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Abstract—Group-oriented services such as group recommen-
dations aim to provide services for a group of users. For these
applications, how to aggregate the preferences of different group
members is the toughest yet most important problem. Inspired
by game theory, in this paper, we propose to explore the idea
of Nash equilibrium to simulate the selections of members in
a group by a game process. Along this line, we first compute
the preferences (group-dependent optimal selections) of each
individual member in a given group scene, i.e., an equilibrium
solution of this group, with the help of two pruning approaches.
Then, to get the aggregated unitary preference of each group
from all group members, we design a matrix factorization-
based method which aggregates the preferences in latent space
and estimates the final group preference in rating space. After
obtaining the group preference, group-oriented services (e.g.,
group recommendation) can be directly provided. Finally, we
construct extensive experiments on two real-world data sets from
multiple aspects. The results clearly demonstrate the effectiveness
of our method.

Keywords-Preference Aggregation, Group Recommendation,
Nash Equilibrium

I. Introduction

In our daily life, people often participate in some activities

with others or as group members, e.g., watching movies with

spouses, traveling with friends and having picnics with fam-

ilies. To facilitate these group activities, some Internet-based

group services are emerging, e.g., group recommendation [1]–

[4] and group buying [5]–[7].

Different from the individual-oriented services, there are

some unique practical challenges in group-oriented services

because we need to consider the preferences of all group

members simultaneously. Indeed, the most difficult challenge

is how to aggregate the preferences of different group mem-

bers. Though some efforts on preference aggregation have

been conducted, such as preference aggregation [8] and score
aggregation [9], [10], the interactions and fairness of group

members are still largely ignored. Therefore, these aggrega-

tion approaches, which are unable to figure out the optimal

selections that can be accepted by all members in a group,

may lead to unsatisfying services.

Inspired by Nash equilibrium [11], [12] from game theory,

in this paper, we propose a focused study to explore the pref-

erences of group members thoroughly. In fact, when planning
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a consumption decision in a group, each member should mea-

sure her own preference with other members’ and then make

a tradeoff. According to the definition of Nash equilibrium,

all members in a group can get the acceptable benefits from

the equilibrium solution, and only the equilibrium solution can

satisfy all members at the same time [11], [13]. In other words,

game process could capture the group members’ interactions

and Nash equilibrium solution considers the fairness as much

as possible. Thus, we first propose to learn the individual

preferences of members in a given group scene by simulating

the group members’ selections in this group with a game

process and finding the Nash equilibrium solution for this

group. To this end, for each group member, we first compute

her strategies (optimal selections/items) with the help of two

pruning methods (i.e., Skyline and Skyband pruning). Then,

we can generate a strategy profile set (the Cartesian product
of all members’ strategies) for each group. For measuring the

gain/utility from each group member to every strategy profile

(i.e., one combination of the preferred items) in this strategy

profile set, we design a payoff function which considers both

the gains of given member and the acceptance possibilities

of other members in a group. Based on the payoff gains of

group members to each strategy profile, we can get the Nash

equilibrium solution.

Unfortunately, Nash solution only stores the optimal se-

lection probabilities from each group member for different

strategies/items in the group scene, which is actually the

individuals’ group-dependent optimal selections. For group-

oriented services (which provide the same service/item to

all members in a group), we have to figure out the specific

ideal item that can perfectly match the preferences of all

group members. Thus, we have a second step to aggregate

a determined unitary preference for each group by integrat-

ing the members’ individual preferences and their group-

dependent selections (i.e., Nash equilibrium solution). To this

end, we further design a matrix factorization-based method

for this aggregation. Specifically, for a given group, an ‘ideal
item-feature prototype’ is constructed in latent space and an

‘ideal item-rating prototype’ is constructed in rating space to

capture the features and ratings of this unitary preference,

respectively. Through this aggregating process, we can also

smooth the preferences of group members by low-rank matrix

approximation, which is needed especially when the members’
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preferences conflict heavily.

After obtaining the aggregated preference that is measured

by ideal item, group-oriented services can be easily applied.

For instance, for group recommendation, the top-K items

that are most similar to the ideal item can be recommended

to the target group. For evaluation, we construct extensive

experiments on CAMRa2011 (with real group structure) [14]

and Yelp (with simulated group structure) data sets for this

task, and the results clearly demonstrate the effectiveness of

our methods.

The remainder of this paper is organized as follows. In

Section II, we introduce the related work. Then, the details

of our approach are given in Section III. In Section IV,

experiments on group recommendation are presented. Finally,

we conclude our work in Section V.

II. RelatedWork

In this section, we review the related work from two aspects.

The first category of research is those about preference aggre-

gation, especially applied on group recommendation task; the

second category of research is the application of game theory,

especially in computer science field.

A. Preference Aggregation for Group Recommendation.

Preference aggregation has been studied in many fields, such

as operational research [15], [16], human decision [17], [18],

and some group-oriented services [1]–[7]. Among these ser-

vices, group recommendation is a popular and representative

one [1]–[4]. In this paper, we also conduct our methodology

and experiments on the group recommendation task. Thus,

in this part, we mainly review the studies of preference

aggregation on group recommendation.

Group recommendations have been highlighted in many

domains, e.g., tourism [3], [19], movies [14] and crowdfunding

[20]. Preference aggregation for group recommendation can

be classified into two categories: preference aggregation (PA)

approaches [8] and score aggregation (SA) approaches [9],

[10]. PA approaches first aggregate the profiles of group

members into one profile, and then make recommendations

based on the aggregated profile. SA approaches, by contrast,

first recommend items for each group member respectively,

and then aggregate the final recommendation for the group.

In almost all the previous methods, average (AVG) [10] and

least misery (LM) [9] are two most widely-used strategies.

AVG strategy aims to maximize the overall satisfactions of a

group by averaging the recommendation scores of all group

members as the group’s final score, and LM strategy tries

to make each group member happy by taking the lowest

score of members as the group’s final score. However, these

strategies can’t always generate a solution that is fair for each

member in a group, leading to the low satisfaction or diversity.

Recently, [21] proposed to find Nash equilibrium solutions for

group recommendation. However, their recommendation for a

group was a union of the separate recommendations for each

member without aggregation operation. Thus, this method had

to recommend several different items for a group since each

only satisfies one or several group members, which is different

from the group recommendation scenario in the real world.

Besides the studies of preference aggregation, in some

specific practices of group recommendation, some unique

recommending techniques [4], [14], [20], [22]–[25] were also

proposed. These works tried to design complicated models

to explore some available features, e.g., social features and

location features, to achieve better recommendations. How-

ever, the focus of these research is not exactly the same

with our study. Indeed, their approaches often depend on

the results of preference aggregation (e.g., LM and AVG),

and our solution is also helpful to their studies and other

group-oriented services. In [22], [26], [27], authors explored

social factors, e.g., relationship in real life or social network

of members, for better group recommendation. These studies

must be conducted with the real social relationship. However,

in many cases, we can not access users’ real social information

or even the group structure is temporal, e.g., group buying.

These work will fail but our approach can still work in these

scenarios since we only use the individual information.

B. Game Theory Applications in Computer Science.

The traditional game theory [28], [29] is a branch of modern

mathematics, economics or operations research. Specifically,

game theory is the study of mathematical models of conflict

and cooperation between intelligent rational decision-makers

[11], [28]. It helps decision-makers in a game make the most

optimum strategies to maximize the benefits they can gain. In

game theory, Nash equilibrium is an important concept which

refers to the solution of a game that no player can gain more

benefits by changing her strategy when this solution is adopted

[11], [13]. Nash equilibrium is a stable solution because all

players have no motives to change their strategies in this case.

In computer science, game theory has been applied in

robot systems [30], computational advertising [31], [32], social

lending [33], network security [34], small world networks [35],

etc. However, to the best of our knowledge, this is the first

attempt applying Nash equilibrium in preference aggregation.

III. Methodology

In this section, we will present our method in detail. Our

study focuses on the general scenario of preference aggre-

gation, and the problem formalization only depends on the

original user-item rating matrix. In the following, we first give

the problem statement and overview of our methodology.

Problem Statement. Let U = (U1,U2, ...,U|U |) represent all

the users and I = (I1, I2, ..., I|I|) represent all the items. A

user group G of U is given by the set of all users in this

group G = (U1,U2, ...,U|G|), where each Ui(1 ≤ i ≤ |G|) is

a member of group G. Given a target group, the focus of

our study problem is how to aggregate the group preference

from individual preferences/ratings, which can be applied to

some group-oriented services, e.g., group recommendation, for

providing the same service/item to satisfy all members in this

target group.

Method Overview. Fig. 1 shows the framework of our

approach. For preprocessing, we first conduct rating matrix
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Fig. 1. The framework of our approach.

completion in order to estimate the individuals’ preferences on

the unseen items and avoid missing some potential strategies

of members (Section III-A). Second, we simulate a static

noncooperative game with complete information to model

the individual selections of members in a group scene and

we compute the Nash equilibrium solution, which stores the

group-dependent optimal selection probabilities from each

group member to different strategy items (Section III-B).

Third, we design a matrix factorization-based method to find

an ideal prototype that aggregates the members’ preferences

by integrating Nash equilibrium solution (Section III-C), and

thus group recommendation can be applied.

A. Estimating Individual Preferences by Matrix Completion
As described above, the focus of our study problem, pref-

erence aggregation, is a process from individuals to groups.

Thus, it is necessary to learn the individual preferences firstly.

For estimating individuals’ preferences to unseen/candidate

items, and also, helping users select as many good strate-

gies/items as possible in the following game process (which

will be detailed in Section III-B), we conduct rating matrix

completion in this subsection. Fortunately, there exist some

studies aiming to solve the problem of user individual pref-

erence estimation [36]–[38]. As the focus of this paper is not

to devise more sophisticated solutions on this problem, we

adopt a simple yet effective method, i.e., using the nearest

neighbor users for matrix completion [36]. Indeed, this step,

i.e., matrix completion, has effects on the following solutions.

However, this step does not affect the evaluation of preference

aggregation since all the aggregating methods in our study are

based on the same settings in this completion. Specifically, we

achieve matrix completion as follows.
The element R(i, j) of rating matrix R = (R(i, j))|U |×|I| is the

rating that user Ui gives to the item I j. We can estimate the

unseen rating that Ui will give to item I j by:

R(i, j) =
∑M

k=1 usersim(i, k)R(k, j)∑M
k=1 usersim(i, k)

, (1)

where M is the number of nearest neighbors, and usersim(i, k)

is the similarity between user Ui and Uk which is often

calculated by Cosine measurement as follows,

usersim(i, k) =

∑
Il∈IUi∧IUk

R(i, l)R(k, l)√∑
Il∈IUi

R(i, l)2
∑

Il∈IUk
R(k, l)2

. (2)

IUi refers to the set of items that user Ui has rated. With

this complete user-item matrix, we can understand the users’

individual preferences to all items including the unseen ones.

Based on this, in the next, we show how to use a game

process to simulate the members’ dependent selections in a

given group scene.

B. Simulation of Member Selection in Given Group

By matrix completion, we have learned the members’

individual preferences; and in this step, we try to obtain the

group-dependent optimal selection of each member in a given

group. This step is important and crucial by which we can

learn both the members’ preferences and their decision tradeoff

in a group. We model the members’ selections in group scene

as a game process. Specifically, we first represent the strategies

with two pruning algorithms for members in a given group;

then we define a payoff function to compute the gain of a

member to a strategy profile and compute the Nash equilibrium

solution for this game, i.e., members’ group-dependent optimal

selection probabilities. Nash equilibrium solution implying the

acceptable results of all members may bring high satisfaction

to the entire group.

We choose the static and noncooperative game with com-
plete information [12] in our simulation. The reason of choos-

ing this type of game is the settings and scenes in this game

are most similar to those in member decision process of group-

oriented services such as group recommendation. Specifically,

the reason is twofold,

• In our formalized problem, the system should initiatively

and tentatively recommends same services or items for

the entire target group, which means there is not extra

interactions between users and system. Meanwhile, there

are not any private exchanges between group members

during this recommending process, too. These character-

istics conform to the “static and noncooperative” game.

• In this kind of game, the numbers of players and

strategies are finite and each member fully understands

other members in her group, which is also the same

in group recommendation scenario, i.e., the numbers of

members in target groups and their favorite items are

also finite. Further, we/systems also clearly know each

member’s individual preference to each item. Thus, these

characteristics conform to the “complete information”.

The direct correlations between the concepts in game theory

and member selection in groups can be found in Table I.

The group members are viewed as game players. An optional

item that is likely to be chosen by a member is one of her

strategies, and the set of optional items of this member is her

optional item set, i.e., the strategy set. The optional item profile

represents one combination of the strategies chosen by each

member in the group, i.e., strategy profile. At last, the Nash

equilibrium of the game is the members’ group-dependent

optimal selection probabilities to their items/strategies.

Strategy Representation and Pruning. Given a group

G = (U1,U2, ...,U|G|), item set I = (I1, I2, ..., I|I|), the complete

rating matrix is R = (R(i, j))|G|×|I|. For each member Ui, we
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TABLE I
Correlated concepts.

Concepts in game theory Concepts in member selection Notations

Player Group member Ui
Strategy Optional item S i

j
Strategy set Optional item set S i

Strategy profile Optional item profile S x
Set of strategy profile Set of optional item profile S

Payoff function Gains from optional item profile p(i, S x)
Nash equilibrium solution Members’ optimal selection probabilities NA

choose her favorite N items with the highest ratings (real

rated or estimated in Section III-A) as her strategies. Thus,

the strategy set of Ui can be denoted as:

S i = {S i
1, S

i
2, ..., S

i
N}, (3)

where S i
j is Ui’s j-th strategy. For instance, if S 1

1 is 3, member

U1 will probably choose item I3. Actually, strategies with con-

flict member preferences are more helpful to learn the game

and tradeoff between members. In addition, some strategies

which are not preferred by the consensus of all members in

a group are useless and also cost a lot computation in the

following. Thus, we propose to prune these useless strategies

in advance by their dominance relationship, i.e., skyline and

skyband [39], [40]. Specifically, for a given group, if all the

members prefer strategy S i
j to another one S i

k, then strategy S i
k

is dominated by S i
j (denoted as S i

j ≺ S i
k) and strategy S i

k can

be pruned. Based on this dominance relationship, we define

the strategy skyline as follows.

Definition (Strategy Skyline) Given a strategy set S i of group
member Ui, a strategy S i

j ∈ S i is a strategy skyline object
if and only if any other strategies in the set can’t dominate
strategy S i

j, denoted as ∀S i
k ∈ S i, S i

k ⊀ S i
j, k � j. �

The definition of strategy skyline is strict. To guarantee the

top-N’ strategy candidates, we extend skyline to N’-skyband.

Definition (N′-Strategy Skyband) Given a strategy set S i of
group member Ui, a strategy S i

j ∈ S i is a N′-strategy skyband
object if and only if strategy S i

j is dominated by at most other
N′ strategies in this set. Usually, N′ can be defined by N, e.g.,
N′ = 	N/|G|
. �

Clearly, the strategy skyline is the 1-strategy skyband.

Parameter N′ should be inversely proportional to group size

|G|. Because a dominated strategy in a larger group is more

likely to be worthless since more users think this strategy

is dominated/worse. Based on the definition of N′-strategy

skyband, we can process pruning in Algorithm 1.

After pruning, we further define the set of strategy profiles

(denoted as S ) of group G as the Cartesian product of N’-
strategy skyband sets of all members:

S =S 1 × S 2 × ...S |G|

={S 1 = (S 1
1, S

2
1, ..., S

|G|
1

), S 2 = (S 1
2, S

2
1, ..., S

|G|
1

), ...,

S x = (S 1
x1
, S 2

x2
, ..., S |G|

x|G| ), ..., S N |G| = (S 1
N1
, S 2

N2
, ..., S |G|

N|G| )},
(4)

where S i
xi

is the xi-th strategy of member Ui, and S x =

(S 1
x1
, S 2

x2
, ..., S |G|

x|G| ) is a strategy profile of group G, Ni is the

number of strategies of Ui after pruning. From this definition

we can see that without strategy pruning (Algorithm 1), the

number of strategy profiles of group G should be N |G|, as each

Algorithm 1: N’-Strategy Skyband Pruning.

Input: Members’ initial strategy sets (S 1, S 2, ..., S |G|) in a given group, N′;
Output: N′-Strategy Skyband sets;

1 for i = 1; i ≤ |G|; i + + do
2 for j = 1; j ≤ N; j + + do
3 DomN = 0;
4 for j′ = 1; j′ ≤ N; j′ + +; j′ � j do
5 if ∀i′ ∈ {1, ..., |G|}, R(i′, S i

j′ ) ≥R(i′, S i
j) then

6 DomN + +;

7 if DomN > N′ then
8 S i.remove(S i

j);

9 return N′-Strategy Skyband sets (S 1, S 2, ..., S |G|)

group member has N strategies. After pruning, this number

now becomes
∏

i∈{1,...,|G|} Ni. Since Ni(1 ≤ Ni ≤ N) is much smaller

than N, the time complexity of the following computations can

be reduced sharply, and we will prove this experimentally. We

should note that for better presentation in the matrix form, we

usually use N and Ni without distinction.
Payoff Computation. In the game process, a member will

get different gains from different strategy profiles. We define

a payoff function (p(i, S x)) to represent the gain of a member

Ui to a specific strategy profile S x:

p(i, S x) =
1

|G|
|G|∑
l=1

itemsim(S l
xl
, S i

xi
) ×R(i, S i

xi
), (5)

where itemsim( j, k) is the similarity between item I j and item

Ik, and R(i, S i
xi

) denotes the rating that member Ui gives to

item S i
xi

. itemsim( j, k) can be calculated by:

itemsim( j, k) =
R(1 : |G|, j) ·R(1 : |G|, k)

||R(1 : |G|, j)||2||R(1 : |G|, k)||2 , (6)

where R(1 : |G|, j) is (R(1, j), ...,R(|G|, j))T . This payoff func-

tion means the expectation of benefit that Ui can get from

strategy profile S x, where she chooses item/strategy S i
xi

. Her

satisfaction expectation is viewed as the average product of the

similarity itemsim(S l
xl
, S i

xi
) and the rating that Ui gave to item

S i
xi

. For instance, if Ui chooses an item that is more similar to

others’, then she can get more benefit from this item because

there will be a greater probability for her item to be adopted

by the entire group. That is, R(i, S i
xi

) term prompts members to

choose items they like, and itemsim(S l
xl
, S i

xi
) term prompts them

to choose items that others probably like. The payoff function

is the bridge to get the solution, i.e, Nash equilibrium, in a

static and noncooperative game.
Nash Equilibrium Solution. In this game, the number of

players (|G|) and the number of strategies (N) are finite, and

we allow members to choose strategies with probabilities. For

instance, U1 may choose optimal item I3 with probability 0.4

and choose another optimal item I5 with probability 0.6, this

is called as a mixed strategy. The Nash’s Existence Theorem
[11] tells us that if mixed strategies are accepted, a game with

a finite number of players and strategies has at least one Nash

equilibrium. Thus, our simulation of individual selection in a

group can reach at least one Nash equilibrium, denoted as:

NA = (NA1, ...,NA|G|),

NAi = (NAi
1, ...,NAi

N)T ,

N∑
j=1

NAi
j = 1.

(7)
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This above formalization means member Ui chooses or insists

the optional item S i
j with probability NAi

j in her group.

Given the set of strategy profiles S and the payoff of

each member to a strategy profile (e.g., p(i, S x)), the Nash

equilibrium solution NA for this group can be computed

by solving a constrained optimization problem. For better

description, we introduce two matrices P|G|×N and Q|G|×1.

Pi, j represents the probability that the group member Ui will

choose item S i
j. Qi represents the greatest expectation of

satisfaction of member Ui. For better formalization, we turn

P and Q into a vector x of size m=|G| × N + |G| defined as

follows, (x((i−1)N+1), ...,x((i−1)N+N)) represents (Pi,1, ...,Pi,N)

and x(|G|N + l), 1 ≤ l ≤ |G| represents Q. Then the Nash

equilibrium solution can be formalized as the following non-

linear optimization problem. In this optimization problem, x
with an initial P (Pi, j = 1/N) and initial Q (Qi is a large

constant) is the input variable, and the P term of the final

optimal x is the solved Nash equilibrium solution NA, i.e.,

members’ group-dependent optimal selection probabilities to

each strategy/item in a group:

min
x

f (x)

s.t. g(x) ≤ 0, h(x) = 0

x(i) ≥ 0,∀i = 1, ...,N|G|.
x(i) are unrestricted,∀i = |G|N + 1, ..., |G|N + |G|.

(8)

where : f (x) =

|G|∑
i=1

(x(|G|N + i) −
∑
S j∈S

p(i, S j)

|G|∏
l=1

x((l − 1)N + jl)),

g(x) =
∑
S j∈S

p(i, S j)

|G|∏
l=1

x′((l − 1)N + jl) − x(|G|N + i),

h(x) =

N∑
jl=1

x((i − 1)N + jl) − 1,∀i = 1, ..., |G|,

x((l − 1)N + jl) = x′((l − 1)N + jl),∀l = 1, ..., |G|, l � i.

In the above formalization, f (x) is the sum of the difference

between the greatest expectation of satisfaction (i.e., x(|G|N+i))
and the realistic payoff (i.e.,

∑
S j∈S p(i, S j)

∏|G|
l=1

x((l−1)N+ jl)) of

each group member (i.e., Ui). The boundary condition g(x) ≤ 0

means that Ui will get fewer benefits if she changes her mixed

optional item in this situation, and x′ is different from x
only by replacing Ui’s mixed strategy with her single optimal

strategy [41]. Another condition h(x) = 0 is the normalization

which means the sum of each member’s selection probabilities

to her strategies equals to 1. As a result, the solution of this

optimization will be a Nash equilibrium (the stable situation

that no member wants to change her mixed strategies) from

which the entire group can reach the greatest satisfaction.

We adopt the sequential quadratic programming based quasi

Newton method [41] to solve this minimization problem,

which can get one approximate Nash equilibrium solution.

By assuming the individual selections of members in a

group as a game process, we get the members’ group-

dependent optimal selection probabilities to strategy items. For

example, if NAi = (0.3, ..., 0.5)T , member Ui will choose items

S i
1
,...,S i

N with probabilities 0.3,...,0.5 respectively in this given

group. However, Nash equilibrium solution just expresses the

members’ group-dependent individual selections in a given

group while group-oriented services should provide the same

item/service to all members in a group. Thus, Nash solution

can’t be applied directly. In the next, we will show the way

to extract the aggregated unitary preference for each group by

integrating this Nash solution.

C. Preference Aggregation

Here, we deal with preference aggregation, i.e., figure out

the specific ideal item that can perfectly match the unitary

group preferences (or selections in the above simulation of

all group members) of each group. Considering the best

choice of a group should be the items with factors that Nash

equilibrium solution owns, we first do SVD on the group

member-strategy matrix and construct an ‘ideal item-feature
prototype’ (IFP) which concludes the features of ideal item

in latent factor space by integrating the Nash equilibrium

solution. In this way, we can also achieve dimensionality

reduction and compression by discarding some unimportant

factors to smooth the preferences of group members. Second,

based on IFP, we define an ‘ideal item-rating prototype’ (IIP)

to represent the aggregated preference (i.e., the ideal item) of

target group in rating space. After getting the ideal item, we

can finish group recommendation by recommending the items

which are the most similar to this ideal one.

Ideal Item-Feature Prototype. Before introducing the

ideal item-feature prototype, we first represent the optional

items/strategies of each group into latent space. Specifically,

for a group G = (U1,U2, ...,U|G|), members’ strategy set IS =
(I1, ..., I|IS |) =

⋃|G|
i=1

⋃|N |
j=1

IS i
j
. Please note that, IS is the group’s

strategy set in which each item belongs to at least one of

the group member’s strategy sets. We compute singular value

decomposition of matrix (R(i, j))|G|×|IS | as:

(R(i, j))|G|×|IS | = A|G|×|G|D|G|×|IS |V T
|IS |×|IS |, (9)

where R(i, j) is the rating of member Ui to the j-th item, A
is the member-feature matrix, D is the weight matrix which

is diagonal, and V is the strategy-feature matrix. One step

further, we can achieve dimensionality reduction by low-rank

matrix approximation:

R̃ = A|G|×wDw×wV
T
|IS |×w

= ÃD̃Ṽ T ,

where : w = min

⎧⎪⎪⎨⎪⎪⎩w|
∑w

k=1 D(k, k)∑|G|
k=1

D(k, k)
> α

⎫⎪⎪⎬⎪⎪⎭,
(10)

w is the number of remaining features. Parameter α controls

the degree of smoothness or denoising, e.g., when α is smaller

(w is also smaller), the smoothness become more heavily. This

process is necessary especially when the members’ preferences

conflict very much.

Then, for aggregating the preferences of group members in

the decomposed latent space by integrating Nash equilibrium

solution NA, we define ideal item-feature prototype for each

group (denoted as IFP1×w) as:

IFP =
1

|G|
|G|∑
i=1

|IS |∑
j=1

NAi
jṼ (IS i

j, 1 : w), (11)
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where IS i
j is the position of Ui’s strategy S i

j in strategy set

IS. Thus, IFP could be viewed as the ideal item in the latent

factor space after preference smoothness and aggregation.

Ideal Item-Rating Prototype and Group Recommenda-
tion. Given IFP, if we want to provide group-oriented services,

e.g., group recommendation, we have to figure out the items

which are most similar to the IFP. A straightforward solution

is to project all the candidate items (not rated by all members

in target group) into latent space for each group like those in

strategy set IS , and then compute the similarity of items in

this space. However, the size of candidate item set is much

larger than that of strategy set, and it is also difficult and time

consuming to project each item’s ratings in latent space by

SVD once again. Alternatively, in this paper we consider a

reverse process, i.e., project the IFP back to the prime matrix

R by matrix product and find the similar items in rating space,

which is much easier and quicker.

Thus, we define ideal item-rating prototype IIP|G|×1 as:

IIP = Ã · D̃ · IFPT . (12)

IIP is indeed the ideal item or prototype of aggregated

unitary preference in rating space. Actually, when a group is

making decisions, each term in IIP implies in what degree of

this member’ preference can be expressed or considered in this

group. Thus, for group-oriented service, we should recommend

the candidate items whose ratings given by each group member

are very close to the terms of given group’s IIP. To measure

the difference/similarity between each candidate item I j and

IIP, we compute the ideal-item distance IID(I j, IIP) as:

IID(I j, IIP) = ||R(1 : |G|, I j) − IIP||2. (13)

Here, we do not need to consider the situation that there

exist items that all of its ratings are higher than IIP. Actually,

this situation does not exist because if it exists, it will

contribute to an IIP with higher ratings as well. Then, we can

choose the top-K items with lowest IID values as our final

recommendations for group G, as group members are more

likely to reach an agreement on the items which are similar

to the aggregated preferences.

Discussion. In summary, our solution for preference ag-

gregation mainly contains two steps: In the first step, we

model the individual selections of members in a group as a

static noncooperative game and obtain the members’ group-

dependent optimal selection probabilities by Nash equilibrium.

In the second step, we leverage SVD to achieve preference ag-

gregation for each group by integrating Nash equilibrium, and

there are two advantages: First, SVD enables us to conclude

the features but not just the ratings of the group preference,

as a pair of similar items can have different ratings but similar

features. Second, SVD can smooth the preferences of group

members by low-rank matrix approximation, which filters the

extreme preferences of some members that are too different

from others’. The smoothness could also be controlled by

changing parameter α in Equation (10).

IV. Experiments

In this section, we evaluate our approach by constructing

experiments on group recommendation task. Specifically, we

first introduce the experimental data sets and setup. Then, we

report the experimental results from the following aspects:

we first present a simple case study for readers to under-

stand our approach easily (Section IV-C1); then we present

extensive results on efficiency (Section IV-C2); effectiveness

(Section IV-C3) and robustness (Section IV-C4); at last, we

give some discussions about the effects of parameters in our

method (Section IV-C5).

A. Experimental Data

In the experiments, we use two real-world data sets, i.e.,

CAMRa2011 and Yelp1. CAMRa2011 has 290 households with

602 users who gave 145,069 ratings over 7,740 movies. Yelp

hosts an online database of 2,906 users generated 22,333

ratings2 on 1,555 businesses, e.g., restaurants. In CAMRa2011,

the households/families are treated as groups [14]. Since there

is no group information in Yelp data set, we take the users

who visited the same restaurants on same days more than two

times as a group [25]. Thus, a user may be grouped into more

than one group in Yelp. Table II shows the basic statistical

information of the experimental data.

TABLE II
Group statistics in experimental data.

GroupNumber\GroupSize 2 3 4 5 6 7

CAMRa2011 272 14 4 - - -
Yelp 1,494 1,402 1,272 1,124 996 877

B. Experimental Setup

In the experiments, without loss of generality, the neighbor

number (M) in matrix completion is set as 10. The number of

each member’s optional items (N) is set as 6 empirically and

the pruning parameter N′ is set as 	N/|G|
. The stop criteria

of Equation (8) is that the changing of x (or f (x)) is less than

10−4(or 10−7), which we think is of high-quality enough. The

smooth parameter in SVD (α) is set as 0.97 without special

illustration. For each data set, the data is divided into 5 parts,

and we adopt the 5-fold cross-validation. Each time 4 parts

are selected as training set, and the rest one is used for test.

1) Experimental Methods: We denote our approaches for

preference aggregation and group recommendation as Nash-
NoP, Nash-Skyband and Nash-Skyline which represent

methods without pruning, pruning by skyband and pruning

by skyline, respectively. We also select three state-of-the-art

preference aggregation methods used on group recommenda-

tion as baselines.

Least misery strategy (LM) [9], [14], [24]. LM first estimates

the rating of each item, and then choose the lowest value from

the ratings given by all group members as the target group’s

predicted rating on each item. At last, choose items with the

highest predicted ratings as recommendations.

Averaging strategy (AVG) [10], [14], [24]. AVG sets the

1http://www.yelp.com.au/dataset challenge
2The rating scales in CAMRa2011 and Yelp are [1,100] and [1,5] respectively. We

preprocess ratings into the same scale, i.e., [1,5].
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average rating given by the group members to each item as

the predicted rating of target group. At last, choose the items

with the highest predicted ratings as recommendations.

Relevance and disagreement (RD) [2], [25]. Different from

LM and AVG, RD calculates recommendation score for a

candidate item based on the relevance and disagreement of

a group. The relevance is calculated based on AVG strategy,

and the disagreement can be the variance of members’ ratings.

2) Metrics: For each target group G, we recommend an

item list L from the candidate items, and we adopt four widely-

used metrics in group recommendation for evaluation. In the

following experiments, all the results on these metrics are

calculated by the averages of all the groups.

Hit Rate (HR) [42]. HR measures the proportion of recom-

mendation lists which contain items that group members adopt

in all recommendation lists. HR =
∑

L∈all lists I(L,G)/ListNum,

where I(L,G) is an indicator function whose value is 1 when

L contains at least one item adopted by G and 0 otherwise.

Adopted items refer to the items that are real rated 3 or higher

by all members.

Satisfaction Gain (SG) [43]. SG measures the satisfaction

of a group to a recommendation list. S G = 1
|G|
∑|G|

j=1

∑|L|
k=1

R( j, k),

where U j is a member in G, Ik is an adopted item in L, R( j, k)

is the rating that U j gives to Ik.

Hamming Distance (HD) [44]. HD measures the diversity of

recommendation lists between different groups. HD between

group Gi and group G j, HD(i, j) = 1 − Qi, j/|L|, where Qi, j is

the number of items that are recommended to both Gi and G j.

High HD means high diversity, and the recommendations to

all groups make full use of all items and few items will be

left without being recommended.

Harmonic (H) [45]. Harmonic metric measures the equity of

the recommendation list to a group in the condition of high

satisfaction, i.e., H = |G|/(∑|G|
j=1

1∑|L|
k=1

R( j,k)
). If harmonic is high,

recommendation is fair to all members.

C. Experimental Results

1) Case Study: We randomly select a small group from

CAMRa2011 data which contains 3 family members and 5

items (Table III). We also suppose {I1, I2, I3, I4, I5} are all the

candidate items that can be recommended to all these three

members. That means the elements of the table below are the

evaluated/estimated ratings that each user will give to each

item. Please note that, in our approach, we consider both the

real ratings and estimated ratings in strategy selection, and in

this case study, we simplify this process. We only show the

Nash-NoP process in this case due to the limited space.

TABLE III
Selected group in Case study.

I1 I2 I3 I4 I5

U1 4.86 3.62 3.80 2.76 2.76
U2 5.00 4.30 3.63 3.78 5.00
U3 4.02 3.53 3.60 3.17 5.00

For Nash-NoP, we pick the 3 items with the highest ratings

from I1 to I5 as a member’s strategy set, i.e., S 1=(I1, I3, I2),

S 2=(I1, I5, I2), S 3=(I5, I1, I3). Then we calculate the value of

payoff function of each possible strategy profile S x. For

example, S x=(I1, I1, I5) means that U1, U2, U3 chooses I1, I1,

I5 respectively. By Equation (5), the benefit of U1 from this

optional item profile S x is: p(1, S x)=(4.86+cos((4.86, 5.00, 4.02),

(4.86, 5.00, 4.02)) × 4.86 + cos((2.76, 5.00, 5.00), (4.86, 5.00, 4.02)) ×
4.86)/3 = 4.79. After computing the payoff function values of

all strategy profiles and solving the non-linear optimization

problem (8), we get the Nash equilibrium solution NA in

Equation (7) as shown in the following table, which means

that U1 chooses I1 with probability 1, U2 chooses I1 with

probability 0.64 and chooses I5 with probability 0.36, U3

chooses I5 with probability 1.00.

U1 U2 U3

S i
1

1.00 0.64 1.00

S i
2

0.00 0.36 0.00

S i
3

0.00 0.00 0.00

Then we use SVD decomposition to conclude the features

of the Nash equilibrium solution3. By Equation (9), the SVD

decomposition of R(1 : 3, [1, 2, 3, 5])=ADV T is as follows:

A= -0.53 -0.82 0.22
-0.63 0.21 -0.75
-0.57 0.53 0.63

D= 14.28 0 0 0
0 1.72 0 0
0 0 0.46 0

V = -0.56 -0.47 -0.32 0.60
-0.46 -0.12 -0.44 -0.76
-0.44 -0.26 0.84 -0.18
-0.52 0.83 0.02 0.18

where A(i,k) measures the preference of member Ui to feature

Fk, Dk,k measures the importance of Fk, Vj,k measures the

preference of item I j to feature Fk.

After the decomposition, in the next, we show how to

aggregate the unitary preference for this group and obtain the

final recommended items. By Equation (10), We set α = 0.97

to denoise D to D(1 : 2,1 : 2) as follows:

Ã= -0.53 -0.82 D̃= 14.28 0 Ṽ = -0.56 -0.47
-0.63 0.21 0 1.72 -0.46 -0.12
-0.57 0.53 -0.44 -0.26

-0.52 0.83

By Equation (11), the Nash equilibrium solution is used to

calculate the ideal item-feature prototype IFP.

IFP =((1.00, 0.00, 0.00).Ṽ ([1, 3, 2], 1 : 2)

+ (0.64, 0.36, 0.00).Ṽ ([1, 4, 2], 1 : 2)

+ (1.00, 0.00, 0.00).Ṽ ([4, 1, 3], 1 : 2))/3

=((−0.56,−0.47) + (−0.56,−0.47) × 0.64

+ (−0.52, 0.83) × 0.36 + (−0.52, 0.83))/3

=(−0.54, 0.12).

By Equation (12), the ideal item-rating prototype IIP is

computed as:

IIP = Ã × D̃ × IFPT = (3.92, 4.90, 4.50)T .

IIP is the ideal item of unitary preference in rating space

for this group. The items with estimated individual ratings

from three members more similar IIP’s corresponding terms

are better. By Equation (13), the ideal-item distance IID is:

3Note: {I1, I2, I3, I5} is the members’ strategy set IS which will be used in
SVD decomposition, and the recommended candidate set is {I1, I2, I3, I4, I5}.
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Fig. 2. Results w.r.t. item number (K) on CAMRa2011.
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Fig. 3. Results w.r.t. item number (K) on Yelp.

IID(I1, IIP) =||R(1 : |G|, I1) − IIP||2
=||(4.86, 5.00, 4.02) − (3.92, 4.90, 4.50)||2 = 1.06

IID(I2, IIP) =1.18 IID(I3, IIP) = 1.56

IID(I4, IIP) =2.09 IID(I5, IIP) = 1.27

IID(I1, IIP) and IID(I2, IIP) are the lowest, which means

I1 and I2 are similar to the ideal item-rating prototype IIP. In

other words, I1, I2 are closer to the best choice of members.

If we pick I1 and I2 as recommendations, it’s more likely that

each member has a relatively high satisfaction to them and

they have minimal motives to replace them with other items.

Thus, I1, I2 are our final recommendations.

Then, we show the recommendations of our baseline meth-

ods. Intuitively, the average ratings for I1 ∼ I5 are 4.63, 3.82,

3.68, 3.24, 4.25. For AVG method, it will pick the items with

the highest average ratings, which are I1 and I5. The lowest

ratings for I1 ∼ I5 are 4.02, 3.53, 3.60, 2.76, 2.76. For LM

method, it will pick I1 and I3. The RD method gives I1 ∼ I5

4.60, 3.97, 3.92, 3.49, 4.14. It will pick I1 and I5.

We can find that both AVG and RD recommend I5. Though

U2 and U3 give I5 5 points, U1 only gives I5 2.76. I5 is an

unfair recommendation for U1. Thus, I5 is not an adopted item

of this group. LM recommends I3, which the 3 ratings given

by the members are close. However, I2’s ratings are close too,

and the ratings are relatively higher than I3’s. However, LM

does not recommend I2. Compared with these methods, Nash-

NoP recommends I1 and I2 whose ratings given by all the

members are relatively high.

2) Efficiency Results: In this part, we report the efficiency

results by comparing the strategy spaces of different meth-

ods and their running times. The number of all generated

strategies and the average running times of each group on

two data sets are shown in Table IV. These time records

are the total running times of the whole recommendation

processes of different methods except the cost of first step

(i.e., the time of estimating individual preferences by matrix

completion is not recorded). From the aspect of strategy space,

we can see that, Nash-Skyband prunes about 40% strategies

on CAMRa2011 and about 35% strategies on Yelp, while

Nash-Skyline prunes about 48% strategies on CAMRa2011

and about 45% strategies on Yelp. From the aspect of running

time, LM, AVG and RD are very efficient since they directly

compute the item scores for each group. LM, AVG and RD

need more time on CAMRa2011 than on Yelp. That is because

the item is denser on CAMRa2011, and these methods have

to compute scores with all the candidate items for each group.

Nash-Series are not sensitive to item density since they always

use a fixed number (N) of strategies. However, Nash-Series

take much more time on Yelp since there are many large-

size groups in Yelp. Further, Nash-Skyband needs about 50%

and 27% times of Nash-Nop on CAMRa2011 and Yelp, while

Nash-Skyline only needs 12% and 1.5% times of Nash-Nop

on these two data sets. Thus, we can conclude that the two

pruning approaches proposed in this study are very effective

compared with Nash-NoP .
TABLE IV

Efficiency results.

Number of all strategies Average running time (seconds)
Methods\Results CAMRa2011 Yelp CAMRa2011 Yelp

Nash-Nop 3,612 180,102 2.851 121.872
Nash-Skyband 2,167 117,066 1.380 33.439
Nash-Skyline 1,878 99,056 0.344 1.793

LM - - 0.010 0.004
AVG - - 0.039 0.017
RD - - 0.126 0.055

3) Effectiveness Results: In this part, we mainly evaluate

the recommendation performances of different methods. The

average cross-validation results on four metrics with respect

to the length of recommended list are shown in Fig. 2 and

Fig. 3. From Fig. 2(a) and Fig. 3(a) we can see that, Nash-

NoP performs best with all the list sizes on HR metric, and the

HR values of baseline methods are near to zero when the item

numbers are small in Fig. 3(a). Fig. 2(b) and Fig. 3(b) report

the SG results on two data sets. The proposed Nash-Series
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(Nash-NoP, Nash-Skyband and Nash-Skyline) provide higher

SG values than baselines. Although AVG directly optimizes

the satisfaction, it does not come out as the best. Because

we only consider the adopted items when computing the SG

values, AVG may lose some gains on the items whose average

ratings are high but not be accepted by all the members in

a group. Fig. 2(c) and Fig. 3(c) show the results on HD

metric, and the items output by Nash-NoP and Nash-Skyband

are more diverse than others. Fig. 2(d) and Fig. 3(d) report

the harmonic results, which are similar with the satisfaction

results, i.e., Nash-Series perform better compared with base-

lines. In terms of different data sets, the performances of

almost all methods on CAMRa2011 are better than those on

Yelp. The reason is that the groups in CAMRa2011 are much

more homogeneous (families) and smaller than the groups

in Yelp, and the agreement in homogeneous and small-size

groups is more easy to achieve. That may be also the reason

that LM performs much better on CAMRa2011 than on Yelp.

In summary, on almost all the metrics, the performances of

Nash-Skyband are very close to Nash-NoP, and Nash-Skyline

performs a little worse compared to Nash-NoP and Nash-

Skyband. Thus, Nash-Skyband pruning is much safer.
4) Robustness Results: We also discuss the robustness of

these recommendation methods. We obtain the results on

groups with different sizes only from Yelp data (since the

group sizes in CAMRa2011 are almost only 2 or 3). In this

experiment, we fix the length of the recommendation list

as 9, and the results are shown in Fig. 4. In comparison,

Nash-Series perform best on all metrics with any group sizes

and Nash-Skyband performs very closely to Nash-NoP. There

are different performances of LM, AVG and RD in different

cases. Besides, all methods tend to perform worse when group

size becomes larger, because the preference aggregation is

more difficult in larger groups. These results demonstrate the

robustness of Nash-Series.
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Fig. 4. Results w.r.t. group size on Yelp.

5) Parameter Effects: In this part, we make our efforts to

study the effects of parameter α in Nash-Skyband method.

In Fig. 5, we report the hit rate results with different α.

Specifically, in Fig.5(a) (i.e., CAMRa2011), the group size is

2; while in Fig. 5(b) and Fig. 5(c) (i.e., Yelp), group sizes are

2 and 6 respectively, and the length of item list is 9. We can

see that the hit rates get the best results with different certain

α values. From the comparisons of Fig. 5(a) and Fig. 5(b),

the optimal α on CAMRa2011 (around 0.92) is smaller than

that on Yelp (around 1). The reason may be that CAMRa2011

data is much denser and the families are tolerant of each other,

so we can smooth their preferences heavily by small α. From

the comparisons of Fig. 5(b) and Fig. 5(c), the optimal α for

smaller group (around 1) is larger than that for larger group

(around 0.96). That is because smoothing one individual’

preference in a larger group is much safer and this member

may still accept the recommending results with considering

the desires of the majority. Thus, larger and homogeneous-

relation groups could take a more heavily smoothing, so that

a smaller α is needed.

V. Conclusions and FutureWork

In this paper, we presented a focused study on preference

aggregation for group-oriented services. Specifically, we pro-

posed a method that combines the Nash equilibrium and matrix

factorization to aggregate the preferences of each group mem-

ber, where we viewed the group members as game players and

the member selection in group scene as a game process. In this

way, the Nash equilibrium solution stores the group-dependent

optimal selection probabilities from group members to items.

To solve this Nash solution, two pruning approaches (Nash-

Skyline, Nash-Skyband) were proposed for gaining efficiency.

Then, we designed an aggregation method to aggregate the

preferences of group members, and the items that match the

aggregated preference were recommended. Finally, extensive

experiments were conducted on two real-world data sets, and

the results demonstrate the effectiveness and robustness of our

proposed Nash-Series approaches.

In the future, we plan to include more constraints for

preference aggregation, e.g., consider the different strategy

numbers for different group members. Meanwhile, we will

test our solutions in more complicated scenarios, e.g., more

experimental settings on even larger data sets.
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