database Evaluation (CDE) task [24, 31], i.e., samples from all
databases are combined into a single composite database based
on the reduced emotion classes. Specifically, the samples of happi-
ness are given positive labels and the labels of surprise samples are
unchanged. The samples of disgust, repression, anger, contempt,
fear and sadness are categorized into negative. The distribution of
samples and subjects for CDE task are given in Table 1. We also
take ablation study on our proposed EIDNet loss and MTMNet loss



Method CASME2(CK+) SMIC(CK+) SAMM(CK+) CASME2(MMI) SMIC(MMI) SAMM(MMI) CASME2(Oulu) SMIC(Oulu) SAMM(Oulu)
EIDNet Loss MTMNet Loss Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

- Lcls 0.635 0.567 0.604 0.591 0.632 0.624 0.635 0.567 0.604 0.591 0.632 0.624 0.635 0.567 0.604 0.591 0.632 0.624
- Lcls + Ltr i 0.670 0.600 0.659 0.646 0.661 0.673 0.677 0.611 0.675 0.675 0.665 0.670 0.691 0.632 0.655 0.670 0.673 0.675
- Lcls + Ladv 0.675 0.607 0.646 0.635 0.670 0.678 0.671 0.615 0.682 0.682 0.685 0.655 0.682 0.650 0.675 0.645 0.682 0.661
- Lcls + Ltr i + Ladv 0.682 0.612 0.671 0.661 0.672 0.681 0.685 0.621 0.685 0.678 0.685 0.680 0.691 0.655 0.680 0.675 0.685 0.678
- Lcls + LLIR 0.658 0.590 0.634 0.622 0.661 0.664 0.661 0.594 0.654 0.638 0.654 0.635 0.672 0.641 0.634 0.625 0.664 0.648
- LMTM 0.691 0.633 0.683 0.676 0.685 0.691 0.691 0.633 0.701 0.695 0.701 0.695 0.703 0.668 0.701 0.695 0.698 0.695

LEID Lcls + Ltr i 0.711 0.654 0.732 0.717 0.715 0.718 0.734 0.661 0.722 0.730 0.715 0.718 0.664 0.550 0.705 0.718 0.718 0.718
LEID Lcls + Ladv 0.723 0.666 0.720 0.707 0.725 0.711 0.715 0.683 0.732 0.715 0.723 0.711 0.684 0.550 0.722 0.711 0.723 0.711
LEID Lcls + Ltr i + Ladv 0.731 0.683 0.738 0.725 0.727 0.720 0.736 0.686 0.732 0.732 0.725 0.718 0.743 0.689 0.725 0.718 0.721 0.722
LEID Lcls + LLIR 0.699 0.638 0.707 0.697 0.709 0.697 0.705 0.656 0.711 0.701 0.703 0.702 0.712 0.675 0.703 0.697 0.701 0.701
LEID LMTM 0.743 0.693 0.750 0.742 0.741 0.736 0.739 0.688 0.768 0.744 0.738 0.732 0.756 0.701 0.738 0.726 0.734 0.734

Table 2: Accuracy and F1 Score results on the CASME2, SMIC and SAMM databases separately. CK+ denotes using the CK+
database as macro-expression database. MMI denotes using the MMI database as macro-expression database. Oulu denotes
using the Oulu-CASIA database as macro-expression database.

in all experiments. Leave-one-subject-out (LOSO) cross-validation
is used in all experiments. In order to compare with related works,
for the first experiment, accuracy and F1 score are used for evalua-
tions. For the second experiment, unweighted F1 score (UF1) and
unweighted accuracy (UAR) are adopted.

Since the proposed method requires both neutral facial images
and expression facial images of same subject, wild-collected databases,
i.e. AffectNet [25] and RAF-DB [14] databases are not suitable. Three
popular lab-collected databases, i.e., CK+[23], MMI[26] and Oulu-
CASIA[38] database are adopted. The CK+ database is composed
of 327 image sequences of seven emotion labels: anger, contempt,
disgust, fear, happiness, sadness, and surprise. The Oulu-CASIA
database includes 480 image sequences of six emotion labels: anger,
disgust, fear, happiness, sadness, or surprise. The MMI database
consists of 205 image sequences with frontal faces of six emotion
labels: anger, disgust, fear, happiness, sadness and surprise. Since
we need macro-expression images that have the same label with
micro-expression images, only related parts of macro-expression
database are used in each experiment corresponding to each micro-
expression database.

We do not use all frames on the micro-expression databases,
since many frames contain little or no additional information to
neutral frames according to the brevity of micro expressions. In
CASME2, SMIC and SAMM databases, only five frames centered at
the apex frame are chosen for experiments. In our experiments, all
facial images are resized to 224 × 224 pixels.

We choose ResNet18 as backbone of the encoder since more
complicated structures like ResNet34 and ResNet101 only raise
little performance and lighter structures such as AlexNet would
result in a noticeable fall in the performance. Two branches are
linked after the backbone and extract expression and identity em-
beddings separately. For decoder, it uses up-sampling to double
feature map size and also implements convolutional layers with
ReLU and Batch normalization. The structure of discriminator is
that several convolutional layers ending with a linear layer outputs
a scalar value.

When training the MicroNet and MacroNet, we set λ1,1 = λ1,2 =
λ1,3 = 0.1. The learning rates of the encoder, classifier and decoder
are set to 10−4, 10−4 and 10−5 separately. When training the MTM-
Net, λ2,1 = λ2,2 = λ2,3 = 10−3 and the learning rates of the encoder,

Method CK+ MMI Oulu-CASIA
EIDNet Loss MTMNet Loss UF1 UAR UF1 UAR UF1 UAR

- Lcls 0.685 0.683 0.685 0.683 0.685 0.683
- Lcls + Ltr i 0.749 0.735 0.762 0.744 0.756 0.745
- Lcls + Ladv 0.734 0.753 0.742 0.761 0.734 0.760
- Lcls + Ltr i + Ladv 0.756 0.759 0.766 0.764 0.756 0.766
- Lcls + LLIR 0.718 0.728 0.728 0.731 0.730 0.731
- LMTM 0.786 0.787 0.795 0.793 0.776 0.780

LEID Lcls + Ltr i 0.838 0.821 0.841 0.821 0.830 0.815
LEID Lcls + Ladv 0.817 0.829 0.828 0.840 0.818 0.829
LEID Lcls + Ltr i + Ladv 0.845 0.842 0.845 0.842 0.838 0.829
LEID Lcls + LLIR 0.805 0.798 0.815 0.822 0.805 0.810
LEID LMTM 0.870 0.856 0.862 0.858 0.848 0.842

Table 3: UF1 and UAR results of CDE task with different
macro-expression databases.

discriminator and the classifier are set to 10−5, 10−5 and 10−5. Every
fold of LOSO procedure is trained with total 20 epochs.

4.2 Experimental Results and Analysis
4.2.1 The Effect of EIDNet Loss. In order to evaluate the effect of
our proposed EIDNet, we compare the method using EIDNet as
feature encoder with the method does not using EIDNet. As shown
in Table 2, when we do not use LEID to pretrain EIDNet, our
proposed MTMNet just gains 5.6%/6.6%, 7.9%/8.5% and 5.3%/6.7% in-
creases in accuracy/F1 score than the baseline model that only using
classification loss Lcls on the CASME2, SMIC and SAMM data-
base, by using CK+ as macro-expression database. When adopting
LEID to pretrain feature encoder, our method gains 10.8%/12.6%,
14.6%/15.1% and 10.9%/11.2% increases than the baseline on the
CASME2, SMIC and SAMM database. It means the introduction
of EIDNet can improve the performance of MTMNet by obtaining
expression-related embeddings. No matter which macro-expression
database we use for assisting, the MTMNet all gains incredible in-
creases with EIDNet as feature encoder in the CDE task. As shown
in Table 3, we find the MTMNet with EIDNet outperforms the
MTMNet without EIDNet by 8.4%/6.9%, 6.7%/6.5% and 7.2%/6.2% of
UF1/UAR, through the guidance of CK+,MMI andOulu-CASIA data-
base respectively. Since subjects in macro-expression databases and
micro-expression databases are different, training MTMNet will suf-
fer from identity-related features distortion. However, our proposed
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Figure 3: Comparison between the original micro-
expression images and the reconstructed images on the
CASME2 database. The first and third columns are original
images, the second and fourth columns are corresponding
reconstructed images.

framework adopting EIDNet as feature extractor can avoid this dis-
advantage and take full use of vast amounts of macro-expression
images.

4.2.2 Visualization of Reconstructed Images. As elaborated in Sec
3.1, we introduce a reconstruction loss in the EIDNET to get original
expression facial images from concatenating identity-related and
expression-related features. Thus, we visualize the reconstructed
facial images to see what the EIDNET learns. Taking CASME2
database as example, we visualize the original images and the re-
constructed images in Figure 3. From Figure 3, we can see that there
is nearly no difference between the original facial images and the
reconstructed facial images, indicating that the EIDNet separates
the identity-related and expression-related features effectively.

4.2.3 The Effect of MTMNet Loss. We conduct ablation experi-
ments to verify the influence of three different loss functions in the
MTMNet, i.e., triplet loss, adversarial loss and LIR loss on the final
recognition performance. As shown in Table 2 and 3, We can draw
the following observations:

Firstly, the guidance from the feature and label spaces all lead to
a great improvement of micro-expression recognition accuracy and
f1 score. For example, the UF1/UAR of Lcls + Ltr i , Lcls + Ladv
and Lcls + LLIR are 15.3%/13.8%, 13.2%/14.6% and 12.0%/11.5%
higher than the baseline that only using Lcls on the CDE task,
by taking CK+ database as guidance. Even if we don’t use EIDNet
as feature encoder, MTMNet can also improve the performance
of micro-expression recognition through the guidance from the
feature and label spaces.

Method CASME2 SMIC SAMM
Acc F1 Acc F1 Acc F1

LBP-TOP [13] 0.490 0.510 0.580 0.600 0.590 0.364
LBP-SIP [35] 0.465 0.448 0.445 0.449 0.415 0.406
STLBP-IP [8] 0.595 0.570 0.579 0.580 0.568 0.527
HIGO [15] 0.672 - 0.682 - - -
FHOFO [7] 0.566 0.524 0.518 0.524 - -

Bi-WOOF [20] 0.588 0.610 0.622 0.620 0.583 0.397
STCLQP [9] 0.640 0.638 0.583 0.583 0.638 0.611

Only-Apex [17] 0.633 - - - - -
OFF-Apex [5] - - 0.676 0.670 0.681 0.542

CNN+LSTM [12] 0.609 - - - - -
Boost [28] 0.709 - 0.689 - - -
DSSN [11] 0.708 0.730 0.634 0.646 0.574 0.464

Dynamic [32] 0.726 0.670 0.761 0.710 - -
ours 0.756 0.701 0.768 0.744 0.741 0.736

Table 4: Comparison with state-of-the-art methods on the
CASME2, SMIC and SAMM databases separately.

Method Full SMIC CASME2 SAMM
UF1 UAR UF1 UAR UF1 UAR UF1 UAR

LBP-TOP [39] 0.588 0.578 0.200 0.528 0.702 0.742 0.395 0.410
Bi-WOOF [20] 0.629 0.622 0.572 0.582 0.780 0.802 0.521 0.513
OFF-Apex [5] 0.719 0.709 0.681 0.669 0.876 0.868 0.540 0.539
Capsule [34] 0.652 0.650 0.582 0.587 0.706 0.701 0.620 0.598
Shallow [19] 0.735 0.760 0.680 0.701 0.838 0.868 0.658 0.681
Dual [40] 0.732 0.727 0.664 0.672 0.862 0.856 0.586 0.566
Neural [21] 0.788 0.782 0.746 0.753 0.829 0.820 0.775 0.715

ours 0.864 0.857 0.864 0.861 0.870 0.872 0.825 0.819

Table 5: Comparison with state-of-the-art methods of CDE
task.

Secondly, the triplet loss and adversarial loss can lead to dif-
ferent promotions for micro-expression recognition. The triplet
loss greatly improves the recognition F1 score, while the adver-
sarial loss gains recognition accuracy increases. In the CDE task,
Lcls + Ltr i is 15.3%, 15.6% and 14.5% higher than the baseline in
UF1, but only obtains 13.8%, 13.8% and 13.2% increases in UAR, with
CK+, MMI and Oulu-CASIA database as guidacne respectively. On
the contrary, Lcls +Ladv is 14.6%, 15.7% and 14.6% higher than the
baseline in UAR, but only obtains 13.2%, 14.3% and 13.3% increases
in UF1, with CK+, MMI and Oulu-CASIA database as guidacne
respectively. When we combine the triplet loss and adversarial loss
from feature space, the MTMNet greatly improves the accuracy
and f1 score at the same time. To be specific, Lcls + Ltr i + Ladv
outperforms the baseline by 16.0%, 16.0% and 15.3% in UF1, 15.9%,
15.9% and 14.6% in UAR through the guidance of CK+, MMI and
Oulu-CASIA database.

Finally, our method combines the strengths of the three intro-
duced loss functions and achieves the best performance. Specifi-
cally, the UF1/UAR of our method is 18.5%/17.3%, 17.7%/17.5% and
16.3%/15.9% higher than the baseline on the CDE task, with CK+,
MMI and Oulu-CASIA database as guidacne respectively, which is
much better than using a single loss functions. This indicates that
the different guidance will not cause the inter-domian discrepancy.
Guidance in both feature and label spaces can help MTMNet learn
more robust feature representations and make better predictions



4.2.4 Analysis of Macro-expression Databases. In order to analyze
what kind of macro-expression database is more conducive to as-
sisting the training of micro-expression classifier, we choose CK+,
MMI and Oulu-CASIA as guidance respectively. As shown in Table
2 and Table 3, we can get the following observations:

Firstly, the guidance from Oulu-CASIA database achieves the
best results on the CASME2 database, but get the worst results
on the SAMM and SMIC database, compared with the other two
macro-expression databases. When we evaluate the subject distri-
bution of all databases, we find that this may caused by dataset
bias. The CASME2 and Oulu-CASIA database both contain pre-
dominantly Chinese subjects, while other databases have balanced
distribution of nationalities. The images of CASME2 all are col-
lected from Chinese, and the Oulu-CASIA database has a total of
80 subjects, including 30 Chinese. This indicates micro-expression
and macro-expression may have greater similarity within the same
nationality than different nationalities, greater similarity can lead
to better enhancement for micro-expression classifier.

Secondly, since composite micro-expression database contains
a diverse range of age and ethnicity, we require diverse macro-
expression images as guidance. Because the CK+ and MMI database
contain diverse samples, choosing these two databases as guidance
can achieve better performance on the overall CDE task. Specif-
ically, using CK+ database as macro-expression database can get
higher UF1 score, while using MMI database as macro-expression
database can get higher UAR score. This guides us to using macro-
expression database of diversity distribution as guidance to improve
the generalization of our micro-expression classifier.

4.3 Comparison with Related Works
We compare our framework with other related works. These meth-
ods are: 1) LBP-TOP [13], LBP-SIP [35], STLBP-IP [8], STCLQP [9],
which are LBP based methods 2) HIGO [15], FHOFO [7], Bi-WOOF
[20], which are optimal flow based methods, 3) Only-Apex [17],
OFF-Apex [5], CNN+LSTM [12], Boost [28], DSSN [11], Shallow
[19], Dual [40] Capsule [34], which are deep feature methods, 4)
Dynamic [32], which is action unit assisted method. and 5) Neural
[21], which is macro-expression assisted method.

4.3.1 Experiments on the CASME2, SAMM and SMIC Database Sep-
arately. From Table 4, we can see that our framework exceeds most
handcraft feature methods, i.e., LBP and optimal flow based meth-
ods in almost every evaluation indicators. Our framework achieves
nearly 16.8%, 14.6% and 15.8% increases in accuracy, 9.1%, 12.4% and
33.9% increases in f1 score compared to the best results of hand-
craft feature methods, i.e., Bi-WOOF [20] on the CASME2, SAMM
and SMIC database. Our method also outperforms the action unit
assisted method, i.e., Dynamic [32] by 3.0%/3.1% and 0.7%/3.4% on
the CASME2 and SMIC database of accuracy/F1. Since Dynamic en-
forces the features of teacher network ans student network similar
by L2-loss, student network would lose its own domain information
on micro-expression recognition. While, in this paper we introduce
adversarial learning and triplet loss to make micro-expression and
macro-expression images produce similar feature distributions.

4.3.2 Experiments of CDE Task. Our method gains higher results
compared to state-of-the-art deep featuremethods, i.e., Shallow [19],

Dual [40] and Capsule [34] on CDE task. Because the CDE task has
greatly increased micro-expression training data, these deep feature
methods can’t handle the difference between databases very well.
As a result, these methods perform well on the CASME2 database,
but get poor results on the SMIC and SAMM database. However, our
proposed framework adopts EIDNet as feature extractor to avoid
identity-related features distortion, and take full use of composite
database. Our method only exceeds Shallow and Dual by 3.2%/0.4%
and 0.8%/1.6% in CAMSE2 database, but gain incredible increases
than them by 18.4%/16.0% and 20.0%/18.9% on the SMIC database,
16.7%/13.8% and 23.9%/25.3% on the SAMM database of UF1/UAR.

Compared with the macro-expression assisted method, i.e., Neu-
ral [21], our proposed framework exceeds the results of it in full
or separated single databases, with 7.6%/7.5% on full database,
11.8%/10.8% on the SMIC database, 4.10%/5.20% on the CAMSE2
database and 5.0%/10.4% on the SAMM database of UF1/UAR. Neu-
ral used Expression Magnification and Reduction (EMR) to reduce
the gap between micro and macro expression. This preprocess-
ing causes micro and macro expression visually similar, but this
can’t guarantee the similarity of micro and macro expression fea-
tures, then directly training on a fusion of micro and macro ex-
pression database can’t generate appropriate expression feature
representation. Our method use adversarial learning and triplet
loss to fine-tuning MicroNet, which can model the shared features
of micro-expression and macro-expression samples effectively.

5 CONCLUSION
Our paper presents a micro-expression recognitionmethod by lever-
aging macro-expression databases as guidance. Expression-Identity
Disentangle Network is also proposed to extract expression em-
beddings from expression image without identity-related infor-
mation. Extensive experiments on the three public spontaneous
micro-expression databases, i.e., SMIC, CASME2 and SAMMdemon-
strated that our framework outperformed the state-of-the-art micro-
expression recognition methods based on either handcraft or deep
features. And for future research routines, our proposed method
also cast a light into a research direction of combining micro and
macro expression recognition problems.

ACKNOWLEDGMENTS
This work was supported by National Natural Science Foundation
of China 61727809, 91741812.

REFERENCES
[1] Xianye Ben, Xitong Jia, Rui Yan, Xin Zhang, and Weixiao Meng. 2018. Learning

effective binary descriptors for micro-expression recognition transferred by
macro-information. Pattern Recognition Letters 107 (2018), 50–58.

[2] Adrian K Davison, Cliff Lansley, Nicholas Costen, Kevin Tan, and Moi Hoon Yap.
2016. Samm: A spontaneous micro-facial movement dataset. IEEE transactions
on affective computing 9, 1 (2016), 116–129.

[3] Paul Ekman. 2009. Lie catching and microexpressions. The philosophy of deception
(2009), 118–133.

[4] Paul Ekman. 2009. Telling lies: Clues to deceit in the marketplace, politics, and
marriage (revised edition). WW Norton & Company.

[5] YS Gan, Sze-Teng Liong, Wei-Chuen Yau, Yen-Chang Huang, and Lit-Ken Tan.
2019. OFF-ApexNet on micro-expression recognition system. Signal Processing:
Image Communication 74 (2019), 129–139.

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.



[7] SL Happy and Aurobinda Routray. 2017. Fuzzy histogram of optical flow orienta-
tions for micro-expression recognition. IEEE Transactions on Affective Computing
(2017).

[8] Xiaohua Huang, Su-JingWang, Guoying Zhao, and Matti Piteikainen. 2015. Facial
micro-expression recognition using spatiotemporal local binary pattern with
integral projection. In Proceedings of the IEEE international conference on computer
vision workshops. 1–9.

[9] Xiaohua Huang, Guoying Zhao, Xiaopeng Hong, Wenming Zheng, and Matti
Pietikäinen. 2016. Spontaneous facial micro-expression analysis using spatiotem-
poral completed local quantized patterns. Neurocomputing 175 (2016), 564–578.

[10] Xitong Jia, Xianye Ben, Hui Yuan, Kidiyo Kpalma, and Weixiao Meng. 2018.
Macro-to-micro transformation model for micro-expression recognition. Journal
of Computational Science 25 (2018), 289–297.

[11] Huai-Qian Khor, John See, Sze-Teng Liong, Raphael CW Phan, and Weiyao Lin.
2019. Dual-stream shallow networks for facial micro-expression recognition. In
2019 IEEE International Conference on Image Processing (ICIP). IEEE, 36–40.

[12] Dae Hoe Kim, Wissam J Baddar, and Yong Man Ro. 2016. Micro-expression recog-
nition with expression-state constrained spatio-temporal feature representations.
In Proceedings of the 24th ACM international conference on Multimedia. ACM,
382–386.

[13] Anh Cat Le Ngo, John See, and Raphael C-W Phan. 2016. Sparsity in dynamics
of spontaneous subtle emotions: analysis and application. IEEE Transactions on
Affective Computing 8, 3 (2016), 396–411.

[14] Shan Li, Weihong Deng, and JunPing Du. 2017. Reliable crowdsourcing and deep
locality-preserving learning for expression recognition in the wild. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 2852–2861.

[15] Xiaobai Li, Xiaopeng Hong, Antti Moilanen, Xiaohua Huang, Tomas Pfister,
Guoying Zhao, and Matti Pietikäinen. 2017. Towards reading hidden emotions:
A comparative study of spontaneous micro-expression spotting and recognition
methods. IEEE transactions on affective computing 9, 4 (2017), 563–577.

[16] Xiaobai Li, Tomas Pfister, Xiaohua Huang, Guoying Zhao, and Matti Pietikäinen.
2013. A spontaneous micro-expression database: Inducement, collection and
baseline. In 2013 10th IEEE International Conference and Workshops on Automatic
face and gesture recognition (fg). IEEE, 1–6.

[17] Yante Li, Xiaohua Huang, and Guoying Zhao. 2018. Can micro-expression be
recognized based on single apex frame?. In 2018 25th IEEE International Conference
on Image Processing (ICIP). IEEE, 3094–3098.

[18] Yong Li, Jiabei Zeng, Shiguang Shan, and Xilin Chen. 2019. Self-Supervised Repre-
sentation Learning From Videos for Facial Action Unit Detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 10924–10933.

[19] Sze-Teng Liong, YS Gan, John See, Huai-Qian Khor, and Yen-Chang Huang.
2019. Shallow triple stream three-dimensional cnn (ststnet) for micro-expression
recognition. In 2019 14th IEEE International Conference on Automatic Face &
Gesture Recognition (FG 2019). IEEE, 1–5.

[20] Sze-Teng Liong, John See, KokSheik Wong, and Raphael C-W Phan. 2018. Less
is more: Micro-expression recognition from video using apex frame. Signal
Processing: Image Communication 62 (2018), 82–92.

[21] Yuchi Liu, Heming Du, Liang Zheng, and Tom Gedeon. 2019. A neural micro-
expression recognizer. In 2019 14th IEEE International Conference on Automatic
Face & Gesture Recognition (FG 2019). IEEE, 1–4.

[22] Yong-Jin Liu, Jin-Kai Zhang, Wen-Jing Yan, Su-Jing Wang, Guoying Zhao, and
Xiaolan Fu. 2015. A main directional mean optical flow feature for spontaneous
micro-expression recognition. IEEE Transactions on Affective Computing 7, 4
(2015), 299–310.

[23] Patrick Lucey, Jeffrey F Cohn, Takeo Kanade, Jason Saragih, Zara Ambadar, and
IainMatthews. 2010. The extended cohn-kanade dataset (ck+): A complete dataset
for action unit and emotion-specified expression. In 2010 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition-Workshops. IEEE, 94–101.
[24] Walied Merghani, Adrian Davison, and Moi Yap. 2018. Facial Micro-expressions

Grand Challenge 2018: evaluating spatio-temporal features for classification of
objective classes. In 2018 13th IEEE International Conference on Automatic Face &
Gesture Recognition (FG 2018). IEEE, 662–666.

[25] Ali Mollahosseini, Behzad Hasani, and Mohammad H Mahoor. 2017. Affectnet: A
database for facial expression, valence, and arousal computing in the wild. IEEE
Transactions on Affective Computing 10, 1 (2017), 18–31.

[26] Maja Pantic, Michel Valstar, Ron Rademaker, and Ludo Maat. 2005. Web-based
database for facial expression analysis. In 2005 IEEE international conference on
multimedia and Expo. IEEE, 5–pp.

[27] Min Peng, Zhan Wu, Zhihao Zhang, and Tong Chen. 2018. From macro to micro
expression recognition: deep learning on small datasets using transfer learning. In
2018 13th IEEE International Conference on Automatic Face & Gesture Recognition
(FG 2018). IEEE, 657–661.

[28] Wei Peng, Xiaopeng Hong, Yingyue Xu, and Guoying Zhao. 2019. A boost in
revealing subtle facial expressions: A consolidated eulerian framework. In 2019
14th IEEE International Conference on Automatic Face & Gesture Recognition (FG
2019). IEEE, 1–5.

[29] Salah Rifai, Yoshua Bengio, Aaron Courville, Pascal Vincent, and Mehdi Mirza.
2012. Disentangling factors of variation for facial expression recognition. In
European Conference on Computer Vision. Springer, 808–822.

[30] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. 2017. Dynamic routing
between capsules. In Advances in neural information processing systems. 3856–
3866.

[31] John See, Moi Hoon Yap, Jingting Li, Xiaopeng Hong, and Su-Jing Wang. 2019.
Megc 2019–the second facial micro-expressions grand challenge. In 2019 14th
IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019).
IEEE, 1–5.

[32] Bo Sun, Siming Cao, Dongliang Li, Jun He, and Lejun Yu. 2020. Dynamic Micro-
Expression Recognition Using Knowledge Distillation. IEEE Transactions on
Affective Computing (2020).

[33] Luan Tran, Xi Yin, and Xiaoming Liu. 2017. Disentangled representation learning
gan for pose-invariant face recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 1415–1424.

[34] Nguyen Van Quang, Jinhee Chun, and Takeshi Tokuyama. 2019. Capsulenet
for micro-expression recognition. In 2019 14th IEEE International Conference on
Automatic Face & Gesture Recognition (FG 2019). IEEE, 1–7.

[35] Yandan Wang, John See, Raphael C-W Phan, and Yee-Hui Oh. 2014. Lbp with
six intersection points: Reducing redundant information in lbp-top for micro-
expression recognition. InAsian conference on computer vision. Springer, 525–537.

[36] Ziheng Wang and Qiang Ji. 2015. Classifier learning with hidden information. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
4969–4977.

[37] Wen-Jing Yan, Xiaobai Li, Su-Jing Wang, Guoying Zhao, Yong-Jin Liu, Yu-Hsin
Chen, and Xiaolan Fu. 2014. CASME II: An improved spontaneous micro-
expression database and the baseline evaluation. PloS one 9, 1 (2014), e86041.

[38] Guoying Zhao, Xiaohua Huang, Matti Taini, Stan Z Li, and Matti PietikäInen.
2011. Facial expression recognition from near-infrared videos. Image and Vision
Computing 29, 9 (2011), 607–619.

[39] Guoying Zhao and Matti Pietikainen. 2007. Dynamic texture recognition using
local binary patterns with an application to facial expressions. IEEE Transactions
on Pattern Analysis & Machine Intelligence 6 (2007), 915–928.

[40] Ling Zhou, Qirong Mao, and Luoyang Xue. 2019. Dual-inception network for
cross-database micro-expression recognition. In 2019 14th IEEE International
Conference on Automatic Face & Gesture Recognition (FG 2019). IEEE, 1–5.


	Abstract
	1 Introduction
	2 Related Work
	2.1  Micro-Expression Recognition
	2.2  Feature Disentanglement

	3 Method
	3.1 The Expression-Identity Disentangle Network
	3.2 Macro-to-Micro Network

	4 Experiments
	4.1 Experiments Condition
	4.2 Experimental Results and Analysis
	4.3 Comparison with Related Works

	5 Conclusion
	Acknowledgments
	References

