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ABSTRACT
Recent decades have witnessed the rapid growth of intelli-
gent tutoring systems (ITS), in which personalized adaptive
techniques are successfully employed to improve the learning
of each individual student. However, the problem of using
cognitive analysis to distill the knowledge and gaming factor
from students learning history is still underexplored. To this
end, we propose a Knowledge Plus Gaming Response Model
(KPGRM) based on multiple-attempt responses. Specifi-
cally, we first measure the explicit gaming factor in each
multiple-attempt response. Next, we utilize collaborative
filtering methods to infer the implicit gaming factor of one-
attempt responses. Then we model student learning cog-
nitively by considering both gaming and knowledge factors
simultaneously based on a signal detection model. Extensive
experiments on two real-world datasets prove that KPGRM
can model student learning more effectively as well as obtain
a more reasonable analysis.

Keywords
Educational Data Analytics, Intelligent Tutoring Systems,
Context-Aware Web-based Learning, Gaming the System,
Cognitive Analysis

1. INTRODUCTION
One of the most important innovations in computer aided
education during the past decade is intelligent tutoring sys-
tems (ITS) [8, 4, 5], which is designed for adaptively provid-
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ing learners with interactive and customized instruction or
feedback. Nowadays, a huge number of ITS, like Carnegie
Learning1, ASSISTments2, Knewton3 and Smart Sparrow4,
have been built for both novices and experts to learn and
self-improve.

A key issue in educational scenarios is to cognitively model
student learning from their responses to questions in learn-
ing systems, which aims at discovering the knowledge pro-
ficiency or learning ability of the students. Recently, one
basic assumption about student learning that has been in-
creasingly widely adopted [1, 34] is that: the response of
students in learning systems is synthetically influenced by
both knowledge learning, i.e. the proficiency levels of the re-
lated knowledge to learn, and gaming strategy, i.e. the ability
to use the system itself and solve problems like guessing or
retrying until correct. In other words, each response is as-
sumed to involve one gaming factor, i.e. the extent to which
one student is “gaming”during his/her response to one ques-
tion. Studies [7, 19] from pedagogy has revealed the signifi-
cant impacts of the gaming factor on students’ learning per-
formance. Therefore psychometricians developed a series of
cognitive models [29, 3, 22] on examination data by consid-
ering the gaming factor as a fixed or question-side parameter
for modelling student learning. Comparatively, educational
data miners employed data mining techniques like feature
engineering [37, 2, 14] to detect gaming behaviour in ITS.
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For the integers a and b, the square root 
of a equals b. Which of the following could 
be the value of a?

(A)  2
(B)  3
(C)  6
(D)  9
(E) 12 

Student 1

Student 2

Student 3

Figure 1: A toy example of student responses in
ITS.

1http://www.carnegielearning.com/
2https://www.assistments.org/
3https://www.knewton.com/
4https://www.smartsparrow.com/

321



Despite the importance of the previous studies, there are
some existing limitations. Most traditional cognitive mod-
els mainly focus on one-attempt response data, e.g. exam-
ination, which is quite different from the multiple-attempt
response data encountered in the ITS context. Taking the
toy example shown in Fig. 1, it can be seen that some stu-
dents answer correctly on the first attempt (e.g. Student 2),
which forms one-attempt responses (OAR); the others who
fail on the first attempt, keep trying until correct (e.g. Stu-
dent 3), forming multiple-attempt responses (MAR). Appar-
ently utilising the first-attempt or one-attempt responses,
the current psychometrical models are unable to capture a
full view of the gaming factor for more precise analysis (e.g.,
it is hard to distinguish whether Student 2 is “gaming”). In
contrast, MAR, which explicitly conveys the attempt details,
can be analysed to obtain another view of the gaming factor
(e.g., Student 3 is probably “gaming” by trying each of the
possible answers). Moreover most educational data miners
treat gaming behaviour in ITS as a classification task based
on feature engineering, instead of cognitively modelling the
students to discover their knowledge proficiency or learning
ability. Thus, it is of significant importance to capture the
full view of the gaming factors from MAR and then incorpo-
rate into the whole cognitive modelling process. To this end,
there are several challenges: 1) how to measure the explicit
gaming factor from MAR; 2) based on 1), how to further in-
fer the implicit gaming factor from the existing OAR; and 3)
how to cognitively model student learning by incorporating
knowledge with the obtained gaming factors?

To address these challenges, we propose a Knowledge Plus
Gaming Response Model (KPGRM) based on MAR to model
student learning cognitively. Based on educational domain
knowledge on the gaming behaviour, we adopt a P-value evi-
dence based method to measure the gaming factor using four
observable aspects and then aggregate them as the explicit
gaming factor of MAR. Then we employ collaborative filter-
ing techniques to indirectly infer the implicit gaming factor
of OAR. Furthermore, a simple signal detection model is
utilized to cognitively fuse both the knowledge and gaming
impacts on student learning. Model parameters are esti-
mated by a Markov Chain Monte Carlo (MCMC) means.
The main contributions of this paper are as follows:

• To the best of our knowledge, this is the first com-
prehensive attempt at discovering implicit and explicit
gaming factors and combining knowledge and gaming
for student learning modelling to obtain more precise
and reasonable cognitive analysis.

• We propose a cognitive model KPGRM, which em-
ploys educational domain knowledge and collaborative
filtering for evidentially extracting the gaming factor
from MAR and OAR, and links students’ responses to
knowledge proficiency based on a simple signal detec-
tion model.

• We design an effective MCMC sampling algorithm for
parameter estimation and conduct extensive experi-
ments on real-world datasets to verify the effectiveness
of KPGRM.

• We analyse the reasonability of the extracted gaming
factor as well as study the knowledge and gaming im-
pacts on question difficulty based on KPGRM.

Overview. The rest of this paper is organized as fol-
lows. In Section 2, we introduce the related work on student
learning modelling and gaming factor. In Section 3, we for-
mally define our targeted issue. Section 4 details the whole
framework of our KPGRM. Section 5 shows the experimen-
tal results to verify the effectiveness and reasonability of our
approach. Conclusions are given in Section 6.

2. RELATED WORK
We introduce the existing related work from two aspects:

student learning modelling and the gaming factor in ITS.

2.1 Student Learning Modelling
In educational psychology, many psychometrical models

[13, 35] have been developed to mine students’ knowledge
proficiency level from responses to questions. These models
can be roughly divided into two categories: continuous ones
and discrete ones. The fundamental continuous models are
item response theory (IRT) models [29, 3, 15], which char-
acterize students by a continuous variable, i.e. knowledge
ability, and use a logistic function to model the probability
that a student will correctly solve a problem. For the dis-
crete models, the basic method is deterministic inputs, noisy
“and” gate model (DINA) [17, 22]. DINA describes a stu-
dent by a latent binary vector which denotes whether (s)he
has mastered the skills required by the problem with given
prior information. In addition, some general approaches are
proposed for either fusing the continuous and the discrete
models [12] or incorporating more complex questions like
free-response ones [39]. In ITS context, [9, 10] proposed
Bayesian knowledge tracing (BKT) models based on hidden
Markov models and [6] designed a variant of IRT model,
learning factor analysis (LFA).

However, most of the current psychometrical models con-
sider only the first-attempt responses and simply ignore the
subsequent multiple-attempt ones hence, as shown in Fig. 1,
valuable information is not fully exploited. In this paper
we take into account multiple-attempt data to extract the
gaming factor into modelling student learning.

2.2 Gaming Factor
Gaming-the-system or the gaming factor, which harms the

effectiveness of learning systems to some extent, universally
exists and also draw a lot of attention from educational and
data mining fields. [7, 19] studied impacts of the gaming
factor on students’ learning performance via real-world ex-
periments with pretests and posttests. Traditional psycho-
metrical models [13] usually regard the gaming factor as
guessing which is estimated by fixing a heuristic value (e.g.
1/#option) or parameterizing it from question-side infor-
mation (e.g. 3PL-IRT [3]). With the richer features in ITS
(e.g. activity logs), educational data miners have adopted
some feature engineering methods [37, 2, 14] to detect gam-
ing factor. Further, [20] takes into account response time
and models student learning with the hidden motivation.

Nevertheless, the existing approaches to handle the gam-
ing factor either simply view it as a detection task solved by
classifiers, or model student learning with additional limited
information from only the first-attempt responses. Here in
this work we extract the gaming factor by utilising multiple-
attempt data and then incorporate into the whole cognitive
modelling process.
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3. PROBLEM FORMULATION
Suppose we have M students who answer N questions5 in

an ITS and R stands for all the responses where Rji denotes
Student j’s response to Question i. Here, Rji is made up of
an ordered sequence of tuples defined as:

Rji = {〈cjik, rjik, tjik〉|k ∈ Z, 1 ≤ k ≤ Kji},

where cjik, rjik and tjik represent the actual content, the
auto-generated label (1 or 0) indicating correct or not and
the time stamp of the kth attempt of Student j to respond
to Question i, respectively. Kji ∈ Z+ denotes the length
of the response sequence of Student j on Question i. The
key challenge and goal of our formulation is to effectively
measure or infer the gaming factor of each response and
model students’ knowledge structure then precisely estimate
the proficiency level of each student, where θj ∈ R represents
the knowledge ability of Student j.

Table 1: Some important notations.
Notation Description
Rji The response of Student j to Question i
R∗ The set of all the MAR
rji1 The label of the first-attempt response of Student j to Question i
θj , ϑj The knowledge and gaming ability of Student j
βi, γi The knowledge and gaming difficulty of Question i
gji The gaming factor of Response Rji

4. KNOWLEDGE PLUS GAMING RESPONSE
MODEL

To better model students’ knowledge structure and esti-
mate their proficiency level with the multiple-attempt re-
sponses (MAR), in this section, we introduce the detail of
our proposed KPGRM method. Fig. 2 shows the whole
schema of our model framework. To be specific, we extract
the gaming factor firstly from multiple-attempt (explicit)
and one-attempt (implicit) responses and we model student
learning by combining the knowledge and gaming factors.
Tab. 1 lists some important notations and each step of KP-
GRM is elaborated in the following subsections.

Student 
Knowledge

 Ability

Measure Explicit 
Gaming Factor

Measure Explicit 
Gaming Factor

Infer Implicit 
Gaming Factor

Infer Implicit 
Gaming Factor

Model Student 
Learning

Model Student 
Learning

Cognitive Analysis

KPGRM

B C

C

CA D

Response Data

Figure 2: The framework of KPGRM.

4.1 Explicit Gaming Factor of MAR
Different from most traditional cognitive models which

focus on only first-attempt responses, in this subsection, we
take MAR into account to extract the gaming factor.

5To simplify, we only focus on problems of multiple-choice
questions involving one general topic.

Here we give a formal definition to measure the explicit
gaming factor from each MAR. According to the existing
literature [11, 2], gaming behaviour could be represented by
keep answering, systematically and quickly until an identi-
fied correct response allows the student to move to the next
question. Based on the existing domain knowledge of gam-
ing and the availability of current data, we mainly focus on
four characteristics and assumptions when measuring the
gaming factor from MAR: 1) the more attempts in one re-
sponse, the higher the gaming factor of the relevant student
(“keep answering”); 2) the less time taken to answer, the
higher the gaming factor (“quickly”); 3) the more transitions
in one response, the higher the gaming factor (“systemati-
cally”); 4) the higher the coverage of the given options, the
higher the gaming factor (“systematically”). Thus we could
define the explicit gaming factor for each MAR as an aggre-
gation function of these four characteristics. Formally, given
a MAR Rji of Student j to Question i, we define the gaming
factor from Rji ∈ R∗ as

gji = F (Len(Rji), Spd(Rji), T rs(Rji), Cov(Rji)), (1)

where gji denotes the gaming factor of the response of Stu-
dent j to Question i and F (·) is an aggregation function.
Note that R∗ = {Rji|Kji ≥ 2} is a set of all the MAR of all
the students and questions. Here Len(Rji),Spd(Rji),Trs(Rji)
and Cov(Rji) represent four characteristics from MAR Rji,
i.e. length of attempt sequence, speed of answering, tran-
sition and coverage of all given options through the whole
sequence. For convenience of normalization and calculation,
we adopt a statistical P-value based approach [40] to de-
scribe the four aspects of each MAR which is specified in
detail as follows.

LENGTH. As mentioned previously, the larger length of
MAR represents a higher gaming factor. Here Kji, i.e.
the length of the multiple-attempt response of Student j
to Question i, is assumed to follow the Poisson distribution,
Kji ∼ P(λK), where λK can be learned by the maximum-
likelihood estimation (MLE) method from the observations
in the given records. Then, we can define gaming evidence
of length by

Len(Rji) = 1− P (P(λK) ≥ Kji), (2)

where we can obtain the P-value by calculating P (P(λK) ≥
Kji). Accordingly, a smaller P-value involving a longer at-
tempt sequence means a higher gaming factor.

SPEED. As discussed previously, faster answering signifies
a higher gaming factor. Here we use the average time of each
attempt to capture the SPEED characteristics by

t̄sji =
tjiKji

− tji1
Kji − 1

. (3)

where tjiKji and tji1 are the time stamps of the last and
the first attempt. Here we assume that t̄sji, i.e. the av-
erage time of MAR of Student j to Question i, follows the
Gaussian distribution, t̄sji ∼ N (µts, σ

2
ts), where the param-

eter µts and σ2
ts can be learned by the MLE method from

the observations of t̄sji in the given records. Then, we can
define gaming evidence of speed by

Spd(Rji) = 1− P (N (µts, σ
2
ts) ≤ t̄sji). (4)

where we obtain the P-value by calculating P (N (µts, σ
2
ts) ≤

t̄sji). Similarly, a multiple-attempt response with a smaller
value of this P-value has a higher gaming factor.

TRANSITION. As assumed previously, the more transi-
tions mean a higher gaming factor. Here we assume that the
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transition trji, i.e. the number of changes between attempts
of MAR of Student j to Question i, follows the Poisson dis-
tribution, trji ∼ P(λtr), where the parameter λtr and can
be learned by the MLE method from the observations of trji
in the given records. Then, we can define gaming evidence
of transition by

Trs(Rji) = 1− P (P(λtr) ≥ trji). (5)

where we obtain the P-value by calculating P (P(λtr) ≥
trji). Similarly, a multiple-attempt response with a smaller
value of this P-value has a higher gaming factor.

COVERAGE. As assumed previously, higher coverage of
all given options implies a higher gaming factor. Here we
assume that the coverage covji, i.e. the percentage of options
of MAR that Student j has tried to respond to Question
i, follows the Gaussian distribution, covji ∼ N (µcov, σ

2
cov),

where the parameter µcov and σ2
cov and can be learned by

the MLE method from the observations of covji in the given
records. Then, we can define gaming evidence of coverage
by

Cov(Rji) = 1− P (N (µcov , σ
2
cov) ≥ covji). (6)

where we obtain the P-value by calculating P (N (µcov, σ
2
cov) ≥

covji). Similarly, a multiple-attempt response with a smaller
value of this P-value has a higher gaming factor.

After extracting the four aspects of evidence of the gam-
ing factor, the next challenge is how to combine them, i.e.
to figure out a proper function F (·). In fact, there are many
supervised evidence aggregation methods in the literature
[36, 16] which depend on labelled training data. For conve-
nience, instead, we adopt an unsupervised aggregation ap-
proach based on the similarity between the extracted evi-
dence.

Specifically, we choose a linear combination of all the evi-
dences of MAR of Student j to Question i as the aggregation
function F (·) as follows:

F (Φji(1),Φji(2), · · · ,Φji(E)) =

E∑
e=1

ωeΦji(e), s.t.

E∑
e=1

ωe = 1,

(7)

where Φji(e) denotes the eth evidence and ωe ∈ [0, 1] is
the corresponding weight. Note that in our case E = 4 for
our four defined pieces of evidence. Next we introduce our
unsupervised method to learn the proper {ωe}.

Here, we adopt an intuitive assumption as Consistent Bet-
ter, which has been proved effective in many applications,
for our evidence aggregation. To be specific, we assume that
effective evidence should have a similar evidence score for
each MAR, while poor evidence will produce different scores.
Therefore, evidence that tends to be consistent with the ma-
jority of evidence will be assigned higher weights and evi-
dence that tends to disagree will be assigned lower weights.
Then we can measure the consistence of each evidence Φji(e)
using the variance-like measure

∆ji(e) = (Φji(e)− Φ̄ji)
2, (8)

where Φ̄ji is the average score of all the defined types of evi-
dence. In line with Consistent Better, Φji(e) should be given
a larger weight if ∆ji(e) is small. Thus, we can redefine the
evidence aggregation problem as an optimization problem
that minimizes the weighted variance of the evidence over
all the MAR

arg min
ω

∑
Rji∈R∗

E∑
e=1

ωe∆ji(e), (9)

s.t.

E∑
e=1

ωe = 1; ∀ωe ∈ [0, 1].

Here, we employ a popular gradient based approach [23, 24]
with exponentiated updating to solve this problem.

4.2 Implicit Gaming Factor of OAR
With the explicit gaming factor measured from MAR, in

this subsection, we specify how to infer the implicit gaming
factor of OAR for our KPGRM model.

Different from MAR with richer information, it is hard
to distinguish the “gaming” OAR, which is usually implicit
(e.g. a student may answer correctly by guessing on the first
attempt). Here we determine the inference of the gaming
factor of OAR by collaborative filtering (CF).

CF assumes that each user and each item are all related
so that similar users have similar preferences while a user
will likely like items that are similar to the currently pre-
ferred ones. In recommender systems, the key bridge con-
necting users and items is user-item interaction like con-
suming, which can be utilized to model preferences by CF
[30]. Similarly, we could regard each student and question
as a user and item then the gaming factor represents the
interaction between users and items. Thus we redefine the
gaming factor inference problem as the interaction predic-
tion problem. There are lots of existing predictive methods
like neighbourhood-based [38] and user/item-based CF [27].
However, these memory-based methods are more suitable for
the top-N recommendation problem. For our case we adopt
the latent factor model [28, 25] for our inference task due to
the powerful prediction ability of this model-based method.

Specifically, we map each student and question into a new
d-dimension space which depicts the latent psychological
characteristics of students in the learning process and the
corresponding latent properties of the questions. Formally,
we use U ∈ Rm×d and V ∈ Rn×d to represent each student
and question in the latent space, with column vectors Uj and
Vi denoting latent feature vectors of Student j and Question
i, respectively. A probabilistic linear model with Gaussian
observation noise is adopted to define the conditional distri-
bution over the explicit gaming factors as

P (G|U, V, σ2
g) =

∏
Rji∈R∗

N (gji|UjV Ti , σ2
g), (10)

where G ∈ Rm×n is the gaming factor matrix consisting
of the gaming factors of each student on each question and
σ2
g is the variance of the gaming factors.
Next we maximize the logarithm of the posterior likeli-

hood over observations (i.e. the explicit gaming factor pre-
viously measured from MAR in Eq. (1)) by minimizing the
following objective function to estimate U and V .

E = −
1

2

∑
Rji∈R∗

(gji − UjV Ti )2 +
λU

2

M∑
j=1

‖Uj‖2 +
λV

2

N∑
i=1

‖Vi‖2,

(11)

where λU and λV are the regularization parameters. We
adopt a stochastic gradient descent in U and V for opti-
mization. Then the implicit gaming factor of all OAR can
easily be inferred by learnt U and V .

To this point, we have proposed our method to extract
the gaming factor from all the responses, either MAR or
OAR, by a direct measure or an indirect inference. We can
summarize it as the following equation:

gji =

{
F (Len(Rji), Spd(Rji), T rs(Rji), Cov(Rji)) if Rji ∈ R∗;
UjV

T
i if Rji /∈ R∗.

(12)
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4.3 Model Student Learning
With the gaming factor extracted from all the response,

in this subsection, we incorporate the gaming factor into
student learning modelling in a more reasonable way.

As discussed in the introduction, students can answer a
question by either using genuinely learned knowledge or by
simply gaming the system. However, most of the traditional
learning models, which neglect attempts subsequent to the
first one, do not capture the gaming factor for a more accu-
rate estimate of students’ knowledge ability. To mitigate this
issue, we first extract the gaming factor of all the responses
then model both knowledge and gaming ability simultane-
ously.

Specifically, inspired by much of the existing work from
education and psychology [32, 22, 31], we adopt a simple
signal detection model for our task to “detect” gaming factor
gji from noisy observations, i.e. first-attempt response rji1.
Then let us consider two extreme conditions:

1) the student answers the question correctly without any
gaming factor, where we model student learning as follows:

ηji
def
= P (rji1 = 1|gji = 0) =

1

1 + exp{−(θj − βi)}
. (13)

Here we adopt a simple one-parameter logistic IRT (1PL-
IRT) model in which θj and βi represent the knowledge abil-
ity of Student j and the relevant difficulty of Question i,
respectively. To be specific, remembering, understanding or
mastering some knowledge topics (e.g. vocabulary and con-
cepts) is a knowledge ability while the knowledge difficulty
of one question depends on the related knowledge topics.
Note that we choose ηji to denote the probability.

2) the student answers correctly and completely by gam-
ing, where we model student learning as follows:

ζji
def
= P (rji1 = 1|gji = 1) =

1

1 + exp{−(ϑj − γi)}
. (14)

Similarly, we also choose a 1PL-IRT model in which ϑj
and γi represent the gaming ability of Student j and the
relevant difficulty of Question i, respectively. Specifically,
how to pick or guess the right answer quickly is a gaming
ability while the gaming difficulty of one question usually is
based on the question design including structure, description
and option settings. Note that we also choose ζji to denote
the probability.

Then, assuming the statistical independence of responses
on each question conditioned on the students’ ability [29,
22, 13], we employ Bernoulli distribution to model all the
first-attempt responses, which are either right or wrong, as
follows:

P (rji1 = 1|θj , βi, ϑj , γi, gji) = η
1−gji
ji ζ

gji
ji , (15)

where ηji and ζji stand for the probability that Student j re-
sponds to Question i correctly based on knowledge learning
and gaming strategy, respectively. The model will degen-
erate as an ordinary IRT model using traditional settings
without the consideration of gaming if gji = 0. Mean-
while, Eq. 15 can also be viewed as a variant of the non-
compensatory bi-dimensional item response model [33] where
gaming ability also serves as a kind of latent trait.
Summary. We first measure the explicit gaming factor
from MAR and then infer the implicit gaming factor from
OAR. Next based on a simple signal detection model, we fuse
both the knowledge and gaming to model student learning.
As shown in Fig. 3, what we can observe from Student j and

𝑗 = 1,2,⋯ ,𝑀 

𝑖 = 1,2,⋯ ,𝑁 

𝜃𝑗

𝜗𝑗

𝛽𝑖

𝛾𝑖

𝜂𝑗𝑖

𝜁𝑗𝑖

𝑔𝑗𝑖  𝑟𝑗𝑖1

Figure 3: The graphic model of KPGRM.

Question i is the response Rji, where we obtain the first-
attempt response rji1 and the extracted gaming factor gji.
In this paper we model student learning from two aspects:
knowledge, i.e. ability θj and the relevant difficulty βi, and
gaming, i.e. ability ϑj and the corresponding difficulty γi.
As proposed previously, we assume that the response of each
student to each question is affected by genuine knowledge
learning ηji and artful gaming strategy ζji.

4.4 Model Estimation
In this subsection, we introduce an effective training algo-

rithm using MCMC for the proposed KPGRM model, that
is, to estimate the unshaded variables in Fig. 3. Specifi-
cally, we assume the prior distributions of the parameters in
KPGRM as follows:

θj ∼ N (µθ, σ
2
θ),βi ∼ N (µβ , σ

2
β); (16)

ϑj ∼ N (µϑ, σ
2
ϑ),γi ∼ N (µγ , σ

2
γ).

The functional forms of the prior distributions are chosen
for convenience, and the associated hyperparameters are se-
lected to be reasonably vague within the range of the realistic
parameters. Then, the joint posterior distribution of θ,ϑ,β
and γ given the responses R is as follows:

P (θ, ϑ, β, γ|R) ∝ L(θ, ϑ, β, γ)P (θ)P (ϑ)P (β)P (γ). (17)

where L is the joint likelihood function of KPGRM which,
according to Eq. 15, is defined as follows:

L(θ, ϑ, β, γ) =
∏
j,i

(η
1−gji
ji ζ

gji
ji )rji1 (1− η1−gjiji ζ

gji
ji )1−rji1 . (18)

The full conditional distributions of the parameters given
the observations and the rest of parameters are as follows:

P (θ|R, ϑ, β, γ) ∝ L(θ, ϑ, β, γ)P (θ), (19)

P (ϑ|R, θ, β, γ) ∝ L(θ, ϑ, β, γ)P (ϑ), (20)

P (β|R, θ, ϑ, γ) ∝ L(θ, ϑ, β, γ)P (β), (21)

P (γ|R, θ, ϑ, β) ∝ L(θ, ϑ, β, γ)P (γ). (22)

Finally, we propose a Metropolis-Hastings (M-H) based
MCMC algorithm [18] for parameter estimation by Alg. 1.
To be specific, we first randomize all the parameters as the
initial values. Then, using observed responses R, we com-
pute the full conditional probability of knowledge ability θ,
the relevant difficulty β, the gaming ability ϑ and the cor-
responding difficulty γ. Next, the acceptance probability of
the samples can also be calculated based on the M-H algo-
rithm. In this way, we estimate the parameters with the
MCMC formed through sampling.
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Table 2: Datasets Summary.
Dataset # Student # Question Avg #Attempt Avg Response Time (sec) Avg #Transition Avg Coverage
Alone 140 16 2.44 35.03 1.89 0.43
Earth 164 14 2.31 39.56 1.38 0.60

Algorithm 1 Sampling algorithm for KPGRM.

Input: all the response R and gaming factor G
Output: samples of θ, ϑ, β, γ
1: Initialize θ0, ϑ0, β0, γ0 with random values
2: for t = 1, 2, · · · , T do
3: Draw θt ∼ U(θt−1 − δθ, θt−1 + δθ), and accept θt with the

probability:

min{1, L(θt,ϑt−1,βt−1,γt−1)P (θt)

L(θt−1,ϑt−1,βt−1,γt−1)P (θt−1)
}.

4: Draw ϑt ∼ U(ϑt−1 − δϑ, ϑt−1 + δϑ), and accept ϑt with
the probability:

min{1, L(θt−1,ϑt,βt−1,γt−1)P (ϑt)

L(θt−1,ϑt−1,βt−1,γt−1)P (ϑt−1)
}.

5: Draw βt ∼ U(βt−1−δβ , βt−1 +δβ), and accept βt with the
probability:

min{1, L(θt−1,ϑt−1,βt,γt−1)P (βt)

L(θt−1,ϑt−1,βt−1,γt−1)P (βt−1)
}.

6: Draw γt ∼ U(γt−1− δγ , γt−1 + δγ), and accept γt with the
probability:

min{1, L(θt−1,ϑt−1,βt−1,γt)P (γt)

L(θt−1,ϑt−1,βt−1,γt−1)P (γt−1)
}.

7: if convergence criterion meets then
8: return
9: end if

10: end for
11: return

5. EXPERIMENT
We first prove the effectiveness of KPGRM against the

baseline approaches by predicting student performance; then,
we further conduct gaming factor and question difficulty
analysis to demonstrate the reliability of our method.

5.1 Setup
The real-world MAR datasets in our experiment are col-

lected from Smart Sparrow6 where students enrolled in dif-
ferent schools study two science courses Are we alone and
Earth. To alleviate sparsity, we construct the datasets by
filtering relatively inactive students and questions. Then we
denote the two obtained datasets as Alone and Earth. Each
of the datasets contains the actual response content, the la-
bel indicating correct or not and the time stamp of each
student to each question at each attempt. A brief summary
of each dataset is shown in Tab. 2. And Fig. 4 shows an
overview of the two datasets, where each subfigure is a ma-
trix depicting the number of attempts of each response, each
row denotes a student and each column represents a ques-
tion. The yellower one means more attempts of one response
while the bluer one indicates less attempts.

For the prior distributions of the parameters in Alg. 1, we
set the hyperparameters as follows:

µθ = 0, σ2
θ = 1;µβ = 0, σ2

β = 2;

µϑ = 0, σ2
ϑ = 1;µγ = 0, σ2

γ = 2.

In these experiments, we set the number of iterations to
5,000 and estimate the parameters based on the last 2,500
samples to guarantee the convergency of the Markov chain.

6https://www.smartsparrow.com/

Alone

5 10 15

20

40

60

80

100

120

140
5

10

15

20

25

30

35

40
Earth

2 6 10 14

50

100

150
5

10

15

20

25

Figure 4: Overview of the datasets.

5.2 Model Evaluation
To evaluate the performance of our KPGRM in terms

of cognitive modelling, we choose Predicting Student Per-
formance, one of the key tasks in educational systems [21,
6], compared with some popular methods from psychomet-
rics and data mining as baseline methods. We adopt three
metrics from different perspectives: root mean square error
(RMSE), classification accuracy (ACC) and area under an
ROC curve (AUC).

Specifically, we employ 5-fold cross validation on each of
the datasets where one of five folds is targeted for testing and
the remaining parts for training in each pass. The baseline
methods are as follows:

• IRT : [29, 3] a cognitive diagnosis method modelling
students’ latent traits and the parameters of questions
such as difficulty.

• PMF : [28] probabilistic matrix factorization is a latent
factor model projecting students and questions into a
low-dimensional space.

• NMF : [26] non-negative matrix factorization is a latent
non-negative factor model and can be viewed as a topic
model.

• LFA: [6] an educational data mining model considering
the different impacts of the defined knowledge factors
on student performance.

(a) Alone
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(b) Earth
RMSE ACC AUC
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KPGRM IRT PMF NMF LFA

Figure 5: The comparison of prediction perfor-
mance.
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For the purpose of comparison, we record the best per-
formance of each algorithm by tuning their parameters and
Fig. 5 shows the prediction results of our KPGRM and base-
line approaches on the two datasets. We observe that, over
all the datasets, KPGRM performs the best. Specifically,
when considering cognitive assumptions (“knowledge plus
gaming”) it outperforms PMF and NMF, and when incor-
porating the gaming factor, it outperforms IRT and LFA.
Of the baseline methods, IRT, as the classical psychometri-
cal model, outperforms the others while LFA obtains a rela-
tively poorer result by modelling only one general knowledge
factor. In summary, considering the gaming factor, our KP-
GRM captures the characteristics of students more precisely
and it is also more suitable for real-world scenarios.

5.3 Gaming Factor Analysis
In addition to model evaluation, we conduct a cognitive

analysis on the gaming factor. Firstly, we check the effec-
tiveness of our method to extract the gaming factor. Due
to the lack of ground truth, we adopt human coding [1]
for indirect verification. Specifically, we randomly choose
20 MAR from Alone, and ask 11 volunteers (educational
researchers and graduate students) to scrutinize the detail
of each attempt of an MAR and allocate a gaming score
(where 1, 0.5 and 0 denote “gaming”, “not sure” and “no
gaming”, respectively). Achieving acceptable inter-rater re-
liability (Fleiss’ κ = 0.73), we compute the average AUC
by considering MAR with a gaming score of 1, 0.5 and 0 as
positive, neutral and negative case. Tab. 3 shows the results
computed by Len(·), Spd(·), T rs(·), Cov(·) and our aggre-
gated measure F (·). From this comparison we can observe
that our aggregated measure for the gaming factor F (·) is
the most consistent with human coding.

Table 3: The comparison with human coding.
Measure Len(·) Spd(·) Trs(·) Cov(·) F (·)
avgAUC 0.958 0.723 0.932 0.945 0.966
(Fleiss’ κ = 0.73)

(1) Choose the correct statement:
(A) The light year is a unit of distance

(B) The light year is a unit of time

(C) The light year is a unit of speed

(D) The light year is a unit of luminosity 

(2) Time of driving a car from Earth to Proxima Centauri is in the order of:
(A) Days

(B) Half a year

(C) A lifetime

(D) A millenium

(E) Millions of years

(F) The age of the universe 

A,A A,B A,C A,D A,E A,F

No Answer A,F

7 sec 5 sec 4 sec 5 sec 4 sec

48 sec

Student 1
g=0.8341

Student 2
g=0.1037

Figure 6: Two cases with different gaming factors.

Furthermore, we also study two cases with different gam-
ing factors. As shown in Fig. 6, the question above comprises
two steps which contain four and six options, respectively.
The chosen option of each attempt and time spent (seconds)
between each attempt of two students are also presented be-
low. We can observe that Student 1 tries each of the given

options of Step 2 systematically and quickly while being very
sure of the correct answer of Step 1, hence the extracted
gaming factor is 0.8341. On the contrary, Student 2 for-
gets to input the answer first and then spends a relatively
longer time figuring out the correct options at the second
attempt, hence the gaming factor is much lower at 0.1037.
From the comparison of the two real-world cases we can see
that the extracted gaming factor is very intuitive: the more
significant gaming behaviour, the larger gaming factor.

5.4 Question Difficulty Analysis
Based on our KPGRM framework, we also analyse the

question difficulty by considering gaming impacts. As dis-
cussed in Section 4.3, question difficulty comes from two
aspects: knowledge learning and gaming strategy. It is of
significant importance for learning systems to delicately de-
sign questions for eliminating gaming impacts and capturing
the actual level of students for better personalized instruc-
tion. Fig. 7 shows the relationship between the two question
properties, i.e. the number of steps and options7, and the
two kinds of difficulties from Alone.
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Figure 7: The relationship between two kind of dif-
ficulties and two question properties.

We can observe that the gaming difficulty of the ques-
tions with less steps or options is more likely to be lower,
which means it is easier for students to solve by using an art-
ful gaming strategy such as guessing. Pearson’s ρ between
the gaming difficulty and the number of steps and options
of the questions is 0.7375 and 0.7287, respectively. On the
other hand, the knowledge difficulty of the questions is not
significantly related to the question properties. Pearson’s ρ
between the gaming difficulty and the number of steps and
options of the questions is 0.3626 and 0.3254, respectively.
The results conform to the intuition: the more complicated
the design (including more steps or options), the higher the
gaming difficulty of the question. Thus our KPGRM can
also be utilized to target the questions with low gaming dif-
ficulty and improve the system design to enhance the effec-
tiveness of the ITS.

5.5 Discussion
Note that the generic idea of our work is to build a cogni-

tive model to discover the actual learning ability of students
by distinguishing the effects of different factors, i.e. knowl-
edge and gaming in the current scenario. Apparently stu-
dent learning activity as a sophisticated cognitive process,
involves a lot of psychological factors, which however, is out
of the focus of this work. In practice, the outcome of our

7Multiply the number of options of each step if the question
has multiple steps.
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model can be applied beyond the cognitive modelling itself,
for example, for evaluating the ITS content design.

On the other hand, there is still room for improvement.
Our KPGRM only considers four aspects of MAR to mea-
sure the gaming factor, so we will try to utilise more in-
formation to enhance the measurement. In addition, our
KPGRM computes the gaming factor directly or indirectly
and regards it as observed, and we will build a more robust
model by modelling the gaming factor as partially observed.
Furthermore, many more factors impacting student response
are underexplored beyond knowledge and gaming.

6. CONCLUSION
In this paper, we designed a Knowledge Plus Gaming Re-

sponse Model, KPGRM, to precisely explore the gaming fac-
tor in student learning based on MAR data. Specifically, we
first measured the explicit gaming factor from MAR by an
aggregated P-value based method and inferred the implicit
gaming factor from OAR. Next, combining the extracted
gaming factor, we constructed a novel signal detection re-
sponse model to precisely describe student learning. Finally
we conducted extensive experiments to prove the effective-
ness of our method, cognitively analysed the gaming factor
and studied the gaming difficulty of the questions. We ex-
pect this work could lead to more future studies.
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