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Abstract—Recently, the Network Representation Learning
(NRL) techniques, which target at learning the low-dimension
vector representation of graph structures, have attracted wide
attention due to the effectiveness on various social-oriented
application. Though large efforts have been made on the joint
analysis combining node attributes with the network structure,
they may usually fail to summarize the weighted correlations
within nodes and attributes, especially when the nodes suffer
extremely sparse attributes. To that end, in this paper, we
propose a novel Sparse Attributed Network Embedding (SANE)
framework to learn the network structure and sparse attribute
information simultaneously in a united approach. Specifically, we
first embed the nodes and attributes into a low-dimensional vector
space. Then we introduce the pairwise method to capture the
interaction between nodes and sparse attributes, and aggregate
the attribute information of neighbors to alleviate sparsity for
obtaining a better vector representation of node embeddings,
which will be used in following network representation learn-
ing task. Along this line, we maintain the network structure
by maximizing the probability of predicting the center node
according to surrounding context nodes. Different from previous
work, we introduce an attention mechanism to adaptively weigh
the strength of interactions between each context node and
the center node, according to the node attribute similarity.
Furthermore, we combine the attention network with CBOW
model to learn the similarity of the network structure and
node attributes simultaneously. Extensive experiments on public
datasets have validated the effectiveness of our SANE model with
significant margin compared with the state-of-the-art baselines,
which demonstrates the potential of adaptively attribute analysis
in network embedding.

Index Terms—network embedding, attributed network, atten-
tion mechanism, sparse attributes

I. INTRODUCTION

With the development of embedding techniques, a series

of network representation learning (NRL) algorithms, which

target at learning the low-dimension vector representation for

the network structure, have been proposed to support various

social-oriented applications, such as node classification [1],

[2], link prediction [3], [4], network clustering [5] and social

influence analysis [6], [7]. Traditionally, prior arts focused on

the local or global network structure to derive the objective

* denotes the corresponding author.

functions with employing first-order and second-order prox-

imity [8], [9]. However, some other information except for

the network structure, like node attributes, has been largely

ignored in previous research work.

Indeed, for practical scenario in the real world, node at-

tributes, such as user profiles or preferences, could be ben-

eficial for revealing the network structure since they may

crucially impact the pairwise connections and interactions

with nodes. Correspondingly, some related work attempted

to jointly learn the node embedding with integrating attribute

information to achieve better performance [10]–[13]. For in-

stance, TADW [10] first utilized inductive matrix completion

to incorporate the text information of nodes. LANE [11]

combined the graph matrix and attribute similarity matrix to

project them into a common vector space, and UPP-SNE [12]

generated the node embedding via a non-linear mapping

from node attributes. However, though these methods have

enhanced the graph embedding performance, unfortunately,

they could be disturbed by the sparse and incomplete node

attribute information, which is common in the application

scenario. Moreover, the connection strength within different

nodes should be distinguished, which have usually been ne-

glected in prior arts. Thus, more comprehensive frameworks

for attributed network embedding are still urgently required.

To deal with these tasks, in this paper, we propose a novel

Sparse Attributed Network Embedding (SANE) model to learn

the network structure and node attribute information in a

united approach. In order to model the relationship between

nodes and sparse attributes, we first embed the nodes and

attributes into a low-dimensional vector representation. Then

we utilize a pairwise method to capture the correlation be-

tween nodes and attributes. Besides, we aggregate neighbors’

attribute information to further alleviate sparsity for obtaining

a better representation of node embedding. In order to learn

the network structure information, we conduct the truncated

random walk to generate training sequences. By maximizing

the probability of predicting center node according to context

nodes, the network embeddings of nodes with the similar

network structure are closer. Different from previous work,

we introduce the attention mechanism [14], [15] to assign
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the interaction weight between each context node and center

node according to the similarity of attributes. Furthermore,

we combine the attention mechanism with CBOW [16] model

to learn the similarity of network structure and node attributes

simultaneously. With this united approach, we eventually make

the vector representation of nodes with the similar network

structure and attributes closer. Generally, the technical contri-

bution of our paper could be briefly summarized as follows:

• In order to model the relationship between nodes and

sparse attributes, we propose a novel pairwise method

to capture correlation between nodes and attributes for

generating a better representation of node embedding.

• We introduce the attention mechanism to weigh the

strength of interactions between nodes, and combine with

CBOW model to learn the similarity of the network

structure and attributes in a united framework.

• Extensive experiments on public datasets have validated

the effectiveness of our SANE model with significant

margin compared with the state-of-the-art baselines,

which demonstrates the potential of adaptive attribute

analysis in network embedding.

The rest of this paper is organized as follows. We summarize

the related work in Section II. Preliminaries of our model are

described in Section III. Then we propose our SANE model

with detailed formulation and optimization in Section IV.

In Section V, extensive experiments and discussion will be

reported. Finally, we summarize our paper in Section VI.

II. RELATED WORK

A. Network Embedding

In recent years, network embedding methods that only uti-

lized the network structure information are the most studied in

the field of network representation learning. These approaches

can be divided into three categories: The first is based on

truncated random walks and assumes that nodes with the

similar network structure have similar vector representations.

DeepWalk [17] first attempts to generate training samples by

random walks on network, and utilizes the skip-gram model

proposed in Word2vec [16] to learn the vector representation

of nodes. Noticing that DeepWalk uses the uniform sampling

to generate the training sentences, node2vec [18] conducts the

weighted random walk by two hyperparameters p and q, in

order to capture the homogeneity and structure equivalence

respectively. The second is based on k-order distance between

nodes in network. For example, LINE [8] focuses on pre-

serving first-order proximity and second-order proximity to

learn the node representation. Then GraRep [9] further cap-

tures k-order relational structure information to enhance node

representation by manipulating global transition matrices. The

third is based on deep learning techniques. With the advantage

of deep learning, we can obtain higher-order nonlinear repre-

sentation [19], [20]. Therefore, SDNE [21] proposes a semi-

supervised auto-encoder model to obtain node embedding by

preserving the global and local network structure information.

DNGR [22] adopts a random surfing model to capture the

graph structural information and learns the node representa-

tion from PPMI matrix by utilizing stacked denoising auto-

encoder. Recently, some of the latest work introduce generative

adversarial network into the network representation learning.

GraphGAN [23] proposes an innovative graph representation

learning framework that the generator learns the underlying

connectivity distribution and the discriminator predicts the

probability the edge existence between a pair of vertices. ANE

[24] leverages the adversarial learning principle to regularize

the node representation. It consists of structure preserving

component and adversarial learning component, which aims

to capture the network structure properties and match the

distribution of node representation to given priors respectively.

These methods introduced above only utilize the network

structure information. Furthermore, some researchers attempt

to combine the node attribute information to enhance the

node representation. TADW [10] first uses inductive matrix

complement framework to incorporate the text features into

network representation. Based on TADW, HSCA [25] cap-

tures the homogeneity of network by adding regularization

of adjacent nodes. HNE [26] utilizes the multi-layer neural

network to map nodes and different attributes to the same

vector space, and learn the node representation by preserving

the first-order proximity. CENE [27] further uses the different

types of RNN to extract high-order text features. Then UPP-

SNE [12] utilizes a nonlinear mapping method to embed social

user profile information into a consistent subspace, where the

network seamlessly encoded to jointly learn informative node

representation. GraphSAGE [28] iteratively generates the node

embedding by sampling and aggregating features from the

nodes’ local neighborhood. Different from these methods, our

approach focuses on how to combine the sparse node attributes

and jointly learn the similarity of the network structure and

attributes in a unified framework.

Furthermore, some research work formalize it into a su-

pervised or semi-supervised problem by incorporating node

label information. TriDNR [29] learns node representation by

modeling the inter-node relationship, node-word correlation

and label-word correspondence simultaneously. LANE [11]

proposes to learn the representation of nodes, attributes, labels

via spectral techniques respectively, and projects them into

a common vector space to obtain the node embedding. M-

NMF [30] utilizes a novel Modularized Nonnegative Matrix

Factorization to incorporate the community structure into

network embedding. Planetoid [31] uses a graph-based semi-

supervised learning framework that the node representation is

jointly trained to predict the class label and the context in the

graph. GCN [32] is based on an efficient variant of convo-

lution neural networks which operate directly on graphs and

optimizes the node representation in semi-supervised learning

graph framework. However, it’s often difficult to obtain the

node label information in real-world scenarios. Therefore, we

focus on learning the attributed network representation with

unsupervised learning in this paper, which could be easily

applies to more scenarios. Finally, more related work on

network embedding can be found in this survey [33].
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TABLE I: Terms and Notations
Notations Description

G = G(V,E,A) a graph with attribute matrix A

U node embedding matrix

U ′ node context embedding matrix

P node offset embedding matrix

F attribute embedding matrix

d dimension of node embedding

m dimension of node attributes

b window size of context nodes

B. Attention Mechanism

Recently, attention mechanism has proved the effectiveness

in natural language processing and computer vision research

field [14], [15]. The attention mechanism is mainly based on

principled of human visual mechanism that human recognition

mainly focused on selective parts of the whole perception

space. Inspired by this idea, we adopt the soft attention model

[14] to assign attentive weights for surrounding context nodes

when predicting the center node in the graph. With the help of

soft attention mechanism, the more similar attributes of nodes

are, the greater weight of nodes will be assigned. Therefore,

we can preserve the network structure and make the nodes

with similar attributes closer in the vector space by a unified

framework. To the best of our knowledge, our proposed SANE

model is the first to introduce the attention mechanism in

attributed network representation learning.

III. PRELIMINARIES

In this section, we first give the definition of our problem,

and review the basic network representation model, DeepWalk.

For the better explanation, we summarize key terms and

notations in Table I for reference.

A. Problem Definition

In this section, we will introduce the formal expression of

the problem. Let G = (V,E,A) denotes an attributed network,

where V is the set of nodes, E is the set of edges, A|V |×m

represents the attributes matrix and the i-th row ai is the

attribute vector of the corresponding node i. For example, ai
can represent users’ gender, location and profession in social

network such as Twitter, Facebook. While in citation networks,

ai can be the words appearing in a paper. And these attributes

are often very sparse in the real-world scenarios. Our model

takes the network structure and sparse attribute information as

input, and outputs the latent vector representation for each

node. Further, these node embedding can be directly used

in subsequent applications like node classification and link

prediction. In the end, we formalize the problem as follows:

Problem 1 (Sparse Attributed Network Embedding): Given

a sparse attributed network G = (V,E,A), we aim to learn

a low-dimensional vector representation uv ∈ R
d(d << |V |)

for each node v ∈ V , such that 1) the representation of nodes

with the similar network structure should be more similar; 2)

the representation of nodes with similar attributes should be

be closer in the latent vector space.

B. DeepWalk

Before introducing our model, we first present the basic

network representation learning model, DeepWalk. It’s the first

to introduce the skip-gram model into network embedding, in

order to learn a distributed vector representation for each node

to preserve the network structure. Specifically, DeepWalk first

takes the truncated random walks from each node to generate

the training corpus of node sequences. Based on the assump-

tion that nodes with similar neighborhood are more similar,

for the sequence of nodes S = {v1, v2, ...v|S|}, skip-gram

model predicts the surrounding nodes {vi−k, ..., vi+k} \ {vi}
according to the center node vi. Then the node representation

is learned by maximizing the likelihood that context nodes

are predicted from the center node. Therefore, the objection

function of DeepWalk is to maximize the average log prob-

ability of the context nodes given by the center node, which

is formalized as follows:

L =
1

|S|
|S|∑

i=1

∑

−b≤j≤b,j �=0

log p(vi+j |vi), (1)

where p(vj |vi) is defined by the following softmax function,

p(vj |vi) =
exp (u′Tj ui)∑
v∈V exp(u′Tv ui)

, (2)

where ui is the node embedding of vi when it’s treated as

center node and u′j is the node context embedding while

it’s treated as the ‘context node’ vj . DeepWalk finally learns

the node embedding by optimizing Equation (1), so that

nodes with similar network structures have the similar node

embedding. Our model is also based on the same assumption

as DeepWalk, but we utilize the continuous bag-of-words
CBOW [16] model which uses the surrounding context nodes

to predict the center node, in order to model the different

importance of context nodes. In next section, we will describe

it in detail.

IV. SPARSE ATTRIBUTED NETWORK EMBEDDING

In this section, we first present a general description of

our model. Then we introduce the model formation and

optimization in detail.

In this paper, we propose the Sparse Attributed Network

Embedding (SANE) model to jointly learn the network struc-

ture and sparse attributes, which is illustrated in Figure 1.

Similar with DeepWalk, we first take the truncated random

walks from each node to generate the training node sequences.

In order to characterize the interaction relationship between

nodes and sparse attributes, we project them into a low-

dimensional and dense vector. Then we propose a pair-wise

method to model the correlation between them, and incorpo-

rate the neighbors’ information to obtain a better represen-

tation of node embedding. Finally, we adopt the CBOW [34]

model that uses surrounding context nodes to predict the center

node, and fuse attention mechanism for assigning different

weights according to the similarity of attributes. Therefore,

we can preserve the two properties of node embedding defined
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in Problem 1 in a unified framework, that the representation

of nodes with the similar network structure and attributes are

closer in the latent vector space. And we will introduce each

part of our proposed model in detail.

A. Modeling Nodes and Sparse Attributes

As mentioned in previous section, node attributes in the net-

work are an essential part of learning network representation.

In real-world scenarios, node attributes vector ai are usually

high-dimensional and sparse, so it’s necessary to model the

relationship between nodes and sparse attributes to obtain a

better node representation for later embedding learning. To

track this issue, we propose a pair-wise method to capture the

interaction relationship as follow:

1) Pairwise Node Embedding: First, we project the nodes

and attributes to a low-dimensional common vector space and

utilize the matrices P ∈ R
|v|×d and F ∈ R

|m|×d to represent

the lookup embedding matrix respectively. Then the pairwise

node embedding is defined as follows:

ui =

m∑

j=1

(pi � fj) · aij , (3)

where pi denotes the offset node embedding of node i, fj
represents the attribute embedding for attribute j, aij is the

corresponding attribute value, and � represents the element-

wise product of two vectors. We represent each attribute with

a low-dimensional dense vector, so that we can capture and

generalize the similarity between attributes. And each node has

a unique offset embedding to ensure that nodes with the same

attributes can learn different representation in the network.

Although the attributes of each node are very sparse and the

value of ai are mostly zero, we can utilize the element-wise

operation to effectively capture the interaction relationship

between nodes and attributes by the pairwise method.

The method of pairwise node embedding can alleviate the

sparsity of node attributes to some degree, but the interaction

between nodes and attributes is still very limited. In order

to further alleviate this problem, we utilize the neighbors’

information of each node to enhance node representation.

As we know, there exists the homogeneity phenomenon [35]

in the network that adjacent nodes often have similar node

attributes. For example, the friends in social network tend to

have the similar profiles like age, education and profession,

etc. In citation network, the referenced articles often have the

similar research directions. Therefore, we take advantage of

this property and propose the neighbor-based node embedding,

which is defined as follows:

2) Incorporating Neighborhood Information: For each

node vi, we first define the representation of neighbors’

attribute information as shown below:

f
N(i)
j = Pooling({fj · akj | ∀ k ∈ N(i)}), (4)

where N(i) denotes the neighbor nodes of node vi, fj ·akj is

the representation of neighbor node k on attribute j. Because

the number of nodes’ neighbors is inconsistent, we utilize the

average pooling function to transform the sets of vectors to

obtain a fixed length vector representation. Therefore, f
N(i)
j

can provide the comprehensive representation of the neighbors

N(i) on attribute j. Then we integrate the neighbors’ attribute

information to obtain the final node embedding as following:

ui = σ(λ
m∑

j=1

(pi � fj) · aij + (1− λ)
m∑

j=1

(pi � f
N(i)
j )), (5)

where λ is the hyper-parameter to balance the relationship

between nodes and surrounding attributes in different net-

works, and the final node embedding is composed of two

parts. Although the nodes’ own attributes are very sparse,

we can obtain more attribute information from the neighbors.

Besides, we utilize sigmoid function σ(x) to make non-linear

transformation of final node embedding for learning a more

robust vector representation.

B. Preserving Network Structure

In previous section, we introduce how to utilize attribute

information to obtain a better node representation. And in this

section, we will describe how to learn the similarity of node

attributes and the network structure in a unified framework.

We first take the truncated random walks from each node to

generate the training corpus. Based on the assumption that

representation of nodes with similar neighborhood are similar,

we adopt the CBOW model that uses the surrounding context

nodes to predict the center node and define the objective

function as follow:

1) Objective Function: For each node vi in train-

ing sentences, we utilize the surrounding context nodes

{vi−k, ..., vi+k} \ {vi} to predict the center node, and max-

imize the log probability to preserve the network structure,

which is formulated as follows:

L = − log p(vi|context(vi))

= − log
exp u′Ti ucontext(i)

∑|V |
j=1 expu′Tj ucontext(i)

,
(6)

where u′i is node context embedding, ucontext(i) is the com-

prehensive representation of the surrounding context nodes.

Different from previous work, we utilize the CBOW model

instead of skip-gram model to characterize the different impor-

tance of context nodes. Because the nodes having the similar

attributes with the center node should be more important when

predicting. Therefore, we assign different weights to each

context node, and the vector representation of surrounding

context nodes is calculated as follows:

ucontext(vi) =
∑

j∈[i−b,i+b]\{0}
sijuj , (7)

where uj is the node embedding defined in previous section, b
is the window size of surrounding context nodes, and sij is the

weight value of node vj , which is calculated by the following

attention network.
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Fig. 1: Framework of Sparse Attributed Network Embedding Model(SANE).

2) Attention Network: We utilize the attention network to

assign weight sij to each context node vj , so that the greater

weight of context node vj corresponds, the more similar vector

representations of center node vi and context node vj are.

Formally, the attention network is defined as:

s′ij = hTReLU(W[uj , u
′
i]), (8)

where u′i is the context embedding of the center node vi,
W ∈ R

t×2d and h ∈ R
t are model parameters, [uj , u

′
i] repre-

sents the combination of vectors and ReLU(x) = max(0, x).
Furthermore, the attention scores are normalized by the soft-

max function:

sij =
exp(s′ij)∑

(i,j)∈Rx
exp(s′ij)

. (9)

Because the defined node embedding incorporates attribute

information, the nodes with the similar attributes will be as-

signed a greater weight by attention network, so that the vector

representations of nodes are closer. Furthermore, we combine

the attention mechanism with CBOW model. By optimizing

the final objective function Equation (6), we eventually enable

node embedding to learn the similarity of attributes and the

network structure simultaneously in a unified framework.

C. Model Learning

In this section, we will introduce the model optimization

and parameter initialization.

1) Negative Sampling: By optimizing the objective func-

tion, we can eventually learn the node representation. How-

ever, directly optimizing Equation (6) is computationally ex-

pensive, because the denominator of p(vi|context(vi)) re-

quires summation over all nodes in the network, where the

number of nodes is usually very large. To address this problem,

we adopt the approach of negative sampling proposed by [16],

which selects negative samples according to the noisy distri-

bution P (v) for each node context. Therefore, the objective

function Equation (6) is finally replaced by the following:

log σ(u′Ti ucontext(i))+

neg∑

t=1

Evt∼P (v)[log σ(−u′Tt ucontext(i))],

(10)

where σ(x) is sigmoid function, and neg is the number of

negative samples. We set the node noisy distribution P (v) ∝
d
3/4
v as proposed in [16], where dv is out-degree of node v.
2) Parameter Initialization: As we know, parameter ini-

tialization has a great impact on the convergence and results

of the model. So we introduce the important parameters of

our model in detail in this section. We initialize the node

context embedding to�0 vectors and attribute embedding with a

Gaussian distribution (with a mean of 0 and standard deviation

of 0.01). Specially for node offset embedding, we initialize it

all to �1 vector and explain the reason.
The method of parametric embedding [36], [37] is widely

utilized to integrate the attribute information into representa-

tion vector, and has proved the effectiveness in many other

research fields [37], [38], which is defined as follows:

ui = MTai, (11)

where M ∈ R
m×d is the transformation matrix, and ai

is the attribute vector of node vi. Furthermore, we discuss

the relationship between the parametric embedding and our

proposed pairwise attributed node embedding. If we regard

each row Mj of matrix M as the vector representation fj of

attribute j, Equation (11) can be formulated as :

ui =
m∑

j=1

aijMj , (12)

where m is the dimension of node attributes. We can see that

parametric embedding method summarizes the corresponding
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attribute embedding as the node representation, which doesn’t

consider the interaction relationship between nodes and at-

tributes. If we set all the node offset embedding pi as �1
vector, the pairwise node embedding defined in Equation (3)

can be reduced to the same expression as Equation (12).

However, we can observe the method of parametric embedding

always obtains the identical vector representation of nodes

with the same attributes, even if their network locations are

different. This demonstrates that the traditional parametric

embedding has some limitations in this problem, but our

proposed pairwise node embedding is more flexible which can

simultaneously learn the network structure and attribute infor-

mation via node offset and attribute embedding. Therefore, we

finally initialize all the node offset embedding as �1 to obtain

a better initialization point.

V. EXPERIMENTS

A. Experimental Settings

1) Datasets: We conduct the experiments on four public

datasets, which are two different types of networks that

represent social networks and citation networks. For each

network, we regard the links between nodes as undirected and

remove the nodes that are not connected in the network. The

detailed description of the datasets is listed as follows and

their statistics are summarized in Table II.

• Rochester1 is the Facebook network constructed by [39],

which contain students from University of Rochester.

There are 4, 563 nodes and 161, 404 friendship links.

Each node’s profile is described by seven anonymized

attributes: student/faculty status, gender, major, second

major/minor, dorm/house, high school and class year.

And we encode these attributes as a 241-dimensional

binary feature vector.

• Cora2 contains 2, 708 machine learning papers and 5, 429
citation links. These papers are divided into seven cate-

gories. Each paper is represented as a binary vector of

1, 433 dimensions indicating the presence of the corre-

sponding word. We regard these binary vectors as the

node attributes.

• Citeseer contains 3, 312 publications of six classes. There

are 4, 732 citation links in the network and each document

is represented as a binary vector of 3, 703 dimensions,

which is treated as the node attributes like Cora.

• DBLP3 contains 60, 744 papers and 52, 890 citation links,

which is constructed by [29]. They extract the papers

from four research areas, i.e. database, data mining,

artificial intelligent and computer vision, which can be

utilized as the ground-truth label of each node. And each

article title is used as the node attribute, represented by

a 3, 799 dimensional TF-IDF vector. We filter out the

articles without any citation relationship and retain the

network of 17, 725 nodes and 105, 781 links.

1https://escience.rpi.edu/data/DA/fb100/
2http://linqs.cs.umd.edu/projects/projects/lbc/index.html
3http://arnetminer.org/citation (V4 version is used)

TABLE II: Statistics of the datasets

Datasets Nodes# Links# Features# Sparsity#

Rochester 4, 563 161, 404 241 2.9%

Cora 2, 708 5, 429 1, 433 1.2%

Citeseer 3, 327 4, 732 3, 703 0.8%

DBLP 60, 744 52, 890 3, 799 0.1%

2) Baselines: In order to demonstrate the effectiveness of

our proposed SANE model, we compare with the represen-

tative state-of-the-art network representation learning algo-

rithms. Since SANE utilizes the network structure and node

attribute information, the baselines are selected from two

aspects. One is the algorithms only using the network structure

information like Node2vec and LINE. The other is methods

that utilize both the network structure and node attributes such

as TADW, UPP-SNE and GraphSAGE. Because our SANE

model is an unsupervised algorithm without incorporating la-

bel information, we will not compare with the semi-supervised

methods introduced in related work. And the details of these

baselines are illustrated as follows:

• Attri: The dimensions of node attributes are usually very

large. So we first reduce the dimension of node attributes

to 200 via Singular Value Decomposition (SVD) pro-

posed in [10]. Then we utilize the reduced dimension

vectors as node embedding.

• Node2vec [18]: Different from DeepWalk, it designs

a biased truncated random walks to efficiently explore

diverse neighborhood and utilize the skip-gram model to

learn node embedding4.

• LINE [8]: It learns the network embedding by preserving

the first-order proximity or second-order proximity of the

network structure separately5. And we utilize the best of

them as the final baseline.

• Node2vec+Attri: We concatenate the vectors from both

Attri and Node2vec as the final node embedding.

• LINE+Attri: The node vectors of Attri and LINE are

concatenated to generate the final node embedding.

• TADW [10]: It is a method based on inductive matrix

completion that incorporates node attributes into network

embedding learning. It utilizes both the network structural

and node attribute information6.

• UPP-SNE [26]: It constructs node embedding via a non-

linear mapping from node attributes and preserves the

network structure, in order to jointly learn the node em-

bedding. This method demonstrates that it has substantial

performance on sparse node attributes.

• GraphSAGE [28]: It first generates the node embedding

by sampling and aggregating features from the nodes’

local neighborhood. Then the node embedding are learned

by maintaining the network structure.

• SANE-S: It is the simplified version of our model without

incorporating neighbors’ attribute information and atten-

tion network.

4https://github.com/aditya-grover/node2vec
5https://github.com/tangjianpku/LINE
6https://github.com/albertyang33/TADW
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TABLE III: Results of multi-label node classification on Cora dataset with λ = 0.5.

Training ratio 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Node2vec 58.48 65.55 67.95 70.12 71.43 72.21 73.06 74.41 75.07 75.25
LINE 41.11 45.96 50.06 52.32 54.46 56.74 57.31 59.62 59.81 60.47
Node2vec + Attri 60.31 67.96 72.26 74.16 74.88 75.44 75.73 76.55 76.98 77.43
LINE + Attri 43.98 53.50 59.07 61.99 64.32 66.04 67.32 68.90 69.48 71.20
TADW 55.72 64.95 70.64 73.53 75.09 76.72 78.07 78.67 79.49 80.40
UPP-SNE 62.78 72.59 75.05 77.66 78.23 78.63 79.38 79.40 80.04 80.27
GraphSAGE 62.39 68.78 73.83 74.87 75.82 76.97 77.68 77.79 78.46 79.59
SANE-S 64.17 74.29 77.97 79.13 80.38 80.49 81.02 81.36 82.04 82.42
SANE-A 70.10 77.14 79.73 80.56 82.33 82.25 83.40 83.49 83.99 84.11
SANE 70.55 78.78 80.23 82.31 82.50 82.80 83.60 83.64 84.01 84.47

TABLE IV: Results of multi-label node classification on Citeseer dataset with λ = 0.7.

Training ratio 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Node2vec 40.51 44.05 47.71 49.22 50.48 51.43 52.00 52.54 52.94 53.15
LINE 29.53 34.16 35.74 37.32 38.92 40.33 40.41 41.45 42.5 43.02
Node2vec + Attri 48.02 57.62 60.52 62.27 63.09 64.22 65.16 65.30 66.15 66.36
LINE + Attri 43.28 51.28 56.04 59.26 59.84 61.77 62.46 63.08 63.25 64.07
TADW 46.65 56.38 61.38 64.68 66.87 67.28 67.39 68.65 69.78 70.06
UPP-SNE 55.62 64.40 66.24 66.91 66.98 68.07 68.42 68.44 68.59 68.85
GraphSAGE 60.34 65.87 66.55 68.51 68.93 69.46 69.83 70.15 70.33 70.41
SANE-S 61.27 67.08 68.57 69.59 69.62 70.24 70.71 70.77 70.90 71.06
SANE-A 62.13 68.37 69.80 70.54 70.86 71.03 71.38 71.84 71.94 72.11
SANE 66.56 70.02 70.96 71.68 71.70 72.20 72.35 72.97 72.98 73.27

TABLE V: Results of multi-label node classification on DBLP dataset with λ = 0.6.

Training ratio 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Node2vec 73.12 76.61 77.96 78.65 79.06 79.44 79.65 79.78 79.81 79.85
LINE 65.44 69.04 70.96 72.36 73.12 73.26 73.94 74.20 74.46 74.61
Node2vec + Attri 76.14 78.01 78.56 78.92 79.51 79.79 80.04 80.15 80.39 80.50
LINE + Attri 66.10 71.35 73.69 74.89 76.07 76.78 77.14 77.91 78.02 78.33
TADW 72.42 77.07 79.18 80.35 80.44 80.96 81.23 81.57 81.69 81.79
UPP-SNE 77.13 78.17 78.42 79.30 79.59 79.98 80.05 80.18 80.52 80.62
GraphSAGE 77.85 78.08 79.68 80.75 81.21 81.56 81.87 82.02 82.21 82.27
SANE-S 77.64 78.48 79.35 79.80 79.93 80.31 80.34 80.43 80.58 80.67
SANE-A 78.48 80.02 80.44 80.76 81.15 81.30 81.38 81.41 81.48 81.60
SANE 80.87 81.94 82.46 82.84 82.95 83.01 83.19 83.21 83.22 83.39

• SANE-A: It is the reduced version of our model only

without introducing attention network.

3) Evaluation Metrics: In our experiments, we perform

the tasks of multi-label classification, link prediction and

visualization to validate different methods. For the multi-label

classification task, we adopt the micro-f1 to evaluate the per-

formance as many previous work [17], [18]. We also conduct

experiments with macro-f1 and accuracy as the evaluation

metrics and obtain the similar trend, so we omit it for brevity.

For the link prediction task, we exploit the widely used top-

n ranking metrics: Precision, Recall and F1. We get the same

experimental results on these metrics. Finally, we only present

the results of Precision@K and Recall@K in order to save

space, and we set K=5 as it is useless to predict too many

nodes in the real world.

4) Parameter Settings: We implement our method based on

Tensorflow7. We randomly initialize model parameters with a

Gaussian distribution (with a mean of 0 and standard deviation

of 0.01). For the generation process of training sequences, we

set the window size as 5, walk length as 20 and walks per node

as 20. And we set the number of negative samples as 5 and

7https://github.com/tensorflow/tensorflow

mini-batch size as 64 during the stochastic gradient descent

optimization. The hyper-parameter λ is tuned by using grid

search on the validation set. The parameters of other baselines

are the same as those in their original paper and tuned to be

optimal. Besides, we set the embedding dimension to be 100

for all methods in order to get a fair comparison.

B. Experimental Results

In this section, we first evaluate the performance on multi-

label node classification. Then we report the result of link

prediction and display the visualization of node embedding.

1) Multi-label Node Classification: For network embedding

representation learning, multi-label node classification is a

very important task to evaluate the effectiveness of node em-

bedding [40]. The node representations are generated from the

network embedding methods and are utilized as node features

to classify each node into a set of labels. The same as previous

work [18], [29], we select the linear SVM implemented by

LibLinear [41] as the classifier, in order to reduce the impact

of classifiers on the classification performance.

We randomly select a portion of the labeled nodes as the

training data and the rest as test. Besides, we vary the training

ratio from 1% to 10% by an increment of 1%. For each
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(a) Rochester (b) Cora

Fig. 2: Performance of link prediction on Rochester and Cora datasets

training ratio, we repeat the experiments for 10 times and

report the average results. The comparison results on Cora,

Citeseer, DBLP datasets are shown in Table III, Table IV and

Table V, respectively. And we utilize bold-faced to highlight

the best experimental results. From these tables, we can have

following observations:

First, compared with all the baselines, our simplified and

complete models consistently achieve significant improvement

on all datasets with different training ratios. Especially, in the

small training proportion, our models can achieve larger im-

provements. It demonstrates that the learned node embeddings

of our models are more effective and robust than baselines’

with respect to the node classification task.

Second, compared with Attri, Node2vec and LINE methods,

our models achieve better performance. It demonstrates that

only using node attributes or network structure is not enough to

learn a better node embedding. Although Node2vec+Attri and

LINE+Attri methods use both information, their performances

are not satisfactory. Because these methods just concatenate

two parts of the information, and do not effectively integrate

them together to learn node embedding.

Third, TADW, UPP-SNE and GraphSAGE are relatively

better methods in baselines, because these methods fuse both

the network structure and node attribute information to learn

the node representation. From the experimental results, we

can observe that TADW exhibits unstable performance un-

der various training ratios and performs poorly under small

training samples. Because the target matrix decomposed by

TADW is often very sparse and the interaction between nodes

and attributes is not considered. For the UPP-SNE method, it

doesn’t achieve a satisfactory improvement. Although UPP-

SNE learns node embedding via non-linear mapping from

node attributes, it doesn’t effectively alleviate the sparsity of

node attributes and strengthen their similarity in the learn-

ing process. GraphSAGE is a strong baseline, however, it

doesn’t consider the attribute sparsity and generate the node

embedding by randomly sample K neighbors, which limits the

experimental performance.

Finally, from the comparison results of SANE-S and SANE-

A, we can illustrate that the addition of neighbors’ attribute

information can alleviate the sparsity of node attributes. Com-

pared with SANE-A, SANE achieves better performance. It

demonstrates that the attention network can adaptively weigh

the strength of interactions between nodes and makes the

nodes with similar attributes closer.

2) Link Prediction: In this section, we conduct the link

prediction experiments. Through these experiments, we can

demonstrate whether different network embedding algorithms

can effectively learn the similarities between nodes in the

attributed network.

We use the Rochester and Cora datasets in this section.

To conduct the link prediction task, we randomly remove

the 30 percentage of edges as the test set and use the rest

of the network to train the network embedding model. After

training the model, we obtain the vector representation for

each node and rank the potential linked nodes based on the

cosine similarity. As the number of nodes is often very large,

it is impractical to take all nodes as candidates. Therefore,

we adopt a similar approach that has been accepted by many

previous work [42], [43]: for each node, we randomly sample

100 negative linked nodes that are not connected to it. Then we

mix positively linked nodes and the sampled negative nodes

together to select the top potential linked nodes of each nodes.

We repeat the experiments for 10 times and report the average

result. The final results are shown in Figure 2. From these

figures, we can obtain the following conclusions:

First, compared with all the baselines, our models outper-

form the other baselines by a large margin. It proves that the

node embeddings learned by our models can better measure

the similarity between nodes in the attributed network.

Second, note that the performance of TADW and UPP-SNE

is not consistent on different datasets. Their performance on

the Cora dataset is even worse than the Node2vec+Attri and

LINE+Attri methods. The reason for the poor performance of

TADW is that it doesn’t provide a clear objective function

to preserve the similarity of the network structure. Although

the UPP-SNE method achieves the better performance than

TADW, its performance still has a large margin with our

models, because UPP-SNE can’t capture the similarity in

node attributes. And the experimental result of GraphSAGE

is relatively stable on different datasets. However, it doesn’t

consider the weight relationship between nodes, which is more

important for the link prediction tasks.

Third, from comparison results, we can demonstrate that

our proposed SANE model can effectively learn similar rela-

tionships between nodes in the network. The best performance
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(a) Node2vec (b) TADW (c) UPP-SNE (d) GraphSAGE (e) SANE

Fig. 3: Visualization of network representations learned by different algorithms on the Cora dataset. Each point indicates one

node and each color represents one category. The text marked in figures corresponds to the label name.

(a) hyper-parameter λ (b) dimension size d

Fig. 4: Parameter Sensitivity w.r.t the hyper-parameter λ and

dimension of node embedding d.

of SANE illustrates that the attention network can effectively

reflect the weight relationship between nodes, and can simulta-

neously learn the similarity of the network structure and node

attribute in a united approach.

3) Embedding Visualization: An important application of

network embedding is to generate visualizations of a network

in a two-dimensional space, so that we can intuitively observe

the relevance between nodes in the network. To conduce the

visualization task, we randomly select 150 nodes from each

category in the Cora dataset. Then we project the node repre-

sentation learned by different network embedding algorithms

into a two-dimensional space by the widely used visualization

tool t-SNE [40]. We let nodes with the same label have the

same color and mark the label name at the center point of

each labels. The visualization result is shown in Figure 3.

From Figure 3, we can observe that the results of Node2vec

and TADW are not very meaningful because the nodes with

different labels are mixed together. And the visualizations ob-

tained by UPP-SNE and GraphSAGE are better than Node2vec

and TADW, in which the nodes from the same label are clus-

tered together. These results indicate that node attributes are

important and can be used to alleviate the network sparsity. By

comparing with UPP-SNE and GraphSAGE methods, we can

observe that our model SANE tends to have a cluster structure

and the nodes with same label are closer to each other. Mean-

while, there is an obvious distance between different labels

of nodes. These results demonstrate the node representations

learned by the SANE model are effective and discriminative,

which can also explain why it has better performance on both

multi-label classification and link prediction tasks.

C. Parameter Sensitivity
We investigate the sensitivity of our model parameter in

this section. Specifically, we mainly evaluate how the hyper-

parameter λ and dimension size d affect the performance.

We conduct this experiment on three datasets and report the

classification performance when the training ratio is 10%.
Impact of the hyper-parameter λ: The parameter λ is

utilized to represent the weight of interactions between node

and neighbors’ attributes. From Figure 4(a), we can observe

that when λ = 0, the performance of our model is the

worst. It demonstrates that it’s not enough to only consider the

interactions between nodes and its attributes. And the optimal

value of parameter λ is not consistent on three datasets,

because different networks have different characteristics.
Impact of the dimension size d: From the Figure 4(b),

we can see the performance raises when the number d of

dimension increases. This is because more dimensions are

able to learn more useful information. However, the perfor-

mance decreases when the dimension number d continuously

increases. The reason is that too large number of dimensions

may introduce more spareness and noises which will reduce

the performance.

D. Convergence Analysis
We also conduct experiments to investigate the convergence

property of our model. The values of the objective function

Equation (6) from iteration 1 to iteration 50 on four networks

are recorded. From the record, we can observe that our model

can converge to a stable value in 20 iterations on all datasets.

Due to space limitations, we omitted the figures here.

VI. CONCLUSION

In this paper, we proposed a novel Sparse Attributed

Network Embedding (SANE) framework, which incorporates

sparse attributes with the network structure to jointly learn the

vector representation for each node. Specifically, we proposed

a novel pairwise method to obtain a better representation of

node embedding. Then we combined the attention network

with CBOW model to simultaneously learn the similarity of

the network structure and attributes in a united approach.

Compared with the state-of-the-art baselines, the performance

of our model has achieved significant improvement. In the

future, we will try to utilize the deeper network structure to

learn the higher-order nonlinear node representation of the

attributed network.
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