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Abstract—With the rapid development of E-commerce, recent
years have witnessed the booming of online advertising industry,
which raises extensive concerns of both academic and business
circles. Among all the issues, the task of Click-through rates (CTR)
prediction plays a central role, as it may influence the ranking
and pricing of online ads. To deal with this task, the Factorization
Machines (FM) model is designed for better revealing proper
combinations of basic features. However, the sparsity of ads
transaction data, i.e., a large proportion of zero elements, may
severely disturb the performance of FM models. To address this
problem, in this paper, we propose a novel Sparse Factorization
Machines (SFM) model, in which the Laplace distribution is
introduced instead of traditional Gaussian distribution to model
the parameters, as Laplace distribution could better fit the
sparse data with higher ratio of zero elements. Along this
line, it will be beneficial to select the most important features
or conjunctions with the proposed SFM model. Furthermore,
we develop a distributed implementation of our SFM model
on Spark platform to support the prediction task on mass
dataset in practice. Comprehensive experiments on two large-
scale real-world datasets clearly validate both the effectiveness
and efficiency of our SFM model compared with several state-of-
the-art baselines, which also proves our assumption that Laplace
distribution could be more suitable to describe the online ads
transaction data.

I. INTRODUCTION

In recent years, with the rapid development of E-commerce,

online advertising industry has become the most popular

and effective approach of promotion and marketing. As a

multi-billion business mode, online ads could build novel

connections between customers and merchants with lower cost

and better coverage. In 2015, spending on online ads reached

$59.6 billion in the US, 20.4% over 2014. While producing

opportunities, such an enormous market raises new challenges

in the real-time bidding (RTB) scheme [32], [33], [25] which

targets at designing the ads inventories, including allocation,

ranking and pricing [28], [31], [19]. Thus, techniques on

computational advertising are urgently required to support the

decision-making and ensure the profit.

In computational advertising, the most crucial task is the

price setting for each ad as it has a direct bearing on the profit.

Usually, several compensation methods are utilized, such as

Cost per Click (CPC), Cost per Action (CPA) or Cost per Mille

(CPM). Among them, CPC, in which advertisers pay each

time only a user clicks on the ad, is the most popular method

as 66% of online advertising transactions are counted on a
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CPC basis1. Intuitively, if a user clicks the ad and then visits

the profile of advertiser, there will be a deal more probably

than just viewing the ad. Thus, CPC may accurately reveal

conversion rate better than the other metrics. However, in order

to arrange the pricing and ranking of each ad, expectation of

clicking should be precisely estimated, i.e., the click-through
rate (CTR) prediction task, which attracts extensive concern

of both academic circles and business circles [16], [24].

In the literature, traditionally, as a simple but effective tool,

Logistic regression (LR) is widely studied and utilized (e.g.,

[24], [4], [7], [10], [15]) to predict the CTR. However, this

linear model heavily depends on manually selected features,

while the latent correlations between features could hardly be

revealed. It is a fatal flaw as combining features based on

human expertise costs a lot, especially for large-scale datasets

with high dimensional features, which may severely limit its

application. Recently, some other prior arts based on neural

network (NN) are proposed, like [3] and [13], in which various

elements could be well summarized and complex interactions

could be automatically obtained. However, the NN-methods

suffer heavy burden of computation, and it is always difficult

to achieve the global optimization. For CTR prediction, the

Factorization Machines (FM) [21] model is also adopted based

on feature engineering and matrix design. As a successful

solution [20], [27], FM could comprehensively model the

correlations between variables with the basic assumption that

the first and second order parameters follow Gaussian distribu-

tion. Furthermore, to better summarize the features, Bayesian
Factorization Machines are designed by imposing Gaussian

hyper-priors for mean of each parameter, and Gamma hyper-

priors for prior precision [6], [22].

However, there are some unique characteristics of ad trans-

action data, which impairs the performance of FM models.

First, ad transaction data could be extremely sparse due to the

common-used one-hot encoding, i.e., if N kinds of possible

status exist for one feature, there will be a N -dimensional

vector, which has only one non-zero element indicating the

current status. Second, ad transaction data in real-world appli-

cation could usually be large-scale. For instance, Table I lists

statistics of 4 advertisers in iPinYou dataset [11], in which

each record of impression is represented by features of 15,804

dimensions. We realize that for all the advertisers, they hold

millions of impression records and billions of feature values.

1https://en.wikipedia.org/wiki/Online advertising
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TABLE I
SOME CHARACTERISTICS OF IPINYOU TRAINING DATASETS, WITH

FEATURES OF 15804 DIMENSIONS.

Advertiser Key Impressions Non-zero Values Non-zero Rate(%)
1458 3,083,056 69,550,137 0.1427
3358 1,742,104 37,915,970 0.1377
2821 1,322,561 15,106,292 0.1463
2997 312,437 5,383,633 0.1090
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Fig. 1. The probability density function of Laplace distribution with (μ =
0, ρ = 1) and Gaussian distribution with (μ = 0, σ = 1). Specifically, the
horizontal axis shows the possible value of variable x, while the vertical axis
records the corresponding probability of x.

Unfortunately, the proportion of non-zero elements is even

lower than 0.15%. Clearly, mass data and extreme sparsity may

significantly disturb the modeling, as Gaussian distribution

could hardly fit the sparse data.

To address these problems, in this paper, we propose a

novel Sparse Factorization Machines (SFM) model, in which

the Laplace distribution is introduced instead of traditional

Gaussian distribution to model the parameters. As shown in

Figure 1, Laplace distribution has a higher peak than Gaussian

with similar parameters, which results in a higher probability

of zero elements [18]. Thus, Laplace distribution could better

describe the sparse data with few non-zero elements, and fur-

ther, distinguish the relevant features or measure correlations

between feature pairs. Along this line, to be specific, since

Laplace distribution is non-smooth, the Bayesian inference of

SFM will be analytically intractable. Thus, we formulate it as a

scale-mixture of Gaussian distribution and exponential density,

and then employ the Markov chain Monte Carlo method to

perform the Bayesian inference. Furthermore, we develop a

distributed implementation of our SFM model on Spark to

support the prediction task on large-scale data in practice.

To the best of our knowledge, we are among the first ones

who introduce the Laplace distribution into FM modeling,

and further propose the distributed solution to ensure the

applicability. Comprehensive experiments on two large-scale

real-world datasets clearly validate both the effectiveness and

efficiency of our SFM model compared with state-of-the-art

baselines, including basic FM and extended Bayesian FM,

which proves that our model could select the most relevant

features or combinations, and also supports our assumption

that Laplace distribution could be more suitable to describe

the online ads transaction data.

II. RELATED WORK

As one of the most promising business models in big-data

driven online advertising markets, RTB has attracted intensive

research interests since its birth, and the major research issues

include bidding behavior analysis and strategy optimization,

market segmentation and ad performance analysis, and so

on [32]. Actually, one of the main goals for analyzing and

improving ad performance is to maximize user response rate

for advertising campaigns, such as click through rates (CTR).

Thus, a number of different models have been proposed for

CTR prediction in both academia and industry [24], [21], [20],

[27], [7], [30], [13]. Among them, Logistic regression (LR)

is the most intuitive, analyzing and expanding model [24],

where the probability that a user clicks on an ad is modeled

as a logistic function of a linear combination of the features.

Since LR model is highly interpretable and can be trained fast

when data are large-scale, it is widely studied. For instance,

[8] proposed to combine LR model and decision tree model.

Specifically, this method took the output of decision trees as

the input of LR model, and studied how the timeliness of

training data impact on CTR accuracy. However, as a linear

model, LR pays few attention to the different importance

and interactions of basic features. In contrast, Factorization

Machines (FM) model is a type of method that is able to model

all interactions between variables (features) automatically and

is a general predictor working with any real valued feature

vector [21]. Therefore, both the basic FM and the extended

versions of FM (e.g., Bayesian FM) have been adopted for

CTR prediction [6], [20]. Recently, the authors in [27] also

introduced an online learning algorithm for CTR prediction

based on Factorization Machines.

Besides LR and FM, some other methods were also pro-

posed recently. For instance, [7] presented a type of proba-

bilistic regression model by Bayesian priors. [30] introduced a

method that assigns user features and ad features with different

parameters. Thus, this method can ignore the useless features

of the users and ads, and the authors also built a distributed

learning framework for training the model. [5] presented a

combination of strategies, including a method for transfer

learning and an update rule for learning rate.

As the volume of data increase, more complex methods

based on neural network are proposed to predict CTR [3], [35],

[13]. For instance, in [3], Artificial Neural Networks (ANN)

was used for CTR prediction and performed better than LR

model. As observed in the real-world sponsored search system,

user’s behaviors highly depend on how the user behaved along

with the past time. Inspired by this observation, [35] intro-

duced a novel framework based on Recurrent Neural Networks

(RNN). In [13], Convolution Neural Networks (CNN) was

applied to predict CTR, which could treat varied elements in a

single ad impression as a whole and obtain complex interaction

among them. However, the Neutral Network methods may get

a local optimal solution easily and the time cost is high.

On the other hand, sparsity problem is usually one of the

major issues that bother many data-driven studies, e.g., CTR

prediction in this paper. Generally, when sparsity happens,

the researchers try to effectively represent each object by the

most informative latent features. For instance, [29] developed

Regularized dual averaging (RDA) method, which was par-
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TABLE II
SEVERAL IMPORTANT MATHEMATICAL NOTATIONS.

Notations Description
y vector of the targets, where yi represents

the impression was clicked or not
ŷ prediction of the models, a probability
X feature vectors, where xi (or x) is the i-th vector,

xij is the j-dimension of xi

k the dimension of latent vector
Θ parameters, Θ = {θ} = {w0, w1, · · · , wp, v11, · · · , vpk}
α the precision for measuring ŷ

α0, β0 parameters of prior Gamma distribution
μθ hyperparameter in BFM, the mean of θ
λθ hyperparameter in BFM, the precision of θ
ηθ the scale parameter of Laplace distribution
φθ hyperparameter in SFM
a, b parameters of prior inverse Gaussian distribution

ticularly effective in obtaining sparse solutions in the case of

L2-regularization. Indeed, prediction models with sparsity are

usually obtained by employing sparsity-favoring distributions

(that are highly peaked with heavy tails), e.g., Laplace dis-

tribution [18]. For instance, a variant of probabilistic matrix

factorization method (PMF) was proposed in [9] which utilized

a Laplace distribution to model the item/user factor vector,

and similarly, a sparse (Laplace) covariance prior is adopted

in [26] to enforce the user and item factors and make each

latent feature reflect the semantics more properly.

However, to the best of our knowledge, none of existing

studies focus on addressing the challenge of sparsity in C-

TR prediction by introducing Laplace priors to improve the

performance of factorization machines.

III. SPARSE FACTORIZATION MACHINES

In this section, we first briefly review FM and Bayesian

FM. Then, we will introduce our sparse factorization machines

model for the task of CTR prediction, namely SFM, and the

inference process. Finally, we show a distributed implementa-

tion on Spark based on the Gibbs sampling technique [1]. For

better illustration, Table II summarizes some math notations.

A. Preliminary

1) Factorization Machines: Factorization Machines (FM)

are a model class that combines the advantages of Support

Vector Machines (SVM) with factorization models [21], [12],

[14]. Figure 2(a) shows the graphical model of FM using

the plate convention, where shaded and unshaded variables

indicate observed targets and latent variables respectively.

Specifically, the model equation for a factorization machine

is defined as:

ŷ(x) := w0 +

p∑
j=1

wjxj +

p∑
j=1

p∑
l=j+1

〈vj ,vl〉xjxl, (1)

where x is the feature vector of one impression (exposure), xj

donates the j-th dimension of the feature vector, ŷ represents

the prediction value of FM model, i.e., the estimated probabil-

ity of click. w0 is the global bias, wj models the importance

of the j-th variable and vj is a k-dimension latent vector of

the j-th variable. 〈·, ·〉 is the dot product of two vectors of

size k, that models the interaction between the j-th and l-th

variable. Here, k is the dimension of the latent vectors, which

controls the complexity of FM.
The pairwise interactions can be written as:

p∑
j=1

p∑
l=j+1

〈vj ,vl〉xjxl

=
1

2

k∑
f=1

⎡
⎣
⎛
⎝

p∑
j=1

vj,fxj

⎞
⎠

2

−
p∑

j=1

v2j,fx
2
j

⎤
⎦ , (2)

which makes FM can be computed in linear time O(kp).
The FM model has an appealing multilinearing trait

(Actually, we also exploit this property during our inference

of SFM). Specifically, for each model parameter θ ∈ Θ, the

output of FM ˆy(x) is a linear combination of two functions

g(x) and h(x) [23]. The functions g and h are indexed with

the name of the parameter θ because their form depends on

the variable θ but they are independent of the value of θ.

ŷ(x) = gθ(x) + θhθ(x), ∀θ ∈ Θ, (3)

where hθ(x) corresponds to the gradient term:

hθ(x) =
∂ŷ(x)

∂θ
=

⎧⎪⎨
⎪⎩
1 if θ = w0,

xj if θ = wj ,

xj
∑p

l=1 vl,fxl − vj,fx
2
j if θ = vj,f .

(4)

The sum
∑p

l=1 vl,fxl is independent of j and thus can be

precomputed for efficient learning.

In summary, FM subsumes matrix factorization which is

representable by engineering the input features x, and they are

more complex than matrix factorization models as x may con-

sist of real valued predictor variables. Also, they can efficiently

handle relationships between these features. Therefore, FM

can be used to address data with side information. However,

restricting all features to the same regularization level limits

the flexibility of the model [21].

2) Bayesian Factorization Machines: To further improve

the accuracy, automatic hyperparameter learning (no grid

search) or no learning hyperparameter, e.g., learn rate for

gradient descent, FM was enhanced with structured Bayesian

inference (namely BFM) [6]. Specially, in Bayesian model,

Gaussian hyper-priors are added to the standard regularized

regression model (i.e., FM) for each mean μθ of all model

parameters Θ = {w0, w1, · · · , wn, v1,1, · · · , vn,k}, as well as

Gamma hyper-priors for each prior precision α, λθ, as shown

in Figure 2(b). The standard L2-regularized regression model

with hyperparameters is for a sample of n observations:

p(Θ|y,X,ΘH) ∝
n∏

i=1

√
αe
−α

2
(yi−y(xi,Θ))2

∏

θ∈Θ

√
λθe

−λθ
2

(θ−μθ)
2

. (5)

By maximizing the log-posterior of the model over both

parameters and hyper parameters, BFM can automatically

control the model complexity. From the Bayesian model,

we can get a probability distribution of CTR rather than a

fixed estimate value. Then, it is beneficial for the balance

of exploration and exploitation. Furthermore, it helps us to

control the speed of advertising. However, BFM assumes that

the parameters follow Gaussian distribution, which may not

be reasonable especially when the data are extremely sparse.
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Fig. 2. Graphical models for FM, BFM and SFM, respectively.

B. SFM Model

To address sparsity, the sparsity-favoring distributions can

be employed which prefer a high peak with heavy tails, e.g.,

Laplace distribution. Specifically, Laplace distribution is log-

concave, leading to a posterior whose log density is a concave

function and has a single local maximum, which is essential

to design robust and easy-to-use algorithm. The probability

density function (P.D.F.) of Laplace distribution is defined as:

L(x|μ, ρ) = 1

2ρ
exp(−|x− μ|

ρ
). (6)

In Section I, Figure 1 shows the difference between the

P.D.F.s of Laplace distribution and Gaussian distribution. We

propose a novel Sparse Factorization Machines (SFM) model

for CTR prediction, in which the Laplace distribution is intro-

duced instead of traditional Gaussian distribution to model the

parameters. The graphical representation is shown in Figure

2(c). In this subsection, we show the details of the parameter

modeling and the overall generative process of SFM.

Parameters w and v: In order to effectively characterize

each feature and the interaction, we try to select the most

informative latent features to represent them. Thus, we employ

Laplace distribution to model the first order parameter w
with Zero-mean and ηw scale, and model the second order

parameter v with Zero-mean and ηv scale.

p(w|ηw) =
p∏

j=1

L(wj |0, ηw), (7)

p(v|ηv) =
p∏

j=1

k∏
f=1

L(vjf |0, ηv). (8)

Hyperparameters ηθ (e.g., ηw, ηv): One step further, we

select the Inverse Gaussian (IG) distribution [17] to model

the scales of Laplace distribution for obtaining a hierarchical

Bayesian treatment of SFM and enhancing the model robust-

ness. In [36], it has been demonstrated that Laplace mixture

with IG is beneficial to define a regularization for variable

selection, which is useful for SFM model to select the most

informative latent features. That is,

IG(a, b) =

√
b

2πη3
θ

exp

{−b(ηθ − a)2

2a2ηθ

}
, (9)

where a is the mean and b is the scale parameter of IG

distribution, respectively.

Precision α: In SFM, the conditional distribution of the

observed value ŷ is still i.i.d. normal distribution with mean

y(X) and precision α. We model the precision of Gaussian

distribution α by Gamma distribution with shape α0 and scale

β0 as the same as BFM.

p(α|α0, β0) =
1

βα0
0 Γ(α0)

x(α−1)e
− x

β , x > 0. (10)

In summary, according to the Bayesian theory,
the posterior distribution over parameter θ ∈ Θ =
{w0, w1, · · · , wn, v1,1, · · · , vn,k} can be modeled as:

p(θ|y,X,Θ\{θ}, α, ηθ) =p(y|X,Θ, ηθ)p(θ|ηθ)
p(y|α)

∝p(y|X,Θ, ηθ)p(θ|ηθ). (11)

Then, the overall generative process of SFM can be sum-

marized as follows.

• Draw scales ηw and ηv from IG(a, b).
• Draw each first order parameter w from L(0, ηw) and

each second order parameter v from L(0, ηv).
• Draw precision α from Γ(α, β).
• Draw each target value ŷ from N(y(X), α).

C. Inference

In this subsection, we show the solution for ”inverting”

the generative process and ”generating” latent variables (pa-

rameters) from given observations (e.g., yi). Along this line,

Markov chain Monte Carlo (MCMC)-based methods are wide-

ly applied to approximate the predictive distribution [9]. Its key
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idea is to construct a Markov chain that will evenly converge

to the posterior distribution of the model with the given data,

and each state of the Markov chain is used as a sample of

the desired distribution. When the conditional distributions

can be sampled easily, Gibbs sampling is the simplest but

efficient MCMC algorithm, which samples each variable from

its distribution conditionally on the current values of all other

variables, i.e., it samples each variable by fixing all others.

However, it is not easy to sample from a non-smooth Laplace

distribution in SFM model. Fortunately, Laplace distribution

can be equivalently expressed as a scaled mixture of Gaussians

[2], i.e., an infinite Gaussian mixture with an exponential

distribution like

L(x|μ, ρ) =
∫ ∞

0

N(x|μ, ε)exp(ε|ρ
2
)dε. (12)

We can see that all priors on the parameters and hyperpa-

rameters in SFM are conjugate, and thus, we can develop an

efficient Gibbs sampling algorithm based on Eq. (12) to infer

SFM model. Next, we will introduce the proposed sampling

process in detail.
Sample parameters θ: For θ, we extract all terms related

to θ and use Bayes rule to obtain

p(θ|y,X,Θ\{θ}, α, ηθ) ∝ p(y|X,Θ, α)p(θ|ηθ)

=

n∏
i=1

N(yi|ŷ(X,Θ), α)×L(θ|0, ηθ). (13)

In order to incorporate the alternative expression of Laplace

distribution, i.e., the infinite Gaussian distribution in Eq. (12),

and motivated by [9], we introduce a latent variable φ, where

each element φθ is a variable with exponential prior, i.e.,

p(φθ|ηθ) = exp(φθ|ηθ), (14)

for the corresponding θ. We can further express Eq. (13) as

p(θ|y,X,Θ\{θ}, α, φθ) = N(θ|μ�
θ , σ

2
θ), (15)

where

σ2
θ =

(
α

n∑
i=1

hθ(xi)
2 + φ−1

θ

)−1

, (16)

μ�
θ = σ2

θ

(
n∑

i=1

α(yi − gθ(xi))hθ(xi)

)
. (17)

Sample hyperparameters ηθ and φθ: Since we introduce

a latent variable φ for inferring θ, in the following we show

how to sample each element φθ in φ. Specifically, for φθ,

we have p(φθ|θ, ηθ) ∝ p(θ|φθ, ηθ)p(φθ) and each φθ has

an exponential prior (Eq. (14)). According to the property

of exponential distribution, φ−1
θ follows an inverse Gaussian

distribution [36]. Then, we can get the posterior probability of

the hyperparameters φθ as

p(φ−1
θ |θ, ηθ) = IG

(√
ηθ

|θ| , ηθ

)
. (18)

For the scale of Laplace distribution, ηθ, it is modeled by

an IG distribution (as shown in Eq. (9)), and thus, it can be

Algorithm 1 Gibbs sampling for SFM

Input: targets y, feature vectors X, hyperparameters α0, β0, a, b
Output: parameters Θ

1: Initialize model parameters Θ1 and hyperparameters η1
θ

2: Sample hyperparameter α (Eq. (21)):
αt ∼ p(α|y,X,Θt, α0, β0);

3: for t = 1, · · · , T do
4: for all θ ∈ Θ do
5: Sample hyperparameter φθ in parallel (Eq. (18)):

(φ−1
θ )t ∼ p(φ−1

θ |θt, ηt
θ);

6: Sample hyperparameter ηθ in parallel (Eq. (19)):
ηt+1
θ ∼ p(ηθ|φt

θ);
7: end for
8: Sample the parameters (Eq. (15)):

Θt+1 ∼ p(Θ|y,X,Θt, αt, φt
θ);

9: end for
10: return ΘT

computed by

p(ηθ|φθ, a, b) = IG

(√
φθ + a

b
, φθ + a

)
. (19)

Sample parameters α: At last, we show how to sample
the precision α of the normal distribution for measuring ŷ.
Based on Eq. (10), the posterior distribution of α by fixing
other variables can be written as

p(α|y,X,Θ) = Γ(α�, β�),

α� =
n

2
+ α0, (20)

β� =
1

2

n∑
i=1

(yi − (gθ(xi) + θhθ(xi)))
2 + β0.

In summary, the Gibbs sampling algorithm for SFM takes

the form of Algorithm 1.

D. Distributed Implementation On Spark

As the volume of advertising data is growing dramatically,

Spark is an excellent tool to analyze this type of data and

implement CTR prediction algorithm. In this subsection, we

develop a distributed implementation of SFM on Spark.

The flowchart is shown in Figure 3. Specifically, we first

broadcast the parameters collect Θ to all participating execu-

tors (there are C executors in total). Each executor compute

the function gθ(x) and hθ(x). Then, we use the resilient dis-

tributed dataset (RDD) operates flatMap and partitionBy to

shuffle the data. Next, the executors can sample the parameters

and hyperparameters as described in Algorithm 1 and finally

write back its result.

In this way, the computational complexity of inferring the

parameter Θ and its corresponding hyperparameters in SFM

is O(T (kpN̂)), where T is the number of iterations, k is the

number of latent features and N̂ is the maximum number of

samples in all executors (In other words, the more executors

may not always lead to fewer time consuming). Thus, the

computational complexity of our SFM algorithm is linearly

scalable to the size of samples, so it is very practical for

handling large-scale advertising data.
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TABLE III
IPINYOU DATASET STATISTICS

Training Dataset Test Dataset
Season Advertiser Key Impressions Clicks CTR(%) Impressions Clicks CTR(%)

2 1458 3,083,056 2,454 0.080 614,638 543 0.088
2 3358 1,742,104 1,358 0.078 300,928 339 0.113
2 3386 2,847,802 2,076 0.073 542,421 496 0.091
2 3427 2,593,765 1,926 0.074 536,795 395 0.074
2 3476 1,970,360 1027 0.052 523,848 302 0.058
3 2259 835,556 280 0.034 417,179 131 0.031
3 2261 687,617 207 0.030 343,862 97 0.028
3 2821 1,322,561 843 0.064 661,964 394 0.060
3 2997 312,437 1386 0.444 153,063 533 0.348

Total 9 24,658,119 18,559 0.075 6,689,084 5,162 0.077

Update �(1~d)

Update �
�
(1~d)

Update �
�
(1~d)

(�
�
*, �

�

2, �)(1~d)

Update �(d+1~2d)

Update �
�
(d+1~2d)

Update �
�
(d+1~2d)

(�
�
*, �

�

2, �)(d+1~2d)

Update �(N-d+1~N)

Update �
�
(N-d+1~N)

Update �
�
(N-d+1~N)

(�
�
*, �

�

2, �)(N-d+1~N)…

…

…

…

g
�
(x

11
)

h
�
(x

11
)

g
�
(x

12
)

h
�
(x

12
)

g
�
(x

1n
)

h
�
(x

1n
)

g
�
(x

21
)

h
�
(x

21
)

g
�
(x

22
)

h
�
(x

22
)

g
�
(x

2n
)

h
�
(x

2n
)… …

x11 x12 x1n… x21 x22 x2n… …

Collect �

Executor 1

FlatMap

partitionBy

broadcast

Executor 2

Fig. 3. Distributed implementation on Spark.

IV. EXPERIMENTS

In this section, we evaluate the performance of SFM on two

large-scale real-world datasets from desktop display advertis-

ing and iOS platform advertising, respectively. Specifically,

we demonstrate: (1) the effectiveness of SFM compared with

state-of-the-art baselines; (2) the sensitivity of SFM with

different parameters; (3) the comparison on different sparsity

levels; (4) the speedup of distributed implementation.

A. Experimental Setup

Data Description. We use two real-world datasets.

1) IPinYou Dataset: IPinYou dataset is mainly a desktop

display advertising dataset which is released by the DSP

company iPinYou in 2014. It includes three season datasets

of a global bidding algorithm competition [11]. Each sea-

son dataset contains impression, click, and conversion logs

collected from several advertisers during various days and is

previously divided into a training set and a test set. Because

there is no advertiser ID column in season 1, we only use

datasets of season 2 and season 3 for our experiments. For

instance, the training datasets of season 2 contains historical

bidding logs collected from 5 advertisers during the seven

days from June 6th to 12th, and a dataset collected from the

following three days from June 13th to 15th is used for offline

testing purposes. The statistical information of this dataset is

given in Table III, from which we can see that all CTRs in this

desktop display advertising dataset are less than 0.1% except

for advertiser 2997 (0.444%). It is the reason that advertiser

2997 is a mobile e-commerce app install related to the mobile

environment, where an increased number of inadvertent clicks

are easily generated by fat fingers due to the limited space of

touch screens. At last, as described in [11], we know that

each data record contains three types of information: user

features (iPinYou ID, user profile, region, city, etc), ad features

(creative ID, advertiser ID, landing page URL, domain, etc)

and context features (timestamp, IP, user-agent, ad slot ID, slot

width, slot height, etc). We extract the above three types of

features with 15,804 dimensions by one-hot encoding.

2) IOS Dataset: IOS dataset contains bid and click data

supplied by IFLYTEK Co.,Ltd., and it was collected from iOS

platform between the period of 16-26 April and 9-16 May

2016. Similar to iPinYou, for this dataset we conduct 10 runs

of experiments. For each run (Trial), we take 8 days and

split the data by time into a training set (7 days) and a test set

(1 day). The statistics of this dataset are shown in Table IV.

Because IOS data is collected from mobile environments, the

inadvertent clicks also exist and the CTRs are relatively high.

We extract features of 4,550 dimensions from data in April

and 5,462 dimensions in May, and the average non-zero rate

of features is 0.48% in April and the sparsity is approximately

between 0.38% and 0.40% in May.

Benchmark Methods and The Details of Training. In

order to demonstrate the effectiveness of SFM, we compare

it with two benchmark methods, FM and BFM [21], [6].

Actually, we can see that these two baselines are the related

methods for SFM. It also should be noted that the widely used

LR model is not listed as a baseline, since LR is a special case

of FM when k = 0.

The FM models were trained to minimize the sum-

squared error with L2-norm regular terms, and the reg-

ularization parameters were tuned from the candidate set

{10−4, 10−3, 10−2, 10−1, 1}. Following [6], we set α0 =
β0 = λ0 = αλ = βλ = 1, μ0 = 0 for BFM. In SFM, we

set α0 = β0 = η0 = φ0 = 1. Meanwhile, we selected the

mean of inverse Gaussian distribution a from the candidate

set {1, 3, 10, 30, 100, 300, 1000, 3000, 10000} and we set the

scale parameter b = 1/a respectively. Moreover, we randomly

initialize the parameter set Θ by Gaussian distribution with

mean = 0. We fix the dimension of latent vector k = 8 for

FM, BFM and SFM. In practice, the parameters with the best
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TABLE IV
IOS DATASET STATISTICS

Training Dataset Test Dataset
Experiment period Impressions Clicks CTR(%) period Impressions Clicks CTR(%)
Trial 1 11-17 April 5,046,406 57,207 1.134 18 April 1,219,926 15,229 1.248
Trial 2 12-18 April 5,398,028 63,628 1.179 19 April 1,545,594 18,090 1.170
Trial 3 13-19 April 6,181,866 72,186 1.168 20 April 1,862,805 37,459 2.011
Trial 4 14-20 April 7,327,085 102,181 1.395 21 April 1,125,374 24,463 2.174
Trial 5 15-21 April 8,051,988 121,148 1.505 22 April 1,148,904 25,262 2.199
Trial 6 16-22 April 8,468,659 138,137 1.631 23 April 1,042,017 23,809 2.285
Trial 7 17-23 April 8,675,763 153,552 1.770 24 April 1,025,736 25,952 2.530
Trial 8 18-24 April 8,970,356 170,264 1.898 25 April 1,020,010 23,658 2.319
Trial 9 19-25 April 8,770,440 178,693 2.037 26 April 1,179,900 24,042 2.038
Trial 10 9-15 May 2,337,551 57,364 2.454 16 May 643,128 20,431 3.177

training performance are chosen for the model, and they are

used as the default settings for performance comparison in

testing.

Evaluation Metrics. A good model for CTR prediction

should give good regression and classification results. Thus,

we evaluate the prediction performances of each algorithm

using three different metrics following [34], [20]. For regres-

sion, we use root mean square error (RMSE) and negative

log likelihood (NLL). These two metrics can quantify the

distance between predicted probabilities and the actual one.

Specifically, for a test set with N instances:

RMSE =

√∑N
i=1(yi − ŷi)2

N
, (21)

NLL = −
N∑
i=1

(yi log σ(ŷi) + (1− yi) log(1− σ(ŷi))), (22)

where yi and ŷi represent the target and predictions respec-

tively, and σ is the sigmoid function.

At the same time, we treat the prediction problem as a

binary classification task, where a click (no click) indicates

a positive (negative) instance. To reflect the performance

of classification result, we use the area under the receiver-

operating characteristic curve (AUC).

B. Experimental Results

Performance Comparison. First, the performance results

of all the models, evaluated using RMSE, NLL and AUC, are

summarized in Table V. Generally, from the table it can be

observed that SFM outperforms FM and BFM. Specifically,

though SFM is slightly better, the results under RMSE and

NLL (the smaller value the better performance) of all models

are very similar. However, the AUC values (the larger value the

better performance) achieved by SFM are much higher than

those achieved by FM and SFM. For different data sets, our

SFM model performs better than all the baselines significantly

(with P -value � 0.05). As AUC is a more reasonable

and straightforward metric for CTR prediction, these results

suggest that the proposed SFM model can more effectively

predict the click-through rate by modeling the sparsity of ad

data with Laplace distribution.

Second, we compare the convergence process of BFM and

SFM in terms of the number of iterations, as shown in Figure

4, with taking dataset 3476 from iPinYou and Trial 1 from

IOS as examples. From Figure 4, we can see that these two

methods converge similarly, and SFM outperforms BFM after

convergence which can be also observed in Table V. Since

the main difference between SFM and BFM is the prior

assumptions (Laplace distribution or Gaussian distribution)

over the parameters, these observations in Figure 4 once again

demonstrate the effectiveness of both Laplace distribution and

SFM model in CTR prediction.

Sensitivity of Parameters. According to the setting of

experiments, two parameters in SFM need to be determined,

i.e., the dimension of latent vector k and the mean of inverse

Gaussian distribution a.

As shown in Figure 5, we evaluate the RMSE, NLL and

AUC of SFM and BFM with different k. Due to the space

limitation, we only select the Trial 1 dataset from IOS for

illustration. From the figure, we can see that the size of latent

vectors k does affect the performance of the prediction models

[20]. Note that, we fix k = 8 as the default setting for

experimental evaluation. We also conduct an experiment to

study the impact of hyperprior a in SFM. Parameter a is

the mean of the inverse Gaussian distribution in Eq. (19),

which plays an important role in controlling the sparsity of

parameters. That is, larger a leads to larger ηθ and larger

1/φθ, which causes the variance σ2
θ smaller in Eq. (16). One

step further, the small variance makes most of the parameters

of SFM model close to zero, which is helpful to distinguish

the relevant and irrelevant features. Therefore, we evaluate

RMSE, NLL and AUC of SFM with different a from the

set {1, 3, 10, 30, 100, 300, 1000, 3000, 10000}, and the result

is presented in Figure 6. Here, we randomly select dataset

3358 from iPinYou and Trial 3 from IOS as examples. From

Figure 6, we can see that RMSE and NLL decrease and

AUC increases as a grows from 1 to 10,000. In other words,

with relatively large a, our SFM model can generate sparse

parameters, which could improve AUC and decline RMSE and

NLL at the same time. We observe that RMSE and NLL are

stable at a good level when a is larger than 30, and the model

performs quite well in AUC when a is larger than 300.

To better capture the parameters for other applications,

we summarize some experience. For instance, we can select

proper size of latent vectors k (e.g. k = 8) to get the

balance between accuracy and efficiency. Moreover, a can be

initialized with 300, and it is better to subsample the data and

obtain a small group of data for further tuning.

Comparison on Different Sparsity Levels. To straightfor-

wardly demonstrate that SFM is a sparsity-favoring model, we
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TABLE V
A PERFORMANCE COMPARISON

RMSE NLL AUC
Dataset FM BFM SFM FM BFM SFM FM BFM SFM
1458 0.021 0.021 0.020 0.0050 0.0050 0.0049 0.978 0.972 0.981
3358 0.026 0.025 0.025 0.0055 0.0054 0.0053 0.965 0.966 0.974
3386 0.029 0.029 0.028 0.0060 0.0060 0.0059 0.716 0.747 0.772
3427 0.023 0.022 0.021 0.0052 0.0051 0.0050 0.935 0.931 0.947
3476 0.026 0.023 0.022 0.0054 0.0054 0.0052 0.884 0.923 0.928
2259 0.018 0.018 0.017 0.0050 0.0050 0.0049 0.665 0.649 0.676
2261 0.018 0.018 0.017 0.0050 0.0050 0.0049 0.552 0.571 0.590
2821 0.024 0.024 0.023 0.0055 0.0051 0.0055 0.596 0.601 0.621
2997 0.059 0.058 0.058 0.0112 0.0112 0.0111 0.591 0.584 0.597

Trial 1 0.112 0.111 0.111 0.0295 0.0292 0.0290 0.545 0.548 0.556
Trial 2 0.108 0.107 0.107 0.0272 0.0269 0.0268 0.701 0.782 0.789
Trial 3 0.140 0.141 0.141 0.0419 0.0425 0.0425 0.630 0.629 0.636
Trial 4 0.145 0.146 0.146 0.0450 0.0454 0.0454 0.567 0.566 0.579
Trial 5 0.147 0.147 0.146 0.0457 0.0455 0.0454 0.580 0.577 0.589
Trial 6 0.149 0.150 0.150 0.0466 0.0481 0.0479 0.601 0.596 0.608
Trial 7 0.157 0.157 0.156 0.0506 0.0506 0.0505 0.591 0.590 0.599
Trial 8 0.151 0.151 0.150 0.0470 0.0470 0.0469 0.613 0.615 0.625
Trial 9 0.142 0.142 0.141 0.0434 0.0439 0.0425 0.587 0.564 0.617
Trial 10 0.175 0.175 0.174 0.0597 0.0597 0.0595 0.618 0.617 0.625
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Fig. 4. Convergence on iPinYou dataset 3476 and IOS dataset Trial 1.

TABLE VI
SPARSITY WITH DIFFERENT FEATURE NUMBERS

Dataset 2997 3358
Features 5,803 15,804 35,805 5,803 15,804 35,805

Non-zero Rate(%) 0.3751 0.1377 0.0608 0.2669 0.1090 0.0481

compare SFM with FM and BFM with different sparsity levels.

Specifically, for two randomly chosen datasets 2997 and 3358
in iPinYou2, we first extract features in three different ways,

i.e., the features with 5,803 dimensions, 15,804 dimensions,

and 35,805 dimensions, respectively. The proportion of non-
zero feature values (sparsity) with different dimension of

features are shown in Table VI. From this table we can

see that the higher number of features, the higher sparsity.

Then, we run FM, BFM and SFM on these datasets and

their performance in terms of AUC, as shown in Figure 7.

Combining Figure 7 and Table VI, we can see that when

2The features of IOS dataset are previously extracted and fixed by the online
advertising company, thus we only conduct this experiment on iPinYou.

the feature values become sparser, the improvement of SFM

is much higher than FM and BFM, i.e., SFM is a sparsity-

favoring model as Laplace distribution could fit the sparse data

very well. For better illustration, we visualize the parameter set

Θ on these two datasets to present the different distributions

of parameters in BFM and SFM in Figure 8 and Figure

9, respectively, where the distributions of parameters follow

their prior assumptions, i.e., Gaussian distribution or Laplace

distribution. We can see that the distribution of parameters can

be well fitted by their prior assumptions. Besides, it should be

noticed that the difference between the two distributions in

3358 is more obvious than that in 2997. Since there are more

samples in 3358, the factorization models can adapt to the

sparsity by sufficient training.

The Speedup of Distributed Implementation. Our SFM

is implemented on a Spark platform consisting of 4 executors.

Every executor has four 2.0GHz Intel Xeon E5-2620 CPUs

and 100G memory. There are 6 cores in each CPU, so our

cluster has 96 cores in total. For testing the performance of

our distributed implementation of SFM on Spark, we compare
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the running time of SFM on Spark with different settings.

Specifically, we set the number of executors as two extreme

numbers 1 and 4, respectively, and then we record the running

time of SFM. Actually, the comparison results are similar for

different datasets, and for simplicity, we just illustrate three

of them (i.e., datasets 2997, 2261 and 2259 from iPinYou) in

Figure 10. As shown in Figure 10, the SFM with 4 executors

could significantly speed up the computing process, i.e., our

distributed implementation of SFM is quite effective. We

should note that, we do not conduct such a running time

comparison for FM and BFM, this is because we directly use

the implementation of FM and BFM from libfm3, and thus we

do not have the distributed version of these two models.

3http://www.libfm.org/
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V. CONCLUSION

In this paper, we provided a novel Sparse Factorization

Machines (SFM) model for addressing the sparsity problem

in the task of click-through rate prediction. Based on the

analysis of the unique characteristics of ad data, we first

proposed the idea of utilizing the highly peaked Laplace

distribution in SFM to model the parameters. Since Laplace

distribution is nonsmooth, we then designed a technique to

make the Bayesian inference can be performed on SFM.

Meanwhile, we also developed a distributed implementation

of our SFM model on Spark to deal with large-scale ad data.

Finally, we conducted extensive experiments on two real-world

datasets from desktop display advertising and iOS platform
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advertising, respectively. The experimental results demonstrate

that Laplace distribution is very suitable to describe the online

ads transaction data and SFM model can effectively predict the

click-through rate.
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