
2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

Tradeoffs between Density and Size in Extracting
Dense Subgraphs: A Unified Framework

Zhefeng Wang∗, Lingyang Chu†, Jian Pei†, Abdullah Al-Barakati‡ and Enhong Chen∗
∗School of Computer Science and Technology

University of Science and Technology of China, Hefei, China

Email: zhefwang@mail.ustc.edu.cn, cheneh@ustc.edu.cn
†School of Computing Science

Simon Fraser University, Burnaby, Canada

Email: lca117@sfu.ca, jpei@cs.sfu.ca
‡King Abdulaziz University, Jeddah, Saudi Arabia

Email: aaalbarakati@kau.edu.sa

Abstract—Extracting dense subgraphs is an important step in
many graph related applications. There is a challenging struggle
in exploring the tradeoffs between density and size in subgraphs
extracted. More often than not, different methods aim at different
specific tradeoffs between the two factors. To the best of our
knowledge, no existing method can allow a user to explore
the full spectrum of the tradeoffs using a single parameter.
In this paper, we investigate this problem systematically. First,
since the existing studies cannot find highly compact dense
subgraphs, we formulate the problem of finding very dense but
relatively small subgraphs. Second, we connect our problem
with the existing methods and propose a unified framework
that can explore the tradeoffs between density and size of dense
subgraphs extracted using a hyper-parameter. We give theoretical
upper and lower bounds on the hyper-parameter so that the
range where the unified framework can produce non-trivial
subgraphs is determined. Third, we develop an efficient quadratic
programming method for the unified framework, which is a
generalization and extension to the existing methods. We show
that optimizing the unified framework is essentially a relaxation
of the maximization of a family of density functions. Last, we
report a systematic empirical study to verify our findings.

I. INTRODUCTION

A dense subgraph is a set of vertices in a graph that are

highly connected to each other. Extracting dense subgraphs is

a key step in many graph related applications. For example,

in social networks, a dense subgraph may correspond to a

closely connected community [1], [2], [3]. In bioinformatics,

extracting dense subgraphs can be used to find regulatory

motifs in genomic DNA [4] and reveal correlations among

genes [5]. In multimedia analysis, a dense subgraph can

represent a robust common visual pattern in similar images [6].

In machine learning, the one-class clustering problem [7] can

be essentially tackled by finding dense subgraphs.

There are two competing factors in dense subgraph extrac-

tion: density and size. If one wants a higher density, then the

sizes of the corresponding subgraphs tend to be smaller. If one

wants to extract larger subgraphs, she/he has to compromise

in density requirement. In many applications one has to
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explore tradeoffs between these two factors. For example, it

is interesting to find dense subgraphs in a friendship social

network, which help to capture groups of people who may

be influenced together. At the same time, according to the

famous Dunbar’s number theory [8], an individual can only

maintain stable relationships with a limited number of people

(e.g., 150). Thus, one may want to extract smaller and more

compact subgraphs, which correspond to closely connected

people. Here, we need to constrain the size of dense subgraphs

and expect a higher density. Although many algorithms have

been proposed to extract dense subgraphs [9], [10], [11], a

fundamental challenge remains – how can one explore the

possible tradeoffs between density and size of the extracted

subgraphs conveniently?
The existing methods provide some limited capability in

exploring the tradeoffs between density and size. Specifically,

[12], [13], [14] find dense subgraphs maximizing quadratic

function x�Ax. In this setting, one cannot control the size of

the extracted dense subgraphs. Pavan and Pelillo [15] proposed

a different objective function x�(A − αI)x to extract dense

subgraphs that are not as dense as but larger than those found

in [12], [13], [14], where one can use the hyper-parameter

α > 0 to control the size of extracted subgraphs to some

extent. The larger the value of α, the larger the size of the

extracted subgraphs and the lower the density. However, it

remains untouched how to extract dense subgraphs of density

higher than those found in [12], [13], [14], that is, those

maximizing x�Ax. Moreover, to the best of our knowledge,

there does not exist a unified framework or a unified method

to explore various tradeoffs between density and size.
In this paper, we systematically investigate the tradeoffs

between density and size in extracting dense subgraphs, and

make several contributions.

• First, we introduce a new objective function x�(A+αI)x
to address the need of finding subgraphs smaller and

denser than those found in [12], [13], [14]. By increasing

the hyper-parameter α > 0, we can find smaller and

denser subgraphs.
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Objective x�(A+ αI)x x�Ax x�(A− αI)x
Relative density high medium low
Relative size small medium large

TABLE I
TRADEOFFS BETWEEN DENSITY AND SIZE USING DIFFERENT OBJECTIVE

FUNCTIONS.

• Second, based on the similarity among [12], [13], [14],

[15] and this study, shown in Table I, we propose a natural

unified framework using objective function x�(A+βI)x,

where β can be negative, 0, or positive. We provide theo-

retical upper and lower bounds of the hyper-parameter in

the unified framework and derive the meaningful range

of the hyper-parameter so that solutions to the unified

framework correspond to non-trivial dense subgraphs.

• Third, to develop an efficient method for the unified

framework, we take the quadratic programming approach

and analyze the KKT conditions of the problem. We

extend the SEA method [14] to tackle the unified frame-

work. Moreover, we show that optimizing the proposed

unified framework is essentially a relaxation of the max-

imization of a family of density functions.

• Finally, we evaluate the performance of the proposed

framework on four data sets. The experimental results

confirm the effectiveness of our framework.

The rest of the paper is organized as follows. Section II

reviews related work. Section 3 introduces a new objective

function and proposes the unified framework. Section 4 devel-

ops a quadratic programming method. Section 5 shows that

optimizing the proposed unified framework is essentially a

relaxation of the maximization of a family of density functions.

Section 6 reports the experimental results. Section 7 concludes

the paper.

II. RELATED WORK

Given a graph G = (V,E) and a subset of vertices S ⊆ V ,

let GS be the corresponding vertex-induced subgraph. Finding

a dense subgraph is to find a set of vertices S that maximizes

the edge density of GS .

A straightforward way to measure edge density is by

e(S)/
(|S|

2

)
, where e(S) is the number of edges in GS . How-

ever, directly optimizing the density in this way leads to trivial

results, since a single edge has the maximum density. Thus,

many efforts have been made to formulate alternative edge

density so that the maximization can lead to dense subgraphs

of a non-trivial size. Using different definitions of edge density,

different types of dense subgraphs can be extracted, such as

densest subgraphs [16], [17] and quasi-cliques [18], [19]. The

densest subgraph problem [16], [17] is to find a set of vertices

S that maximize e(S)/|S|, and the corresponding edge density

definition is e(S)/|S|, too. A set of vertices S is an α-quasi-

clique [18], [19] if e(S) ≥ α
(|S|

2

)
. Essentially, α-quasi-cliques

are subgraphs whose edge densities are greater than or equal

to α. In this paper, we show that the unified framework is a

relaxation of the maximization of a family of interesting and

popularly used edge density functions.
In addition to extracting dense subgraphs through maximiz-

ing different kinds of edge density functions, there are some

works that find dense subgraphs by exploring various cohesive

sub-structures of graphs. Along this line, many notions of

such sub-structures were proposed, such as k-plex [20], k-

core [21] and k-truss [22], [23]. The degree of each vertex

within a k-plex of s vertices is s−k. The k-core is the largest

subgraph in which each vertex has a degree at least k within

the subgraph. The k-truss is the largest subgraph in which

every edge is involved in at least (k − 2) triangles within the

subgraph. To some extent, these sub-structures are relaxations

of cliques (i.e., a subset of vertices such that its induced

subgraph is complete) [24]. Thus, finding these sub-structures

is to extract dense subgraphs. Instead of directly extracting

cohesive sub-structures, Tsourakakis [25] introduced k-clique

densest subgraph problem, which aims to find subgraphs

that maximize the density of specific sub-structures, such as

triangles when k = 3. This problem generalizes the well

studied densest subgraph problem which is a special case for

k = 2. Then Mitzenmacher et al. [26] developed an efficient

sampling method for this problem. All these works are based

on some specific sub-structures of graphs, which makes them

different from our work that focuses on exploring the tradeoff

between size and density in extracting dense subgraphs with

no requirements of their structures.
In addition to the traditional graph theory approaches,

mathematical programming methods are popularly used in ex-

tracting dense subgraphs. Papailiopoulos et al. [27] developed

a numerical method for densest k-subgraphs problem [28]

that finds dense subgraphs via low-rank bilinear optimization.

Motzkin and Straus [12] proved that finding a maximal clique

in an unweighted graph is equivalent to finding the maxima

of the quadratic function x�Ax on the simplex. Pavan and

Pelillo [13] further extended the result to weighted graphs and

introduced a novel graph-theoretic concept called dominant

set that is a generalization of maximal cliques in the context

of weighted graphs and equivalent to maximal clique in the

unweighted case [29]. They showed that finding dominant

sets in weighted graphs is exactly finding local maxima of

the quadratic function x�Ax on the simplex. Liu et al. [14]

proposed a highly efficient algorithm called SEA to solve the

problem. The main drawback of this method is that it cannot

control the size of the extracted dense subgraphs. Pavan and

Pelillo [15] introduced another formulation x�(A − αI)x to

extract larger and sparser clusters. But their method cannot find

denser and smaller clusters. We will propose a new objective

function x�(A+ αI)x to address the issue.
Although the proposed formulation x�(A + αI)x in this

paper is very similar to the work of Pavan and Pelillo [15]

(i.e., x�(A − αI)x) in form, the contribution of our work is

substantial in the following aspects.

1) The change of sign in the formulation makes a signifi-

cant difference in the objectives. While Pavan et al. [15]

focused on finding larger subgraphs with compromised
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density, we focus on finding smaller dense subgraphs

with even higher density.

2) Our work is a solid theoretical supplement for the line

of previous methods proposed by Pavan et al. [13], [15]

and Liu et al. [14]. While those previous works only

focused on various dense subgraph mining applications,

we organize the family of those works and ours into a

unified framework and also provide an in-depth theoret-

ical analysis.

3) We further reveal the intriguing one-to-one relationship

between our general model and the family of traditional

edge density functions on unweighted graphs, such as

clique and quasi-clique [16], [17], [18], [19].

In summary, this work makes novel and solid theoretical

contributions to the class of mathematical programming meth-

ods [13], [15], [14] that focus on dense subgraph detection on

weighted graphs.

III. A UNIFIED FRAMEWORK

Consider a graph G = (V,E,w), where V =
{v1, v2, . . . , vn} is a set of vertices, E ⊆ V × V is a set

of edges, w : E → R
+ is a weight function over the set of

edges, and R is the set of real numbers. Let A be the adjacency

matrix of graph G such that Ai,j = w(vi, vj) if (vi, vj) ∈ E,

and Ai,j = 0 otherwise. In this paper, we only consider simple

graphs, that is Ai,i = 0.

Let U = {1, 2, . . . , n} be the set of indices of the vertices

in V . For any subset S ⊆ U , the corresponding vertex induced

subgraph is GS = (VS , ES), where VS = {vi | i ∈ S} and

ES = {(vi, vj) | i ∈ S, j ∈ S, and (vi, vj) ∈ E}.
Denote by x an n-dimensional vector associated with the

vertices of a subgraph, where the components of x represent

the participation of vertices in the subgraph: if xi has a large

value, vertex vi is strongly associated with the subgraph, and

vice versa. We define the support of x as the set of indices

corresponding to its non-zero components, that is, δ(x) = {i |
xi �= 0}. Consider the simplex

� = {x ∈ R
n | ∀i = 1, . . . , n,xi ≥ 0 and

∑
i

xi = 1}.

To extract subgraphs that are smaller than those maximizing

function x�Ax [13], we are interested in the following opti-

mization problem.

Maximize x�(A+ αI)x

s.t. x ∈ � (1)

where α > 0 is a hyper-parameter. We can control the size of

the extracted dense subgraphs by setting the hyper-parameter

α. Once we obtain a solution to the problem, we can extract

the corresponding dense subgraph Gδ(x). We will refer to Eq. 1

as Problem I in this paper.

As mentioned in Section II, there exist two related problems.

One of them is the following optimization problem [13],

referred to as Problem II in this paper.

Maximize x�Ax
s.t. x ∈ � (2)

The other one is the following [15], referred to as Problem III

in this paper.
Maximize x�(A− αI)x

s.t. x ∈ � (3)

where α > 0 is a hyper-parameter.

Apparently, the three problems are very related to each

other, as deliberated in Table I. Comparing to Problem II,

Problems I and III have a hyper-parameter α to control the

size of the extracted dense subgraphs. Moreover, the signs

before the hyper-parameters in Problem I and Problem III are

complementary. Naturally, we can unify the three problems

into the following framework.

Maximize x�(A+ βI)x

s.t. x ∈ � (4)

where β ∈ R is a hyper-parameter.

The unified framework corresponds to Problems I, II and III

when β < 0, β = 0 and β > 0, respectively. In general, the

extracted dense subgraphs become smaller when β increases.

IV. A QUADRATIC PROGRAMMING METHOD

In this section, we develop a method for the unified frame-

work using quadratic programming. We first discuss the range

of the hyper-parameter, and then analyze the Karush-Kuhn-

Tucker conditions of the unified framework. The quadratic

programming method is an extension of SEA [14].

Given a subset S ⊆ U , the surface of � with respect to

S is �S = {x ∈ � | δ(x) ⊂ S}, and the relative interior is

int(�S) = {x ∈ � | δ(x) = S}. We denote by λmax(A) and

λmin(A), respectively, the largest and smallest eigenvalues of

matrix A.

A. Bounds of the Hyper-parameter β

In the unified framework, we use hyper-parameter β to

control tradeoff between the size and density of the extracted

subgraphs. A too large or too small value of β may lead to

trivial results, such as a single vertex or the whole graph. What

should be the meaningful range of β?

We provide an upper bound of β as follows.

Theorem 1. if β > Amax, where Amax is the largest element
of A, the solution x of Eq. 4 has only one non-zero component,
that is, |δ(x)| = 1 and the dense subgraph extracted has only
one single node.

Proof. Let B be the transformed adjacency matrix A+β(I−
ee�), where e is a column vector whose components are all

1’s. Since x ∈ �, maximizing x�(A+ βI)x is equivalent to

maximizing x�Bx. We can see that

Bi,j =

{
Ai,j − β if i �= j

Ai,j if i = j

Thus, x�Bx can be written as∑
i�=j

xixjBi,j +
∑
i

x2
iBi,i (5)
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Since Ai,i = 0, the second term of Eq. 5 is always equal to 0.

If β > Amax, then Bi,j < 0 when i �= j. Thus, if |δ(x)| > 1,

the first item must be negative, which decreases the value of

the objective function. It follows that the solution x of Eq. 4

only has one non-zero component.

The following statement gives a lower bound of β.

Theorem 2 ([15]). if β < −λmax(A), the objective function
is a strictly concave function, and the only solution x of Eq. 4
belongs to int(�V ), that is, δ(x) = U .

According to the above two theorems, we can get the

range for β that can lead to non-trivial results. The range is

[−λmax(A), Amax]. Furthermore, we have the following.

Theorem 3. Given a solution x of Eq. 4, for k ∈ U , if∑
j∈δ(x)

xjBk,j < 0,

then k /∈ δ(x), where B = A+β(I−ee�) is the transformed
adjacency matrix.

Proof. x�Bx can be rewritten to

2
∑
j �=k

xkxjBk,j +
∑
i,j �=k

xixjBi,j + x2
kBk,k

For a specific k, the second term is a constant and the third

term is equal to 0. Thus, for xk, the objective function is a

linear function. When
∑

j∈δ(x) xjBk,j < 0, xk should be 0;

otherwise the objective function increases when we set xk = 0
and increase another component xm that satisfies the condition∑

j∈δ(x) xjBm,j ≥ 0. This contradicts the fact that x is a

solution of Eq. 4.

Theorem 3 explains how the hyper-parameter β works when

β is positive. Bi,j becomes negative when Ai,j is close to 0.

As a result, for a vertex vk, if there are sufficiently many

vertices that are weakly connected or not connected to vk,

that is, the corresponding Ak,j values are close to 0, then vk
is not added to the subgraph. To fully understand the effect of

hyper-parameter β in the range from negative to positive, we

carry out a thorough analysis on the KKT conditions for the

unified framework in the next subsection.

B. KKT Conditions for the Unified Framework

Given a specific value of β, Eq. 4 is a quadratic program-

ming problem. Therefore, we first analyze its Karush-Kuhn-

Tucker (KKT) conditions.

For a local maximal x∗, there exist n + 1 real constants

μ1, . . . , μn and λ, μi ≥ 0 for all i = 1, . . . , n, such that

(Ax∗)i + βx∗
i − λ+ μi = 0

n∑
i=1

x∗
iμi = 0

(6)

Since both x∗
i and μi are non-negative, the second condition

means that i ∈ δ(x) implies μi = 0. Thus, Eq. 6 can be

rewritten as

(Ax∗)i + βx∗
i

{
= λ if i ∈ δ(x∗)
≤ λ otherwise

At the same time, it is easy to derive from the first condition

that λ = x∗�(A + βI)x∗. Then, we can further rewrite the

KKT conditions as

(Ax∗)i

{
= x∗�Ax∗ + β(x∗�x∗ − x∗

i ) if i ∈ δ(x∗)
≤ x∗�Ax∗ + βx∗�x∗ otherwise

(7)

When β = 0, the righthand side of Eq. 7 has only one term

x∗�Ax∗ in both cases. When β �= 0, the righthand side has

two terms, the extra term being βx∗�x∗ in the second case

of Eq. 7. This means that there are more indices not in δ(x)
when β > 0, and consequently the size of the corresponding

subgraph Gδ(x) is smaller. Similarly, when β < 0, there are

more vertices included in the result subgraph. The following

two theorems provide the formal statements.

Theorem 4. For any subgraph S ⊂ U , let AS be the
corresponding adjacency matrix. There exists at least one KKT

point for Eq. 4 in �S if β ≥ max
x∈�S

max
i/∈δ(x)

(Ax)i
x�x

− λmin(AS).

Proof. Denote by xS the vector obtained from x by dropping

all the components in U \ S. We define

γ(x) = max
i/∈δ(x)

(Ax)i − x�Ax

x�x
.

For x ∈ �S , we have

γ(x) = max
i/∈δ(x)

(Ax)i
x�x

− x�
SASxS

x�
S xS

≤ max
x∈�S

{max
i/∈δ(x)

(Ax)i
x�x

− x�
SASxS

x�
S xS

}

≤ max
x∈�S

max
i/∈δ(x)

(Ax)i
x�x

−min
xS

x�
SASxS

x�
S xS

≤ max
x∈�S

max
i/∈δ(x)

(Ax)i
x�x

− λmin(AS)

where the last inequality follows the Rayleigh-Ritz theo-

rem [30]. Since β ≥ max
x∈�S

max
i/∈δ(x)

(Ax)i
x�x

− λmin(AS), β ≥
γ(x) holds for all x ∈ �S . It follows that (Ax)i ≤ x�Ax+
βx�x holds for all x ∈ �S and i /∈ δ(x). As a result, if

x∗
S is a KKT point of the subgraph GS , then x∗ must be a

KKT point of the graph G, where x∗ is obtained from x∗
S by

assigning 0’s to the components whose indices are not in S.

It is obviously that x∗ is in �S .

Theorem 5 ([15]). If β < −λmax(AS), then there is no point
in int(�S) that is a local maxima of Eq. 4.

The two theorems indicate how the hyper-parameter affects

the size of the extracted subgraph. For a subset S ⊂ U , if
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β is less than −λmax(AS), we cannot find a KKT point in

the corresponding subgraph GS , and thus have to enlarge the

search scope. It means that a small value of β favors large

subgraphs when β < 0. When β > 0, if β is no less than

max
x∈�S

max
i/∈δ(x)

(Ax)i
x�x

− λmin(AS), there must be at least one

KKT point in the corresponding subgraph GS . Therefore, the

size of the extracted subgraph is not greater than |S|.

C. A Generalized Method

Since Eq. 4 is a standard quadratic programming prob-

lem, many optimization methods can be applied to solve it.

Liu et al. [14] proposed an efficient algorithm called SEA to

solve Problem II. We extend it to the unified problem Eq. 4.

SEA is an iterative algorithm. Each iteration of the algo-

rithm has two phases: the shrink phase and the expansion

phase. In the shrink phase, it finds a KKT point x∗
S of the

current subgraph GS . In the expansion phase, some related

vertices are added and form a new subgraph GS′ . The algo-

rithm terminates when no more vertex can be added in the

expansion phase.

In the shrink phase, SEA utilizes the replicator dynamics

algorithm [31] to find the KKT point x∗
S of subgraph GS . For

the unified framework, we change the update formula in t-th
iteration to

(xS)i(t+ 1) = (xS)i(t)
((AS + βI)xS(t))i

xS(t)�(AS + βI)xS(t)

where AS is the corresponding adjacency matrix of the sub-

graph GS .

In the expansion phase, the algorithm extends x∗
S to x∗ by

assigning 0’s to the components whose indices are not in S.

Let C = {i | (Ax∗)i > x∗�Ax∗ + β(x∗�x∗ − x∗
i )} be the

indices of the components that violate the KKT conditions.

If C is empty, then x∗ is already a KKT point of G. If not,

x∗ is updated and the corresponding vertices are added to

the subgraph GS . For the unified framework, we change the

update formula to

γi =

{
0 i /∈ C

(Ax∗)i + βx∗
i − x∗�(A+ βI)x∗ i ∈ C

bi =

{
−x∗

i

∑
i γi i ∈ δ(x∗)

γi i /∈ δ(x∗)

xnew = x∗ + lb

(8)

where l is the step size.

The optimal step size can be decided by maximizing the

following difference.

f(x∗ + lb)− f(x∗) =(x∗ + lb)�(A+ βI)(x∗ + lb)
− x∗�(A+ βI)x∗

=b�(A+ βI)bl2 + 2b�(A+ βI)x∗l

=b�(A+ βI)bl2 + 2
∑
i

γ2
i l

Thus, the optimal step size l∗ is

l∗ =

{
1∑
i γi

if b�(A+ βI)b ≥ 0

min( 1∑
i γi

,−
∑

i γ
2
i

b�(A+βI)b ) otherwise

When x∗ is updated, the support δ(x∗) is also expanded to its

neighbors and forms the new subgraph Gδ(xnew).

To understand the effect of β, let us analyze the expansion

phase of the algorithm. From Eq. 8, we can see that the newly

added vertices are in the intersection of C and {i | i /∈ δ(x∗)}.
Thus, comparing to the situation when β = 0, (Ax∗)i is

more likely greater than x∗�Ax∗ + β(x∗�x∗ − x∗
i ) when β

is negative. As a consequence, there will be more elements in

C. A similar analysis can be applied to the situation when β
is positive. Thus, there are more elements in the final δ(x∗)
when β decreases. It follows that Problem III finds larger

subgraphs than Problem II does, and Problem I finds smaller

subgraphs than Problem II does. We will verify this relation

in the experiments.

V. EXTRACTING DENSE SUBGRAPHS AS RELAXATION OF

THE MAXIMIZATION OF A FAMILY OF DENSITY

FUNCTIONS

In this section, we show that the unified framework is a

relaxation of the maximization of a family of density functions.

Theorem 6. The unified framework Eq. 4 is a relaxation of
the maximization of the edge density function

1

|S|2
[
e(S)− β

(|S|
2

)]
(9)

where e(S) is the number of edges in GS if GS is unweighted,
and the sum of weights of edges when GS is weighted.

Proof. Let k = |S|, and b be a binary indicator vector where

bi = 1 when the vertex vi belongs to S and 0 otherwise. Then,

we can rewrite Eq. 9 to

1

k2

(
b�Ab

2
− β

k(k − 1)

2

)
(10)

where A is the adjacency matrix of the graph. Let x = b
k . We

can rewrite Eq. 10 to

1

2

[
x�Ax− β(1− 1

k
)

]
(11)

Since x�x = 1
k , we can further rewrite Eq. 11 to

1

2

[
x�(A+ βI)x− β

]
As a result, we can rewrite the maximization of the edge

density in Eq. 9 as

Maximize x�(A+ βI)x

s.t. x ∈ �D

where

�D = {x ∈ � | ∃k > 0, ∀i = 1, . . . , n,xi =
1

k
or xi = 0}.
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Immediately, we can obtain the unified framework by relaxing

x from the discrete set �D to the continues space �.

Please note that the edge density function in Eq. 9 in fact

represents a family with respect to hyper-parameter β. When

β = 0, the edge density function is e(S)/|S|2, which is a mi-

nor revision of the edge density e(S)/
(|S|

2

)
. Correspondingly,

Problem II is used to extract dense subgraphs. When β �= 0,

there is an extra term in the numerator of Eq. 9. The extra term

can be viewed as a regularization. When β < 0, the density

function favors subgraphs of large size by adding extra weight

to each possible edge. Correspondingly, Problem III finds

larger subgraphs. When β > 0, the density function penalizes

large subgraph by subtracting some weight for each possible

edge. Correspondingly, Problem I finds smaller subgraphs.

To make it more clear, we can rewrite Eq. 9 as

e(S)

|S|2 +
β

2
· 1

|S| −
β

2
(12)

If we omit the last term β/2, which is a constant when β
is fixed, the difference between Eq. 12 and e(S)/|S|2 is the

second term, which is a regularization penalizing large |S|
when β > 0 and favoring large |S| when β < 0. β is the

coefficient to control the importance of the regularization term.

Furthermore, we can rewrite the edge density e(S)/
(|S|

2

)
to

e(S)(|S|
2

) =
2e(S)

|S|(|S| − 1)
= 2×

(
e(S)

|S|2 +
e(S)

|S|2(|S| − 1)

)

We can omit the factor 2 here since it does not affect the

maximization result. Then, we can rewrite Eq. 12 to

e(S)

|S|(|S| − 1)
− e(S)

|S|(|S| − 1)
· 1

|S| +
β

2
· 1

|S| −
β

2
(13)

From Eq. 13, we can see that the unified framework is essen-

tially a multi-objective optimization problem. The first term

is exactly the edge density. The second term − e(S)
|S|(|S|−1)

1
|S|

increases when |S| increases. When β = 0, there is a tradeoff

between density and size. This is the reason why maximizing

e(S)/|S|2 can avoid trivial results. When β > 0, the third term

decreases when |S| increases. It partially cancels the effect of

the second term and the framework becomes more biased on

edge density. When β < 0, the third term increases when

|S| increases. It strengthens the effect of the second term and

the framework puts less weight on edge density. This clearly

manifests why the unified framework can explore the tradeoffs

between density and size in extracting dense subgraphs.

VI. EXPERIMENTAL RESULTS

In this section, we test the unified framework using two

synthetic data sets that were used in the previous studies

and two real data sets. The two synthetic data sets are syn-
Data1 [32] and synData2 [33]. The two real world data sets

are ego-FB [34] and NDI [33]. Data set ego-FB consists of 10

social circles (ego-nets) from Facebook. Data set NDI contains

images crawled from the web and the edge weights are the

similarities between images. Table II shows the statistics of

the data sets.

Data set Type #Vertices #Edges /
Total weight

SynData1 unweighted 10,000 2270003
SynData2 weighted 10,000 3046376.28
ego-FB unweighted 4,039 88234
NDI weighted 14,604 2.00× 108

TABLE II
STATISTICS ABOUT THE DATA SETS

To validate the effectiveness of the unified framework, we

measure the size and density of the extracted subgraphs. We

adopt the conventional density function e(S)/
(|S|

2

)
to measure

the density.

We implemented the algorithm in MATLAB R2015a. All

experiments were conducted on a PC computer with a 3.4GHz

Intel Core i7-3770 processor and 16 GB memory, running

Microsoft Windows 7.

A. Subgraph Extraction from the Same Area

We first examine how the unified framework extracts dense

subgraphs from the same area in a graph. We initialized the

algorithm randomly and set β = −5, which returned a larger

but less dense subgraph. Then, we used the vector x output

by the algorithm, representing the subgraph extracted using

β = −5, to initialize the algorithm again and set β = 0.

In this way, we guide the algorithm using β = 0 to explore

the subgraph extracted when β = −5. The second run of the

algorithm returned a subgraph in the same area of the extracted

subgraph using a larger value of β. Similarly, we used the

vector x obtained as such to initialize the algorithm again and

set β = 0.5. We compared the subgraphs extracted in these

three runs. We repeated the above experiments 30 times and

report in Figures 1 the mean of the size ratio and the overlap

ratios of the extracted subgraphs. When we compare the dense

subgraphs extracted using two different values of β, the size

ratio is the number of vertices in the subgraph extracted using

a larger value of β over that using a smaller value of β. The

results in Figures 1 clearly show that when β increases, the

size of the subgraphs extracted shrinks, since the size ratio is

always smaller than 1.

To verify that the algorithm in fact searched in the same

area of the graph, we calculated the overlap ratio, which is

the number of common vertices in those two subgraphs against

the number of vertices in the subgraph extracted using a larger

value of β (that is, the smaller subgraph extracted). This ratio

measures how much the subgraph extracted using a larger

value of β is included in the subgraph extracted using a smaller

value of β. The overlap ratio is very close to 1 in all cases,

which clearly indicates that the smaller subgraphs extracted

using a larger value of β in fact are extracted from the larger

but less dense subgraphs using a smaller value of β.

B. Average Density and Size with Random Initialization

To understand statistically how the algorithm may extract

dense subgraphs using different values of β in different areas

of a graph, we ran the algorithm using random initialization
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(a) Size ratio and overlap ratio when β = 0 and β = −5
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(b) Size ratio and overlap ratio when β = 0.5 and β = 0

Fig. 1. Size ratio and overlap ratio on four data sets
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(b) synData1, β ≥ 0
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(d) synData2, β ≥ 0

-6 -4 -2 0

S
iz

e

10

17.5

25

32.5

40

D
en

si
ty

0.7

0.775

0.85

0.925

1
Size
Density

(e) ego-FB, β ≤ 0

0 0.2 0.4 0.6

S
iz

e

16

17

18

19

20

D
en

si
ty

0.96

0.97

0.98

0.99

1
Size
Density

(f) ego-FB, β ≥ 0
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Fig. 2. Average size and density of the extracted subgraphs on four data sets

30 times for each β value, and compared the average density

and size. The results are shown in Figure 2. Since λmax is

much greater than Amax, we took different step sizes when

β ≤ 0 and β ≥ 0.

The results show that the subgraphs extracted using β > 0
are smaller than those extracted using β = 0. This confirms

that Problem I indeed finds smaller subgraphs than Problem II

does. When β < 0, the extracted subgraphs are bigger than

those extracted using β = 0. It is consistent with the result

in [15]. Combining the results using β ≤ 0 and β ≥ 0, we

can see that the size of extracted subgraphs decreases when β
increases, which is consistent with our theoretical analysis.

Next we analyze the densities of the extracted subgraphs.

When β ≤ 0, the density increases when β increases and

the size of the extracted subgraph increases. When β ≥ 0,

the average density does not monotonically increase. This is

because the average density was calculated from 30 runs using

random initial values, which can be regarded as a random

sample of 30 local maxima. We notice that, in Figures 2(b),

2(d), 2(f) and 2(h) where β ≥ 0, all the average densities

on the four data sets do not change much when β increases.

Interestingly, when the extracted subgraphs become smaller,

the density does not have to increase. For example, for a

subgraph with three vertices and two edges, whose density

is 2
3 , we can increase the density to 5

6 if we add a vertex that

is connected to all the three vertices.
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VII. CONCLUSIONS

In this paper, we systematically investigate the tradeoffs

between density and size in dense subgraph extraction. We

give a new objective function that can find very dense but small

subgraphs. We present a unified framework where a hyper-

parameter is used to explore possible tradeoffs between density

and size. We analyze the properties of the unified framework

thoroughly, and develop a quadratic programming algorithm.

Our experimental results on real data sets and synthetic data

sets verify the effectiveness of our method. As future work we

are interested in finding hierarchies of dense subgraphs.
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